1
|
Zhao J, Ma M, Zeng Z, Wan D, Yan X, Xia J, Yu P, Gong D. Production, purification, properties and current perspectives for modification and application of microbial lipases. Prep Biochem Biotechnol 2024; 54:1001-1016. [PMID: 38445829 DOI: 10.1080/10826068.2024.2323196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
With the industrialization and development of modern science, the application of enzymes as green and environmentally friendly biocatalysts in industry has been increased widely. Among them, lipase (EC. 3.1.1.3) is a very prominent biocatalyst, which has the ability to catalyze the hydrolysis and synthesis of ester compounds. Many lipases have been isolated from various sources, such as animals, plants and microorganisms, among which microbial lipase is the enzyme with the most diverse enzymatic properties and great industrial application potential. It therefore has promising applications in many industries, such as food and beverages, waste treatment, biofuels, leather, textiles, detergent formulations, ester synthesis, pharmaceuticals and medicine. Although many microbial lipases have been isolated and characterized, only some of them have been commercially exploited. In order to cope with the growing industrial demands and overcome these shortcomings to replace traditional chemical catalysts, the preparation of new lipases with thermal/acid-base stability, regioselectivity, organic solvent tolerance, high activity and yield, and reusability through excavation and modification has become a hot research topic.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dongman Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
2
|
Zhang S, Zhang J, Lin R, Lu C, Fang B, Shi J, Jiang T, Zhou M. Design and construction of light-regulated gene transcription and protein translation systems in yeast P. Pastoris. J Adv Res 2024:S2090-1232(24)00330-8. [PMID: 39117107 DOI: 10.1016/j.jare.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazhen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Ortega-de la Rosa ND, Romero-Borbón E, Rodríguez JA, Camacho-Ruiz A, Córdova J. Cloning, Expression, Characterization and Immobilization of a Recombinant Carboxylesterase from the Halophilic Archaeon, Halobacterium salinarum NCR-1. Biomolecules 2024; 14:534. [PMID: 38785941 PMCID: PMC11118615 DOI: 10.3390/biom14050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s-1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.
Collapse
Affiliation(s)
- Nestor David Ortega-de la Rosa
- Centro Universitario de Tlajomulco, Departamento de Ingeniería Biología, Sintética y de Materiales, Universidad de Guadalajara, Carretera Tlajomulco-Santa Fé Km. 3.5 No.595, Lomas de Tejeda, Tlajomulco de Zúñiga 45641, Mexico;
| | - Evelyn Romero-Borbón
- Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico;
| | - Jorge Alberto Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Camino el Arenero 1227, El Bajío del arenal, Zapopan 45019, Mexico;
| | - Angeles Camacho-Ruiz
- Centro Universitario del Norte, Departamento de Fundamentos del Conocimiento, Universidad de Guadalajara, Carretera Federal Km. 191 No. 23, Col. Santiago Tlaltelolco, Colotlán 46200, Mexico;
| | - Jesús Córdova
- Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico;
| |
Collapse
|
4
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Verma S, Meghwanshi GK, Kumar R. Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie 2021; 182:23-36. [PMID: 33421499 DOI: 10.1016/j.biochi.2020.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
Microbial lipases are most broadly used biocatalysts for environmental and industrial applications. Lipases catalyze the hydrolysis and synthesis of long acyl chain esters and have a characteristic folding pattern of α/β hydrolase with highly conserved catalytic triad (Serine, Aspartic/Glutamic acid and Histidine). Mesophilic lipases (optimal activity in neutral pH range, mesophilic temperature range, atmospheric pressure, normal salinity, non-radio-resistant, and instability in organic solvents) have been in use for many industrial biotransformation reactions. However, lipases from extremophiles can be used to design biotransformation reactions with higher yields, less byproducts or useful side products and have been predicted to catalyze those reactions also, which otherwise are not possible with the mesophilic lipases. The extremophile lipase perform activity at extremes of temperature, pH, salinity, and pressure which can be screened from metagenome and de novo lipase design using computational approaches. Despite structural similarity, they exhibit great diversity at the sequence level. This diversity is broader when lipases from the bacterial, archaeal, plant, and animal domains/kingdoms are compared. Furthermore, a great diversity of novel lipases exists and can be discovered from the analysis of the dark matter - the unexplored nucleotide/metagenomic databases. This review is an update on extremophilic microbial lipases, their diversity, structure, and classification. An overview on novel lipases which have been detected through analysis of the genomic dark matter (metagenome) has also been presented.
Collapse
Affiliation(s)
- Swati Verma
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, 334004, India
| | | | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden.
| |
Collapse
|
6
|
Schocke L, Bräsen C, Siebers B. Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr Opin Biotechnol 2019; 59:71-77. [PMID: 30875666 DOI: 10.1016/j.copbio.2019.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Archaea dominate extreme habitats and possess unique cellular and metabolic properties with novel or modified metabolic pathways and unusual enzymes. Thermoacidophilic Sulfolobus species and their thermo(acido)philic enzymes gained special attention due to their adaptation toward two extremes, high temperature (75-80°C) and low pH (pH 2-5), that matches harsh process conditions in industrial applications. For different Sulfolobus species versatile genetic systems have been established and significant metabolic and physiological information from classical biochemistry and genetic as well as poly-omics and systems biology approaches is available. Their ease of growth under aerobic or microaerophilic conditions and established fermentation technologies gaining high cell yields promote Sulfolobus as source for extremozymes and as valuable novel platform organism for industrial biotechnology.
Collapse
Affiliation(s)
- Larissa Schocke
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
7
|
Studer S, Hansen DA, Pianowski ZL, Mittl PRE, Debon A, Guffy SL, Der BS, Kuhlman B, Hilvert D. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 2018; 362:1285-1288. [DOI: 10.1126/science.aau3744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Primordial sequence signatures in modern proteins imply ancestral origins tracing back to simple peptides. Although short peptides seldom adopt unique folds, metal ions might have templated their assembly into higher-order structures in early evolution and imparted useful chemical reactivity. Recapitulating such a biogenetic scenario, we have combined design and laboratory evolution to transform a zinc-binding peptide into a globular enzyme capable of accelerating ester cleavage with exacting enantiospecificity and high catalytic efficiency (kcat/KM~ 106M−1s−1). The simultaneous optimization of structure and function in a naïve peptide scaffold not only illustrates a plausible enzyme evolutionary pathway from the distant past to the present but also proffers exciting future opportunities for enzyme design and engineering.
Collapse
|
8
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|