1
|
Liu T, Nie H, Huo Z, Yan X. The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110133. [PMID: 39870227 DOI: 10.1016/j.cbpc.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum. The gene structure, protein structure, chromosome localization, and phylogenetic analysis of aminotransferase were conducted using bioinformatics. According to the gene structure and phylogenetic analysis of aminotransferase proteins, aminotransferase proteins can be categorized into class I and II, class III, and class V. RNA-seq data analysis showed that aminotransferase genes were differentially expressed at different developmental stages, tissues, and salinity stress. In addition, qPCR demonstrated that the expression levels of most aminotransferase genes increased significantly during salinity changes. We also measured the free amino acids content in the gills of R. philippinarum after 48 h of low and high salinity stress. The results indicated that the total free amino acids under low salinity stress (75.89 ± 3.31 mg/g) and high salinity stress (91.01 ± 3.31 mg/g) at 48 h were significantly decreased and increased compared with the control group (83.01 ± 3.12 mg/g), respectively. The results of this study provide a valuable reference for further research on the salinity adaptation of the aminotransferase gene in R. philippinarum.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
2
|
Chen R, Su K, Zhang Y, Zhu Y, Liu J, Xu J. Co-crystal structure provides insights on transaminase CrmG recognition amino donor L-Arg. Biochem Biophys Res Commun 2023; 675:41-45. [PMID: 37451216 DOI: 10.1016/j.bbrc.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
ω-transaminase has attracted growing attention for chiral amine synthesis, although it commonly suffers from severe by-product inhibition. ω-transaminase CrmG is critical for the biosynthesis of Caerulomycin A, a natural product that possesses broad bioactivity, including immunosuppressive and anti-cancer. Compared to L-Arg, amino donor L-Glu, L-Gln or L-Ala is more preferred by CrmG. In this study, we determined the crystal structure of CrmG in complex with amino donor L-Arg, unveiling the detailed binding mode. Specifically, L-Arg exhibits an extensive contact with aromatic residues F207 and W223 on the roof of CrmG active site via cation-π network. This interaction may render the deamination by-product of L-Arg to be an inhibitor against PMP-bound CrmG by stabilizing its flexible roof, thus reducing the reactivity of L-Arg as an amino donor for CrmG. These data provide further evidence to support our previous proposal that CrmG can overcome inhibition from those by-products that are not able to stabilize the flexible roof of active site in PMP-bound CrmG. Thus, our result can not only facilitate the biosynthesis of CRM A but also be beneficial for the rational design of ω-transaminase to bypass by-product inhibition.
Collapse
Affiliation(s)
- Rui Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai Su
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jinsong Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Shen S, Butrin A, Beaupre BA, Ferreira GM, Doubleday PF, Grass DH, Zhu W, Kelleher NL, Moran GR, Liu D, Silverman RB. Structural and Mechanistic Basis for the Inactivation of Human Ornithine Aminotransferase by (3 S,4 S)-3-Amino-4-fluorocyclopentenecarboxylic Acid. Molecules 2023; 28:1133. [PMID: 36770800 PMCID: PMC9921285 DOI: 10.3390/molecules28031133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,β-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,β-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.
Collapse
Affiliation(s)
- Sida Shen
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Brett A. Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Glaucio M. Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Peter F. Doubleday
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Grass
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Wei Zhu
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Neil L. Kelleher
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Richard B. Silverman
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Silverman RB. Inactivators of Ornithine Aminotransferase for the Treatment of Hepatocellular Carcinoma. ACS Med Chem Lett 2021; 13:38-49. [PMID: 35059122 PMCID: PMC8762738 DOI: 10.1021/acsmedchemlett.1c00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second or third leading cause of cancer mortality worldwide (depending on which statistics are used), yet there is no effective treatment. Currently, there are nine FDA-approved drugs for HCC, five monoclonal antibodies and four tyrosine kinase inhibitors. Ornithine aminotransferase (OAT) has been validated as a target in preclinical studies, which demonstrates that it is a potential target to treat HCC. Currently, there are no OAT inactivators in clinical trials for HCC. This Innovation describes evidence to support inhibition of OAT as a novel approach for HCC tumor growth inhibition. After the mechanism of OAT is discussed, the origins of our involvement in OAT inactivation, based on our previous work on mechanism-based inactivation of GABA-AT, are described. Once it was demonstrated that OAT inactivation does lead to HCC tumor growth inhibition, new selective OAT inactivators were designed and their inactivation mechanisms were elucidated. A summary of these mechanistic studies is presented. Inactivators of OAT provide the potential for treatment of HCC, targeting the Wnt/β-catenin pathway.
Collapse
|
5
|
Gad MF, Mossa ATH, Refaie AA, Ibrahim NE, Mohafrash SMM. Benchmark dose and the adverse effects of exposure to pendimethalin at low dose in female rats. Basic Clin Pharmacol Toxicol 2021; 130:301-319. [PMID: 34738321 DOI: 10.1111/bcpt.13683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Pendimethalin (PND) is a dinitroaniline herbicide widely used to control broadleaf and annual grasses. Although the acute oral toxicity of PND is >5 g/kg b.wt. in humans (LD50 for rats >5000 g/kg b.wt.), it has been classified as a possible human carcinogen. It is still used in agriculture so, agricultural workers and their families, as well as consumers, can be exposed to this herbicide. The present study is the first report investigating the dose-response effect using the benchmark dose (BMD) and the adverse effects of exposure to PND at low dose via apoptosis responses linked to the expression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins; oxidative stress; and DNA and liver damage in female rats. The rats were exposed to PND via drinking water at doses equivalent to no-observed-adverse-effect level (NOAEL = 100 mg/kg b.wt.), 200, and 400 mg/kg b.wt. for 28 days. PND caused the overexpression of Tnf-α, Fas, and Bax; increased the levels of serum liver biomarkers; and increased oxidative stress in the liver and erythrocytes. Furthermore, it induced DNA and liver damage in a dose-dependent manner. The BMD showed that serum alkaline phosphatase (ALP) and total antioxidant capacity (78.4 and 30.1 mg/kg b.wt./day, respectively), lipid peroxidation in liver tissue (30.9 mg/kg b.wt./day), catalase in erythrocytes (14.0 mg/kg b.wt./day), and FAS expression in liver tissue (6.89 mg/kg b.wt./day) were highly sensitive biomarkers of PND toxicity. Our findings suggest the generation of reactive oxygen species as a possible mechanism of PND-induced gene overexpression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins, oxidative stress, and DNA and liver damage in female rats.
Collapse
Affiliation(s)
- Marwa F Gad
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | | | - Amel A Refaie
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | - Noha E Ibrahim
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Giza, Egypt
| | | |
Collapse
|
6
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
7
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
8
|
Bujacz A, Rum J, Rutkiewicz M, Pietrzyk-Brzezinska AJ, Bujacz G. Structural Evidence of Active Site Adaptability towards Different Sized Substrates of Aromatic Amino Acid Aminotransferase from Psychrobacter Sp. B6. MATERIALS 2021; 14:ma14123351. [PMID: 34204354 PMCID: PMC8235216 DOI: 10.3390/ma14123351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Aromatic amino acid aminotransferases present a special potential in the production of drugs and synthons, thanks to their ability to accommodate a wider range of substrates in their active site, in contrast to aliphatic amino acid aminotransferases. The mechanism of active site adjustment toward substrates of psychrophilic aromatic amino acid aminotransferase (PsyArAT) from Psychrobacter sp. B6 is discussed based on crystal structures of complexes with four hydroxy-analogs of substrates: phenylalanine, tyrosine, tryptophan and aspartic acid. These competitive inhibitors are bound in the active center of PsyArAT but do not undergo transamination reaction, which makes them an outstanding tool for examination of the enzyme catalytic center. The use of hydroxy-acids enabled insight into substrate binding by native PsyArAT, without mutating the catalytic lysine and modifying cofactor interactions. Thus, the binding mode of substrates and the resulting analysis of the volume of the catalytic site is close to a native condition. Observation of these inhibitors' binding allows for explanation of the enzyme's adaptability to process various sizes of substrates and to gain knowledge about its potential biotechnological application. Depending on the character and size of the used inhibitors, the enzyme crystallized in different space groups and showed conformational changes of the active site upon ligand binding.
Collapse
Affiliation(s)
- Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (J.R.); (A.J.P.-B.); (G.B.)
- Correspondence:
| | - Jedrzej Rum
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (J.R.); (A.J.P.-B.); (G.B.)
| | - Maria Rutkiewicz
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany;
| | - Agnieszka J. Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (J.R.); (A.J.P.-B.); (G.B.)
| | - Grzegorz Bujacz
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (J.R.); (A.J.P.-B.); (G.B.)
| |
Collapse
|
9
|
Shen S, Doubleday PF, Weerawarna PM, Zhu W, Kelleher NL, Silverman RB. Mechanism-Based Design of 3-Amino-4-Halocyclopentenecarboxylic Acids as Inactivators of GABA Aminotransferase. ACS Med Chem Lett 2020; 11:1949-1955. [PMID: 33062178 DOI: 10.1021/acsmedchemlett.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between an amino acid and an α-keto acid, playing a critical role in cellular nitrogen metabolism. It is evident that γ-aminobutyric acid aminotransferase (GABA-AT), which balances the levels of inhibitory and excitatory neurotransmitters, has emerged as a promising therapeutic target for epilepsy and cocaine addiction based on mechanism-based inactivators (MBIs). In this work, we established an integrated approach using computational simulation, organic synthesis, biochemical evaluation, and mass spectrometry to facilitate our design and mechanistic studies of MBIs, which led to the identification of a new cyclopentene-based analogue (6a), 25-times more efficient as an inactivator of GABA-AT compared to the parent compound (1R,3S,4S)-3-amino-4-fluorocyclopentane carboxylic acid (FCP, 4).
Collapse
Affiliation(s)
| | | | | | | | | | - Richard B. Silverman
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition. Commun Biol 2020; 3:455. [PMID: 32814814 PMCID: PMC7438487 DOI: 10.1038/s42003-020-01184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Amine compounds biosynthesis using ω-transaminases has received considerable attention in the pharmaceutical industry. However, the application of ω-transaminases was hampered by the fundamental challenge of severe by-product inhibition. Here, we report that ω-transaminase CrmG from Actinoalloteichus cyanogriseus WH1-2216-6 is insensitive to inhibition from by-product α-ketoglutarate or pyruvate. Combined with structural and QM/MM studies, we establish the detailed catalytic mechanism for CrmG. Our structural and biochemical studies reveal that the roof of the active site in PMP-bound CrmG is flexible, which will facilitate the PMP or by-product to dissociate from PMP-bound CrmG. Our results also show that amino acceptor caerulomycin M (CRM M), but not α-ketoglutarate or pyruvate, can form strong interactions with the roof of the active site in PMP-bound CrmG. Based on our results, we propose that the flexible roof of the active site in PMP-bound CrmG may facilitate CrmG to overcome inhibition from the by-product.
Collapse
|
11
|
Henríquez MJ, Cardós-Elena RP, Nesbeth DN. Genomic data mining reveals the transaminase repertoire of Komagataella phaffii (Pichia pastoris) strain GS115 and supports a systematic nomenclature. J Genet 2020. [DOI: 10.1007/s12041-020-01201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Cui L, Wei X, Wang X, Bai L, Lin S, Feng Y. A Validamycin Shunt Pathway for Valienamine Synthesis in Engineered Streptomyces hygroscopicus 5008. ACS Synth Biol 2020; 9:294-303. [PMID: 31940432 DOI: 10.1021/acssynbio.9b00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Valienamine is the key functional component of many natural glycosidase inhibitors, including the crop protectant validamycin A and the clinical antidiabetic agent acarbose. Due to its important biomedical activity, it is also the prominent lead compound for the exploration of therapeutic agents, such as the stronger α-glucosidase inhibitor voglibose. Currently, the main route for obtaining valienamine is a multistep biosynthetic process involving the synthesis and degradation of validamycin A. Here, we established an alternative, vastly simplified shunt pathway for the direct synthesis of valienamine based on an envisioned non-natural transamination in the validamycin A producer Streptomyces hygroscopicus 5008. We first identified candidate aminotransferases for the non-natural ketone substrate valienone and conducted molecular evolution in vitro. The WecE enzyme from Escherichia coli was verified to complete the envisioned step with >99.9% enantiomeric excess and was further engineered to produce a 32.6-fold more active mutant, VarB, through protein evolution. Subsequently, two copies of VarB were introduced into the host, and the new shunt pathway produced 0.52 mg/L valienamine after a 96-h fermentation. Our study thus illustrates a dramatically simplified alternative shunt pathway for valienamine production and introduces a promising foundational platform for increasing the production of valienamine and its valuable N-modified derivatives for use in pharmaceutical applications.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Wei
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinran Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Zheng X, Cui Y, Li T, Li R, Guo L, Li D, Wu B. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids. Appl Microbiol Biotechnol 2019; 103:8051-8062. [PMID: 31485690 DOI: 10.1007/s00253-019-10105-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s-1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lu Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Defeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
14
|
Comparison of aminotransferases of three Bacillus strains Bacillus altitudinis W3, Bacillus velezensis SYBC H47, and Bacillus amyloliquefaciens YP6 via genome analysis and bioinformatics. J Appl Genet 2019; 60:427-430. [PMID: 31407219 DOI: 10.1007/s13353-019-00512-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Aminotransferases have attracted considerable attention due to their extraordinary potential for the biosynthesis of chiral amines. Research on transaminase genes can facilitate their application to various fields. Herein, 89 putative aminotransferase genes potentially encoding useful biocatalysts were identified in three Bacillus strains genomes by genome annotation. Enzymes encoded by genes ota3, ota8, otae6, otae21, otaf1, otaf8, and otaf26 belong to pyridoxine 5'-phosphate-dependent enzyme class IV. These seven ω-aminotransferase genes are highly conserved according to phylogenetic tree and bioinformatics analyses, as are the putative lysine catalytic residues in the corresponding enzymes (ω-BPTA 1-7). The enzymes may possess similar activity to ω-aminotransferases from Arthrobacter sp. KNK 168. The potential application of these novel enzymes for the synthesis of medicinal amino compounds will be explored in future genetic engineering studies.
Collapse
|
15
|
Crystal structure of γ-aminobutyrate aminotransferase in complex with a PLP-GABA adduct from Corynebacterium glutamicum. Biochem Biophys Res Commun 2019; 514:601-606. [PMID: 31072617 DOI: 10.1016/j.bbrc.2019.04.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
Abstract
γ-Aminobutyrate (GABA), a four carbon non-protein amino acid, is used by some microorganisms as a source of carbon and/or nitrogen. Corynebacterium glutamicum has an incomplete GABA shunt that lacks a glutamate decarboxylase coding gene for the conversion of glutamate to GABA. Recently, a novel GABA assimilation system was identified in C. glutamicum. In the cell, GABA aminotransferase (GABA-AT) is the first step of GABA assimilation in the process of utilizing GABA as a carbon and/or nitrogen source. In this study, we report the crystal structure of CgGABA-AT in complex with PLP-GABA. We used structural studies and site-directed mutagenesis experiments to identify the key residues that contribute to the formation of the active site. Furthermore, based on structural comparisons and amino acid sequence alignment, we demonstrate the differences between the GABA-ATs of bacteria, fungi, and animals.
Collapse
|
16
|
Tseliou V, Masman MF, Böhmer W, Knaus T, Mutti FG. Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines. Chembiochem 2019; 20:800-812. [PMID: 30489013 PMCID: PMC6472184 DOI: 10.1002/cbic.201800626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/18/2022]
Abstract
Biocatalytic asymmetric amination of ketones, by using amine dehydrogenases (AmDHs) or transaminases, is an efficient method for the synthesis of α-chiral primary amines. A major challenge is to extend amination to the synthesis of secondary and tertiary amines. Herein, for the first time, it is shown that AmDHs are capable of accepting other amine donors, thus giving access to enantioenriched secondary amines with conversions up to 43 %. Surprisingly, in several cases, the promiscuous formation of enantiopure primary amines, along with the expected secondary amines, was observed. By conducting practical laboratory experiments and computational experiments, it is proposed that the promiscuous formation of primary amines along with secondary amines is due to an unprecedented nicotinamide (NAD)-dependent formal transamination catalysed by AmDHs. In nature, this type of mechanism is commonly performed by pyridoxal 5'-phosphate aminotransferase and not by dehydrogenases. Finally, a catalytic pathway that rationalises the promiscuous NAD-dependent formal transamination activity and explains the formation of the observed mixture of products is proposed. This work increases the understanding of the catalytic mechanism of NAD-dependent aminating enzymes, such as AmDHs, and will aid further research into the rational engineering of oxidoreductases for the synthesis of α-chiral secondary and tertiary amines.
Collapse
Affiliation(s)
- Vasilis Tseliou
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Wesley Böhmer
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
17
|
Zhang JD, Zhao JW, Gao LL, Chang HH, Wei WL, Xu JH. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. J Biotechnol 2019; 290:24-32. [DOI: 10.1016/j.jbiotec.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
|
18
|
Heuson E, Charmantray F, Petit JL, de Berardinis V, Gefflaut T. Enantioselective Synthesis ofd- andl-α-Amino Acids by Enzymatic Transamination Using Glutamine as Smart Amine Donor. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Egon Heuson
- Université Clermont Auvergne, CNRS, SIGMA Clermont; ICCF; F-63000 Clermont-Ferrand France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont; ICCF; F-63000 Clermont-Ferrand France
| | - Jean-Louis Petit
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Véronique de Berardinis
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Thierry Gefflaut
- Université Clermont Auvergne, CNRS, SIGMA Clermont; ICCF; F-63000 Clermont-Ferrand France
| |
Collapse
|
19
|
Zhai L, Yang S, Lai Y, Meng D, Tian Q, Guan Z, Cai Y, Liao X. Mining of aminotransferase gene ota3 from Bacillus pumilus W3 via genome analysis, gene cloning and expressing for compound bioamination. Gene 2018; 686:21-28. [PMID: 30408548 DOI: 10.1016/j.gene.2018.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Aminotransferases are widely employed as biocatalysts to produce chiral amines and biologically active pharmaceuticals via asymmetric synthesis. In this study, transaminase genes in the Bacillus pumilus W3 genome were analysed, and gene ota3 encoding a putative (R)-selective transaminase was identified. The sequence of ota3 shares highest sequence identity (24.7%) with the first (R)-selective aminotransferase from Arthrobacter sp. KNK 168. Amino acid sequence and conserved domains analyses indicated that ω-BPAT encoded by ota3 belonged to the pyridoxal 5'-phosphate-dependent class IV (PLPDE_IV) superfamily. Both native and codon-optimised ω-BPAT genes were recombinantly expressed, and the purified proteins had a molecular mass of ~33.4 kDa. Furthermore, enantioselectivity tests with (S)- and (R)-α-phenethylamine revealed its (R)-selectivity. The optimal conditions for catalytic reaction were 45 °C and pH 7.0, and ω-BPAT retained stability at 20 °C and pH 7.0. Thus, ω-BPAT is a novel (R)-selective aminotransferase with great potential as a universal biocatalyst.
Collapse
Affiliation(s)
- Lixin Zhai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shaolan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yingjie Lai
- Chem-Stone (Guangzhou) Co. Ltd., Scientific and Technological Enterprise Accelerator, 11 Kaiyuan Avenue, Guangzhou 510530, China
| | - Di Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiaopeng Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengbing Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Bezsudnova EY, Boyko KM, Popov VO. Properties of Bacterial and Archaeal Branched-Chain Amino Acid Aminotransferases. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523060 DOI: 10.1134/s0006297917130028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metabolism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the "lock and key" mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal temperature, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, The Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
21
|
Guérard-Hélaine C, Heuson E, Ndiaye M, Gourbeyre L, Lemaire M, Hélaine V, Charmantray F, Petit JL, Salanoubat M, de Berardinis V, Gefflaut T. Stereoselective synthesis of γ-hydroxy-α-amino acids through aldolase-transaminase recycling cascades. Chem Commun (Camb) 2018; 53:5465-5468. [PMID: 28466909 DOI: 10.1039/c7cc00742f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Efficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.
Collapse
Affiliation(s)
- Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Identification of ( R )-selective ω-aminotransferases by exploring evolutionary sequence space. Enzyme Microb Technol 2018; 110:46-52. [DOI: 10.1016/j.enzmictec.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022]
|
23
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
24
|
Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF. Application of ω-Transaminases in the Pharmaceutical Industry. Chem Rev 2017; 118:349-367. [PMID: 29251912 DOI: 10.1021/acs.chemrev.7b00437] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral amines are valuable building blocks for the pharmaceutical industry. ω-TAms have emerged as an exciting option for their synthesis, offering a potential "green alternative" to overcome the drawbacks associated with conventional chemical methods. In this review, we explore the application of ω-TAms for pharmaceutical production. We discuss the diverse array of reactions available involving ω-TAms and process considerations of their use in both kinetic resolution and asymmetric synthesis. With the aid of specific drug intermediates and APIs, we chart the development of ω-TAms using protein engineering and their contribution to elegant one-pot cascades with other enzymes, including carbonyl reductases (CREDs), hydrolases and monoamine oxidases (MAOs), providing a comprehensive overview of their uses, beginning with initial applications through to the present day.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Stefan Pohle
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Scott Wharry
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Stefan Mix
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Thomas S Moody
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| |
Collapse
|
25
|
Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Appl Microbiol Biotechnol 2017; 102:801-814. [DOI: 10.1007/s00253-017-8657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
26
|
Continuous High-Throughput Colorimetric Assays for α-Transaminases. Methods Mol Biol 2017. [PMID: 29086312 DOI: 10.1007/978-1-4939-7366-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transaminases are efficient tools for the stereoselective conversion of prochiral ketones into valuable chiral amines. Notably, the diversity of naturally occurring α-transaminases offers access to a wide range of L- and D-α-amino acids. We describe here two continuous colorimetric assays for the quantification of transamination activities between a keto acid and a standard donor substrate (L- or D-Glutamic acid or cysteine sulfinic acid). These assays are helpful for kinetic studies as well as for high-throughput screening of enzyme collections.
Collapse
|
27
|
Van Daele T, Gernaey KV, Ringborg RH, Börner T, Heintz S, Van Hauwermeiren D, Grey C, Krühne U, Adlercreutz P, Nopens I. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models. Biotechnol Prog 2017; 33:1278-1293. [DOI: 10.1002/btpr.2515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/08/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Timothy Van Daele
- Faculty of Bioscience Engineering, BIOMATH, Dept. of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Coupure Links 653, Ghent 9000 Belgium
| | - Krist V. Gernaey
- Process and Systems Engineering Center (PROSYS), Dept. of Chemical and Biochemical Engineering; Technical University of Denmark; Building 229, Lyngby 2800 Kgs Denmark
| | - Rolf H. Ringborg
- Process and Systems Engineering Center (PROSYS), Dept. of Chemical and Biochemical Engineering; Technical University of Denmark; Building 229, Lyngby 2800 Kgs Denmark
| | - Tim Börner
- Dept. of Biotechnology; Chemical Center, Lund University; P.O. Box 124, Lund S-211 00 Sweden
| | - Søren Heintz
- Process and Systems Engineering Center (PROSYS), Dept. of Chemical and Biochemical Engineering; Technical University of Denmark; Building 229, Lyngby 2800 Kgs Denmark
| | - Daan Van Hauwermeiren
- Faculty of Bioscience Engineering, BIOMATH, Dept. of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Coupure Links 653, Ghent 9000 Belgium
| | - Carl Grey
- Dept. of Biotechnology; Chemical Center, Lund University; P.O. Box 124, Lund S-211 00 Sweden
| | - Ulrich Krühne
- Process and Systems Engineering Center (PROSYS), Dept. of Chemical and Biochemical Engineering; Technical University of Denmark; Building 229, Lyngby 2800 Kgs Denmark
| | - Patrick Adlercreutz
- Dept. of Biotechnology; Chemical Center, Lund University; P.O. Box 124, Lund S-211 00 Sweden
| | - Ingmar Nopens
- Faculty of Bioscience Engineering, BIOMATH, Dept. of Mathematical Modelling, Statistics and Bioinformatics; Ghent University; Coupure Links 653, Ghent 9000 Belgium
| |
Collapse
|
28
|
Andreeßen C, Gerlt V, Steinbüchel A. Conversion of cysteine to 3‐mercaptopyruvic acid by bacterial aminotransferases. Enzyme Microb Technol 2017; 99:38-48. [DOI: 10.1016/j.enzmictec.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
29
|
Cui L, Guan XQ, Liu ZM, Fan LY, Li Q, Feng Y. A new pre-column derivatization for valienamine and beta-valienamine using o-phthalaldehyde to determine the epimeric purity by HPLC and application of this method to monitor enzymatic catalyzed synthesis of beta-valienamine. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:347-357. [PMID: 28367638 DOI: 10.1080/10286020.2017.1292257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Abstract
Valienamine and β-valienamine are representative C7 N aminocyclitols with significant glycosidase inhibition activity that have been developed as important precursors of drugs for diabetes and lysosomal storage diseases, respectively. The quantitative analysis of these chiral compounds is crucial for asymmetric in vitro biosynthetic processes for converting valienone into valienamine epimers using aminotransferase. Here, we developed an efficient and sensitive method for separation and quantitative analysis of chiral valienamine using reversed-phase high-performance liquid chromatography (HPLC) through o-phthalaldehyde (OPA) pre-column derivatization of the analytes. The epimers were derivatized by OPA in borate buffer (pH 9.0) at room temperature for 30 s, separated on an Eclipse XDB-C18 (5 μm, 4.6 × 150 mm) column, eluted with 22% acetonitrile at 30 °C for 18 min, and detected by a fluorescence detector using 445 nm emission and 340 nm excitation wavelengths. The average resolution of the epimers is 3.86, and the concentration linearity is in the range of 0.02-20 μg/ml. The method proved to be effective, sensitive, and reliable with good intra- and inter-day precision and accuracy, and successfully evaluated the enantiopreference and catalytic capability of the potential aminotransferases on an unnatural prochiral substrate, facilitating the design of an asymmetric biosynthetic route for optically pure valienamine and β-valienamine.
Collapse
Affiliation(s)
- Li Cui
- a State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiao-Qing Guan
- a State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhang-Min Liu
- a State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Liu-Yin Fan
- a State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- b School of Life Science & Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Yan Feng
- a State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
30
|
Manta B, Cassimjee KE, Himo F. Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase. ACS OMEGA 2017; 2:890-898. [PMID: 30023618 PMCID: PMC6044752 DOI: 10.1021/acsomega.6b00376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 05/14/2023]
Abstract
ω-Transaminases are attractive biocatalysts for the production of chiral amines. These enzymes usually have a broad substrate range. Their substrates include hydrophobic amines as well as amino acids, a feature referred to as dual-substrate recognition. In the present study, the reaction mechanism for the half-transamination of l-alanine to pyruvate in (S)-selective Chromobacterium violaceum ω-transaminase is investigated using density functional theory calculations. The role of a flexible arginine residue, Arg416, in the dual-substrate recognition is investigated by employing two active-site models, one including this residue and one lacking it. The results of this study are compared to those of the mechanism of the conversion of (S)-1-phenylethylamine to acetophenone. The calculations suggest that the deaminations of amino acids and hydrophobic amines follow essentially the same mechanism, but the energetics of the reactions differ significantly. It is shown that the amine is kinetically favored in the half-transamination of l-alanine/pyruvate, whereas the ketone is kinetically favored in the half-transamination of (S)-1-phenylethylamine/acetophenone. The calculations further support the proposal that the arginine residue facilitates the dual-substrate recognition by functioning as an arginine switch, where the side chain is positioned inside or outside of the active site depending on the substrate. Arg416 participates in the binding of l-alanine by forming a salt bridge to the carboxylate moiety, whereas the conversion of (S)-1-phenylethylamine is feasible in the absence of Arg416, which here represents the case in which the side chain of Arg416 is positioned outside of the active site.
Collapse
Affiliation(s)
- Bianca Manta
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, Wei WL. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Anal Biochem 2017; 518:94-101. [DOI: 10.1016/j.ab.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
|
32
|
López-Iglesias M, González-Martínez D, Rodríguez-Mata M, Gotor V, Busto E, Kroutil W, Gotor-Fernández V. Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- María López-Iglesias
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Daniel González-Martínez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - María Rodríguez-Mata
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Eduardo Busto
- Departamento de Química Orgánica I, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
33
|
Nectrisine Biosynthesis Genes in Thelonectria discophora SANK 18292: Identification and Functional Analysis. Appl Environ Microbiol 2016; 82:6414-6422. [PMID: 27565616 DOI: 10.1128/aem.01709-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022] Open
Abstract
The fungus Thelonectria discophora SANK 18292 produces the iminosugar nectrisine, which has a nitrogen-containing heterocyclic 5-membered ring and acts as a glycosidase inhibitor. In our previous study, an oxidase (designated NecC) that converts 4-amino-4-deoxyarabinitol to nectrisine was purified from T. discophora cultures. However, the genes required for nectrisine biosynthesis remained unclear. In this study, the nectrisine biosynthetic gene cluster in T. discophora was identified from the contiguous genome sequence around the necC gene. Gene disruption and complementation studies and heterologous expression of the gene showed that necA, necB, and necC could be involved in nectrisine biosynthesis, during which amination, dephosphorylation, and oxidation occur. It was also demonstrated that nectrisine could be produced by recombinant Escherichia coli coexpressing the necA, necB, and necC genes. These findings provide the foundation to develop a bacterial production system for nectrisine or its intermediates through genetic engineering. IMPORTANCE Iminosugars might have great therapeutic potential for treatment of many diseases. However, information on the genes for their biosynthesis is limited. In this study, we report the identification of genes required for biosynthesis of the iminosugar nectrisine in Thelonectria discophora SANK 18292, which was verified by disruption, complementation, and heterologous expression of the genes involved. We also demonstrate heterologous production of nectrisine by recombinant E. coli, toward developing an efficient production system for nectrisine or its intermediates through genetic engineering.
Collapse
|
34
|
Characterization of Four New Distinct ω-Transaminases from Pseudomonas putida NBRC 14164 for Kinetic Resolution of Racemic Amines and Amino Alcohols. Appl Biochem Biotechnol 2016; 181:972-985. [DOI: 10.1007/s12010-016-2263-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022]
|
35
|
Dold SM, Cai L, Rudat J. One-step purification and immobilization of a β-amino acid aminotransferase using magnetic (M-PVA) beads. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sarah-Marie Dold
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Liyin Cai
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences Section II: Technical Biology; , Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
36
|
López-Iglesias M, González-Martínez D, Gotor V, Busto E, Kroutil W, Gotor-Fernández V. Biocatalytic Transamination for the Asymmetric Synthesis of Pyridylalkylamines. Structural and Activity Features in the Reactivity of Transaminases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María López-Iglesias
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Biotecnología de Asturias, Universidad de Oviedo, E- 33071 Oviedo, Asturias, Spain
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Daniel González-Martínez
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Biotecnología de Asturias, Universidad de Oviedo, E- 33071 Oviedo, Asturias, Spain
| | - Vicente Gotor
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Biotecnología de Asturias, Universidad de Oviedo, E- 33071 Oviedo, Asturias, Spain
| | - Eduardo Busto
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Wolfgang Kroutil
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Vicente Gotor-Fernández
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Biotecnología de Asturias, Universidad de Oviedo, E- 33071 Oviedo, Asturias, Spain
| |
Collapse
|
37
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
38
|
Pemberton TA, Christianson DW. General base-general acid catalysis by terpenoid cyclases. J Antibiot (Tokyo) 2016; 69:486-93. [PMID: 27072285 DOI: 10.1038/ja.2016.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023]
Abstract
Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.
Collapse
Affiliation(s)
- Travis A Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.,Radcliffe Institute for Advanced Study, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
39
|
Cui L, Zhu Y, Guan X, Deng Z, Bai L, Feng Y. De Novo Biosynthesis of β-Valienamine in Engineered Streptomyces hygroscopicus 5008. ACS Synth Biol 2016; 5:15-20. [PMID: 26436873 DOI: 10.1021/acssynbio.5b00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C7N aminocyclitol β-valienamine is a lead compound for the development of new biologically active β-glycosidase inhibitors as chemical chaperone therapeutic agents for lysosomal storage diseases. Its chemical synthesis is challenging due to the presence of multichiral centers in the structure. Herein, we took advantage of a heterogeneous aminotransferase with stereospecificity and designed a novel pathway for producing β-valienamine in Streptomyces hygroscopicus 5008, a validamycin producer. The aminotransferase BtrR from Bacillus circulans was able to convert valienone to β-valienamine with an optical purity of up to >99.9% enantiomeric excess value in vitro. When the aminotransferase gene was introduced into a mutant of S. hygroscopicus 5008 accumulating valienone, 20 mg/L of β-valienamine was produced after 96 h cultivation in shaking flasks. This work provides a powerful alternative for preparing the chiral intermediates for pharmaceutical development.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Guan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Continuous colorimetric screening assays for the detection of specific l- or d-α-amino acid transaminases in enzyme libraries. Appl Microbiol Biotechnol 2015; 100:397-408. [DOI: 10.1007/s00253-015-6988-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 11/28/2022]
|
41
|
Schmidt NG, Simon RC, Kroutil W. Biocatalytic Asymmetric Synthesis of Optically Pure Aromatic Propargylic Amines Employing ω-Transaminases. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Schiroli D, Peracchi A. A subfamily of PLP-dependent enzymes specialized in handling terminal amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1200-11. [PMID: 25770684 DOI: 10.1016/j.bbapap.2015.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 01/04/2023]
Abstract
The present review focuses on a subfamily of pyridoxal phosphate (PLP)-dependent enzymes, belonging to the broader fold-type I structural group and whose archetypes can be considered ornithine δ-transaminase and γ-aminobutyrate transaminase. These proteins were originally christened "subgroup-II aminotransferases" (AT-II) but are very often referred to as "class-III aminotransferases". As names suggest, the subgroup includes mainly transaminases, with just a few interesting exceptions. However, at variance with most other PLP-dependent enzymes, catalysts in this subfamily seem specialized at utilizing substrates whose amino function is not adjacent to a carboxylate group. AT-II enzymes are widespread in biology and play mostly catabolic roles. Furthermore, today several transaminases in this group are being used as bioorganic tools for the asymmetric synthesis of chiral amines. We present an overview of the biochemical and structural features of these enzymes, illustrating how they are distinctive and how they compare with those of the other fold-type I enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Davide Schiroli
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, 43124 Parma, Italy
| | - Alessio Peracchi
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
43
|
Bujacz A, Rutkiewicz-Krotewicz M, Nowakowska-Sapota K, Turkiewicz M. Crystal structure and enzymatic properties of a broad substrate-specificity psychrophilic aminotransferase from the Antarctic soil bacterium Psychrobacter sp. B6. ACTA ACUST UNITED AC 2015; 71:632-45. [PMID: 25760611 DOI: 10.1107/s1399004714028016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
Abstract
Aminotransferases (ATs) are enzymes that are commonly used in the chemical and pharmaceutical industries for the synthesis of natural and non-natural amino acids by transamination reactions. Currently, the easily accessible enzymes from mesophilic organisms are most commonly used; however, for economical and ecological reasons the utilization of aminotransferases from psychrophiles would be more advantageous, as their optimum reaction temperature is usually significantly lower than for the mesophilic ATs. Here, gene isolation, protein expression, purification, enzymatic properties and structural studies are reported for the cold-active aromatic amino-acid aminotransferase (PsyArAT) from Psychrobacter sp. B6, a psychrotrophic, Gram-negative strain from Antarctic soil. Preliminary computational analysis indicated dual functionality of the enzyme through the ability to utilize both aromatic amino acids and aspartate as substrates. This postulation was confirmed by enzymatic activity tests, which showed that it belonged to the class EC 2.6.1.57. The first crystal structures of a psychrophilic aromatic amino-acid aminotransferase have been determined at resolutions of 2.19 Å for the native enzyme (PsyArAT) and 2.76 Å for its complex with aspartic acid (PsyArAT/D). Both types of crystals grew in the monoclinic space group P21 under slightly different crystallization conditions. The PsyArAT crystals contained a dimer (90 kDa) in the asymmetric unit, which corresponds to the active form of this enzyme, whereas the crystals of the PsyArAT/D complex included four dimers showing different stages of the transamination reaction.
Collapse
Affiliation(s)
- Anna Bujacz
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Maria Rutkiewicz-Krotewicz
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Karolina Nowakowska-Sapota
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Marianna Turkiewicz
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
44
|
Lee H, Juncosa JI, Silverman RB. Ornithine aminotransferase versus GABA aminotransferase: implications for the design of new anticancer drugs. Med Res Rev 2014; 35:286-305. [PMID: 25145640 DOI: 10.1002/med.21328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ornithine aminotransferase (OAT) and γ-aminobutyric acid aminotransferase (GABA-AT) are classified under the same evolutionary subgroup and share a large portion of structural, functional, and mechanistic features. Therefore, it is not surprising that many molecules that bind to GABA-AT also bind well to OAT. Unlike GABA-AT, OAT had not been viewed as a potential therapeutic target until recently; consequently, the number of therapeutically viable molecules that target OAT is very limited. In this review the two enzymes are compared with respect to their active-site structures, catalytic and inactivation mechanisms, and selective inhibitors. Insight is offered that could aid in the design and development of new selective inhibitors of OAT for the treatment of cancer.
Collapse
Affiliation(s)
- Hyunbeom Lee
- Center for Molecular Innovation and Drug Discovery, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | | | | |
Collapse
|
45
|
Jiang J, Chen X, Feng J, Wu Q, Zhu D. Substrate profile of an ω-transaminase from Burkholderia vietnamiensis and its potential for the production of optically pure amines and unnatural amino acids. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Busto E, Simon RC, Grischek B, Gotor-Fernández V, Kroutil W. Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ω-Transaminases. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300993] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Park ES, Park SR, Han SW, Dong JY, Shin JS. Structural Determinants for the Non-Canonical Substrate Specificity of the ω-Transaminase fromParacoccus denitrificans. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Yu X, Wang X, Engel PC. The specificity and kinetic mechanism of branched-chain amino acid aminotransferase fromEscherichia colistudied with a new improved coupled assay procedure and the enzyme's potential for biocatalysis. FEBS J 2013; 281:391-400. [DOI: 10.1111/febs.12609] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Xuejing Yu
- School of Biomolecular and Biomedical Science; Conway Institute; University College Dublin; Ireland
| | - Xingguo Wang
- Faculty of Life Science; Hubei University; Wuhan China
| | - Paul C. Engel
- School of Biomolecular and Biomedical Science; Conway Institute; University College Dublin; Ireland
| |
Collapse
|
49
|
|
50
|
van Straaten KE, Ko JB, Jagdhane R, Anjum S, Palmer DRJ, Sanders DAR. The structure of NtdA, a sugar aminotransferase involved in the kanosamine biosynthetic pathway in Bacillus subtilis, reveals a new subclass of aminotransferases. J Biol Chem 2013; 288:34121-34130. [PMID: 24097983 DOI: 10.1074/jbc.m113.500637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-D-glucose 6-phosphate to form α-D-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-D-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-D-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.
Collapse
Affiliation(s)
- Karin E van Straaten
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jong Bum Ko
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Rajendra Jagdhane
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Shazia Anjum
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|