1
|
Kelleher NL. The Proteoform Program of Life: Deciphering Evolution at the Protein Level. J Proteome Res 2025; 24:2205-2206. [PMID: 39964079 DOI: 10.1021/acs.jproteome.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Lee H, Kim JE, Shin EA, Pinanga Y, Pyo KH, Lee EH, Kim W, Kim S, Lim CS, Yoon KC, Lee JW. Hepatocyte TM4SF5-mediated cytosolic NCOA3 stabilization and macropinocytosis support albumin uptake and bioenergetics for hepatocellular carcinoma progression. Exp Mol Med 2025; 57:836-855. [PMID: 40186033 PMCID: PMC12046047 DOI: 10.1038/s12276-025-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 04/07/2025] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatocellular carcinoma (HCC) development and progression. Although TM4SF5 also promotes migration and invasion, it remains unclear how the metabolic context affects metastatic potential. Here we explored how TM4SF5 affects albumin uptake for HCC progression using TM4SF5 knockout or reintroduced hepatocyte and animal systems. Serum-deprived hepatocytes formed filopodia-like processes depending on TM4SF5 expression, which was altered by albumin replenishment for membranous PIP3-dependent macropinocytosis. Macropinocytosis required nuclear receptor coactivator 3 (NCOA3) stabilized in the cytosol and PTEN inactivation via binding to TM4SF5WT. TM4SF5-mediated albumin uptake led to ATP-linked respiration and cellular migration. Tumor tissues from liver-orthotopically xenografted mice fed a high protein diet or human liver cancer tissues showed TM4SF5-dependent macropinocytosis and NCOA3-correlated metastatic features, unlike mice fed a normal chow diet or human nontumor regions. These observations indicate that serum albumin availability to TM4SF5-positive HCC could support multifocality and intrahepatic metastasis, which may provide insights into clinical observations of multiple small tumor nodules surrounded by areas with high serum albumin levels.
Collapse
Affiliation(s)
- Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yangie Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chang Sup Lim
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyung Chul Yoon
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
4
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Fang Z, Zhao G, Zhao S, Yu X, Feng R, Zhang YE, Li H, Huang L, Guo Z, Zhang Z, Abdurahman M, Hong H, Li P, Wu B, Zhu J, Zhong X, Huang D, Lu H, Zhao X, Chen Z, Zhang W, Guo J, Zheng H, He Y, Qin S, Lu H, Zhao Y, Wang X, Ge J, Li H. GTF2H4 regulates partial EndMT via NF-κB activation through NCOA3 phosphorylation in ischemic diseases. Innovation (N Y) 2024; 5:100565. [PMID: 38379791 PMCID: PMC10876913 DOI: 10.1016/j.xinn.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 01/01/2024] [Indexed: 02/22/2024] Open
Abstract
Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT. Furthermore, by using phosphorylation proteomics and site-directed mutagenesis, we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3 (NCOA3) at serine 1330, which promoted the interaction between NCOA3 and p65, resulting in the transcriptional activation of NF-κB and the NF-κB/Snail signaling axis during partial EndMT. In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury. Collectively, our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.
Collapse
Affiliation(s)
- Zheyan Fang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang Zhao
- Department of Medical Examination, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Xueting Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Runyang Feng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - You-en Zhang
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Haomin Li
- Clinical Data Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lei Huang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hangnan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Bing Wu
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jinhang Zhu
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, affiliated with Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hongchao Zheng
- Department of Cardiology, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Yue He
- Department of Cardiology, Shanghai Eighth People’s Hospital, Shanghai 200235, China
| | - Shengying Qin
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
6
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
7
|
Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT. AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1250218. [PMID: 37711895 PMCID: PMC10498919 DOI: 10.3389/fendo.2023.1250218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ghada M. Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
8
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
9
|
Krishnan A, Dhamodharan D, Sundaram T, Sundaram V, Byun HS. Computational discovery of novel human LMTK3 inhibitors by high throughput virtual screening using NCI database. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kumar R. Role of conformational dynamics and flexibilities in the steroid receptor-coregulator protein complex formation. Gen Comp Endocrinol 2021; 309:113780. [PMID: 33882296 DOI: 10.1016/j.ygcen.2021.113780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Understanding of the mechanisms of actions of the steroid hormone receptor (SHR)-coregulator (CoR) protein complexes in the gene regulations has revolutionized the field of molecular endocrinology and endocrine-related oncology. The discovery and characterization of steroid receptor coactivators (SRCs) and their ability to bind various transcription factors including SHRs to coordinate the regulation of multiple target genes highlights their importance as key coregulators in various cellular signaling crosstalks as well as therapeutic target for various endocrine-related disorders specifically endocrine cancers. The dynamic nature of the SHR-CoR multi-protein complexes indicate the critical role of conformational flexibilities within specific protein(s). In recent years, the importance of conformational dynamics of the SHRs in the intramolecular and intermolecular allosteric regulations mediated via their intrinsically disordered (ID) surfaces has been highlighted. In this review article, we have discussed the importance of ID conformations within the SRCs that may also be playing an important role in the formation/deformation of multi protein complexes involving SHRs and CoRs and subsequent target gene regulation.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Biomedical Sciences, University of Houston - College of Medicine, Houston, TX, United States.
| |
Collapse
|
11
|
Truong TH, Benner EA, Hagen KM, Temiz NA, Kerkvliet CP, Wang Y, Cortes-Sanchez E, Yang CH, Trousdell MC, Pengo T, Guillen KP, Welm BE, Dos Santos CO, Telang S, Lange CA, Ostrander JH. PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER + breast cancer. Oncogene 2021; 40:4384-4397. [PMID: 34103681 PMCID: PMC8238912 DOI: 10.1038/s41388-021-01871-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ying Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emilio Cortes-Sanchez
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chieh-Hsiang Yang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katrin P Guillen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Sucheta Telang
- James Graham Brown Cancer Center, Department of Medicine (Division of Medical Oncology and Hematology), University of Louisville, Louisville, KY, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
13
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
14
|
Nikolai BC, Jain P, Cardenas DL, York B, Feng Q, McKenna NJ, Dasgupta S, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 (SRC-3/AIB1) is enriched and functional in mouse and human Tregs. Sci Rep 2021; 11:3441. [PMID: 33564037 PMCID: PMC7873281 DOI: 10.1038/s41598-021-82945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of CD4 + lymphocytes, regulatory T cells (Tregs), are necessary for central tolerance and function as suppressors of autoimmunity against self-antigens. The SRC-3 coactivator is an oncogene in multiple cancers and is capable of potentiating numerous transcription factors in a wide variety of cell types. Src-3 knockout mice display broad lymphoproliferation and hypersensitivity to systemic inflammation. Using publicly available bioinformatics data and directed cellular approaches, we show that SRC-3 also is highly enriched in Tregs in mice and humans. Human Tregs lose phenotypic characteristics when SRC-3 is depleted or pharmacologically inhibited, including failure of induction from resting T cells and loss of the ability to suppress proliferation of stimulated T cells. These data support a model for SRC-3 as a coactivator that actively participates in protection from autoimmunity and may support immune evasion of cancers by contributing to the biology of Tregs.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Prashi Jain
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David L Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Laboratory of Molecular Regulation, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Wang X, Veeraraghavan J, Liu CC, Cao X, Qin L, Kim JA, Tan Y, Loo SK, Hu Y, Lin L, Lee S, Shea MJ, Mitchell T, Li S, Ellis MJ, Hilsenbeck SG, Schiff R, Wang XS. Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clin Cancer Res 2021; 27:2648-2662. [PMID: 33542078 DOI: 10.1158/1078-0432.ccr-20-2961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Endocrine resistance remains a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Despite the encouraging results from clinical trials for the drugs targeting known survival signaling, relapse is still inevitable. There is an unmet need to discover new drug targets in the unknown escape pathways. Here, we report Nemo-like kinase (NLK) as a new actionable kinase target that endows previously uncharacterized survival signaling in endocrine-resistant breast cancer. EXPERIMENTAL DESIGN The effects of NLK inhibition on the viability of endocrine-resistant breast cancer cell lines were examined by MTS assay. The effect of VX-702 on NLK activity was verified by kinase assay. The modulation of ER and its coactivator, SRC-3, by NLK was examined by immunoprecipitation, kinase assay, luciferase assay, and RNA sequencing. The therapeutic effects of VX-702 and everolimus were tested on cell line- and patient-derived xenograft (PDX) tumor models. RESULTS NLK overexpression endows reduced endocrine responsiveness and is associated with worse outcome of patients treated with tamoxifen. Mechanistically, NLK may function, at least in part, via enhancing the phosphorylation of ERα and its key coactivator, SRC-3, to modulate ERα transcriptional activity. Through interrogation of a kinase profiling database, we uncovered and verified a highly selective dual p38/NLK inhibitor, VX-702. Coadministration of VX-702 with the mTOR inhibitor, everolimus, demonstrated a significant therapeutic effect in cell line-derived xenograft and PDX tumor models of acquired or de novo endocrine resistance. CONCLUSIONS Together, this study reveals the potential of therapeutic modulation of NLK for the management of the endocrine-resistant breast cancers with active NLK signaling.
Collapse
Affiliation(s)
- Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Chia-Chia Liu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Xixi Cao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lanfang Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ling Lin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin J Shea
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Tamika Mitchell
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine at St Louis, St. Louis, Missouri
| | - Matthew J Ellis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Women's Cancer Research Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Li W, Yan Y, Zheng Z, Zhu Q, Long Q, Sui S, Luo M, Chen M, Li Y, Hua Y, Deng W, Lai R, Li L. Targeting the NCOA3-SP1-TERT axis for tumor growth in hepatocellular carcinoma. Cell Death Dis 2020; 11:1011. [PMID: 33239622 PMCID: PMC7689448 DOI: 10.1038/s41419-020-03218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate and lacks an effective therapeutic target. Elevated expression of human telomerase reverse transcriptase (TERT) is an important hallmark in cancers, but the mechanism by which TERT is activated differentially in cancers is poorly understood. Here, we have identified nuclear receptor coactivator-3 (NCOA3) as a new modulator of TERT expression and tumor growth in HCC. NACO3 specifically binds to the TERT promoter at the -234 to -144 region and transcriptionally activates TERT expression. NCOA3 promotes HCC cell growth and tumor progression in vitro and in vivo through upregulating the TERT signaling. Knockdown of NACO3 suppresses HCC cell viability and colony formation, whereas TERT overexpression rescues this suppression. NCOA3 interacts with and recruits SP1 binding on the TERT promoter. Knockdown of NCOA3 also inhibits the expression of the Wnt signaling-related genes but has no effect on the Notch signaling-targeting genes. Moreover, NCOA3 is positively correlated with TERT expression in HCC tumor tissues, and high expression of both NCOA3 and TERT predicts a poor prognosis in HCC patients. Our findings indicate that targeting the NCOA3-SP1-TERT signaling axis may benefit HCC patients.
Collapse
Affiliation(s)
- Wenbin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zongheng Zheng
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiaohua Zhu
- Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Meihua Luo
- Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Renchun Lai
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liren Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event? Pflugers Arch 2020; 472:1793-1807. [PMID: 33078311 DOI: 10.1007/s00424-020-02473-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Many proteins are phosphorylated at more than one phosphorylation site to achieve precise tuning of protein function and/or integrate a multitude of signals into the activity of one protein. Increasing the number of phosphorylation sites significantly broadens the complexity of molecular mechanisms involved in processing multiple phosphorylation sites by one or more distinct kinases. The cardiac ryanodine receptor (RYR2) is a well-established multiple phospho-target of kinases activated in response to β-adrenergic stimulation because this Ca2+ channel is a critical component of Ca2+ handling machinery which is responsible for β-adrenergic enhancement of cardiac contractility. Our review presents a selective overview of the extensive, often conflicting, literature which focuses on identifying reliable lines of evidence to establish if multiple RYR2 phosphorylation is achieved randomly or in a specific sequence, and whether phosphorylation at individual sites is functionally specific and additive or similar and can therefore be substituted.
Collapse
|
18
|
Shrestha A, Bruckmueller H, Kildalsen H, Kaur G, Gaestel M, Wetting HL, Mikkola I, Seternes OM. Phosphorylation of steroid receptor coactivator-3 (SRC-3) at serine 857 is regulated by the p38 MAPK-MK2 axis and affects NF-κB-mediated transcription. Sci Rep 2020; 10:11388. [PMID: 32647362 PMCID: PMC7347898 DOI: 10.1038/s41598-020-68219-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3) regulates the activity of both nuclear hormone receptors and a number of key transcription factors. It is implicated in the regulation of cell proliferation, inflammation and in the progression of several common cancers including breast, colorectal and lung tumors. Phosphorylation is an important regulatory event controlling the activities of SRC-3. Serine 857 is the most studied phospho-acceptor site, and its modification has been reported to be important for SRC-3-dependent tumor progression. In this study, we show that the stress-responsive p38MAPK-MK2 signaling pathway controls the phosphorylation of SRC-3 at S857 in a wide range of human cancer cells. Activation of the p38MAPK-MK2 pathway results in the nuclear translocation of SRC-3, where it contributes to the transactivation of NF-kB and thus regulation of IL-6 transcription. The identification of the p38MAPK-MK2 signaling axis as a key regulator of SRC-3 phosphorylation and activity opens up new possibilities for the development and testing of novel therapeutic strategies to control both proliferative and metastatic tumor growth.
Collapse
Affiliation(s)
- Anup Shrestha
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Henrike Bruckmueller
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Hanne Kildalsen
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Gurjit Kaur
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Center of Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Hilde Ljones Wetting
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ingvild Mikkola
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
19
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
20
|
Urick ME, Bell DW. In vitro effects of FBXW7 mutation in serous endometrial cancer: Increased levels of potentially druggable proteins and sensitivity to SI-2 and dinaciclib. Mol Carcinog 2018; 57:1445-1457. [PMID: 29963728 PMCID: PMC6168387 DOI: 10.1002/mc.22867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Serous endometrial cancers (ECs) are clinically aggressive tumors that frequently harbor somatic mutations in FBXW7 (F-box and WD repeat domain-containing 7). The FBXW7 tumor suppressor is part of a SCF (complex of SKP1, Cullin 1, F-box protein) ubiquitin ligase complex which controls the degradation of numerous substrates that, if not properly regulated, can contribute to the initiation or progression of tumorigenesis. Despite reports that up to 30% of serous ECs include somatic mutations in FBXW7, the molecular effects of mutated FBXW7 in ECs have not been determined. Here, we used transient transfection and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) editing in serous EC cell lines to interrogate the molecular effects of six recurrent FBXW7 mutations. We show that FBXW7 mutations lead to increased Cyclin E1, steroid receptor coactivator 3 (SRC-3), c-MYC, Rictor, glycogen synthase kinase 3 (GSK3), P70S6 kinase, and protein kinase B (AKT) phosphorylated protein levels in serous EC cells. Furthermore, we demonstrate that CRISPR-edited FBXW7-mutant ARK1 serous EC cells exhibit increased sensitivity to SI-2 (a SRC inhibitor) and dinaciclib (a cyclin dependent kinase (CDK) inhibitor) compared to parental ARK1 cells. Collectively, our findings reveal biochemical effects of FBXW7 mutations in the context of EC and provide in vitro evidence of sensitivity to targeted inhibitors.
Collapse
Affiliation(s)
- Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National
Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Daphne W. Bell
- Cancer Genetics and Comparative Genomics Branch, National
Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| |
Collapse
|
21
|
Paul A, Edwards J, Pepper C, Mackay S. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Cells 2018; 7:E176. [PMID: 30347849 PMCID: PMC6210445 DOI: 10.3390/cells7100176] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular kinases inhibitory-κB kinase (IKK) α and Nuclear Factor-κB (NF-κB)-inducing kinase (NIK) are well recognised as key central regulators and drivers of the non-canonical NF-κB cascade and as such dictate the initiation and development of defined transcriptional responses associated with the liberation of p52-RelB and p52-p52 NF-κB dimer complexes. Whilst these kinases and downstream NF-κB complexes transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes, they also play a key role in the pathogenesis of a number of inflammatory-based conditions and diverse cancer types, which for the latter may be a result of background mutational status. IKKα and NIK, therefore, represent attractive targets for pharmacological intervention. Here, specifically in the cancer setting, we reflect on the potential pathophysiological role(s) of each of these kinases, their associated downstream signalling outcomes and the stimulatory and mutational mechanisms leading to their increased activation. We also consider the downstream coordination of transcriptional events and phenotypic outcomes illustrative of key cancer 'Hallmarks' that are now increasingly perceived to be due to the coordinated recruitment of both NF-κB-dependent as well as NF-κB⁻independent signalling. Furthermore, as these kinases regulate the transition from hormone-dependent to hormone-independent growth in defined tumour subsets, potential tumour reactivation and major cytokine and chemokine species that may have significant bearing upon tumour-stromal communication and tumour microenvironment it reiterates their potential to be drug targets. Therefore, with the emergence of small molecule kinase inhibitors targeting each of these kinases, we consider medicinal chemistry efforts to date and those evolving that may contribute to the development of viable pharmacological intervention strategies to target a variety of tumour types.
Collapse
Affiliation(s)
- Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK.
| | - Christopher Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK.
| | - Simon Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
22
|
Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C, Westbrook TF, Zhang XHF, Foulds CE, Tsai SY, Tsai MJ, O'Malley BW. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 2018; 556:249-254. [PMID: 29615789 PMCID: PMC5895503 DOI: 10.1038/s41586-018-0018-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/28/2018] [Indexed: 01/27/2023]
Abstract
Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jong Min Choi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Y Jung
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas F Westbrook
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, Schwertfeger KL, Lange CA, Ostrander JH. Cancer Stem Cell Phenotypes in ER + Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Mol Cancer Res 2018; 16:707-719. [PMID: 29348189 PMCID: PMC5882512 DOI: 10.1158/1541-7786.mcr-17-0598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Proline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression. Herein, interacting partners unique to cytoplasmic PELP1 and the mechanisms by which these interactions promote oncogenic PELP1 signaling were sought. AIB1 (amplified in breast cancer 1; also known as SRC-3 or NCOA3) was identified as a novel binding partner of cytoplasmic PELP1 in both estrogen receptor-positive (ER+) and ER-negative cell lines. Cytoplasmic PELP1 expression elevated basal phosphorylation levels (i.e., activation) of AIB1 at Thr24, enhanced ALDH+ tumorsphere formation, and upregulated specific target genes independently of hormone stimulation. Direct manipulation of AIB1 levels using shRNA abrogated cytoplasmic PELP1-induced tumorsphere formation and downregulated cytoplasmic PELP1-specific target genes. SI-2, an AIB1 inhibitor, limited the PELP1/AIB1 interaction and decreased cytoplasmic PELP1-induced tumorsphere formation. Similar results were observed in a murine-derived MMTV-AIB1 tumor cell line. Furthermore, in vivo syngeneic tumor studies revealed that PELP1 knockdown resulted in increased survival of tumor-bearing mice as compared with mice injected with control cells.Implications: These data demonstrate that cytoplasmic PELP1/AIB1-containing complexes function to promote advanced cancer phenotypes, including outgrowth of stem-like cells, associated with estrogen-independent breast cancer progression. Mol Cancer Res; 16(4); 707-19. ©2018 AACR.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Masonic Cancer Center, Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brian J Girard
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Brady
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie H Ostrander
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
24
|
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W. MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation. Mol Oncol 2018; 12:391-405. [PMID: 29360267 PMCID: PMC5830628 DOI: 10.1002/1878-0261.12173] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/25/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear receptor coactivator 3 (NCOA3) is a transcriptional coactivator that has elevated expression in multiple tumor types, including colorectal cancer (CRC). However, the molecular mechanisms that regulate the tumorigenic functions of NCOA3 in CRC remain largely unknown. In this study, we aimed to discover and identify the novel regulatory proteins of NCOA3 and explore their mechanisms of action. Immunoprecipitation (IP) coupled with mass spectrometry (IP-MS) analysis was used to detect, identify, and verify the proteins that interacted with NCOA3 in CRC cells. The biological functions of the candidate proteins and the underlying molecular mechanism were investigated in CRC cells and mouse model in vitro and in vivo. The clinical significance of NCOA3 and its interaction partner protein in CRC patients was also studied. We identified mitotic arrest deficient 2-like protein 2 (MAD2L2, also known as MAD2B or REV7), with two signal peptide sequences of LIPLK and EVYPVGIFQK, to be an interaction partner of NCOA3. Overexpression of MAD2L2 suppressed the proliferation, migration, and clonogenicity of CRC cells by inducing the degradation of NCOA3. The mechanism study showed that increased MAD2L2 expression in CRC cells activated p38, which was required for the phosphorylation of NCOA3 that led to its ubiquitination and degradation by the proteasome. Moreover, we found that MAD2L2 predicted favorable prognosis in CRC patients. We have discovered a novel role of MAD2L2 in the regulation of NCOA3 degradation and proposed that MAD2L2 serves as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Yixin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Liren Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Miao Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xinfa Yu
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Zhuoyu Gu
- Department of PharmacologyMedical CollegeJinan UniversityGuangzhouChina
| | - Huijuan Qiu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Ge Qin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Qian Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xiaoyan Fu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tianze Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenbin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenlin Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
- State Key Laboratory of Targeted Drug for Tumors of Guangdong ProvinceGuangzhou Double Bioproduct Inc.GuangzhouChina
| | - Dingbo Shi
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tiebang Kang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Meihua Luo
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Xiaojun Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wuguo Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
25
|
|
26
|
Alsaran H, Elkhadragy L, Shakya A, Long W. L290P/V mutations increase ERK3's cytoplasmic localization and migration/invasion-promoting capability in cancer cells. Sci Rep 2017; 7:14979. [PMID: 29101390 PMCID: PMC5670241 DOI: 10.1038/s41598-017-15135-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022] Open
Abstract
Protein kinases are frequently mutated in human cancers, which leads to altered signaling pathways and contributes to tumor growth and progression. ERK3 is an atypical mitogen-activated protein kinase (MAPK) containing an S-E-G activation motif rather than the conserved T-X-Y motif in conventional MAPKs such as ERK1/2. Recent studies have revealed important roles for ERK3 in cancers. ERK3 promotes cancer cell migration/invasion and tumor metastasis, and its expression is upregulated in multiple cancers. Little is known, however, regarding ERK3 mutations in cancers. In the present study, we functionally and mechanistically characterized ERK3 L290P/V mutations, which are located within ERK3’s kinase domain, and are shown to exist in several cancers including lung cancer and colon cancer. We found that in comparison with wild type ERK3, both L290P and L290V mutants have greatly increased activity in promoting cancer cell migration and invasion, but have little impact on ERK3’s role in cell proliferation. Mechanistically, while they have no clear effect on kinase activity, L290P/V mutations enhance ERK3’s cytoplasmic localization by increasing the interaction with the nuclear export factor CRM1. Our findings suggest that L290P/V mutations of ERK3 may confer increased invasiveness to cancers.
Collapse
Affiliation(s)
- Hadel Alsaran
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Astha Shakya
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
27
|
Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, Yu Y, Xu J, Lonard DM, O'Malley BW. Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Res 2017; 77:4293-4304. [PMID: 28611048 PMCID: PMC5559321 DOI: 10.1158/0008-5472.can-16-2982] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023]
Abstract
Tumor-initiating cells (TIC) represent cancer stem-like cell (CSC) subpopulations within tumors that are thought to give rise to recurrent cancer after therapy. Identifying key regulators of TIC/CSC maintenance is essential for the development of therapeutics designed to limit recurrence. The steroid receptor coactivator 3 (SRC-3) is overexpressed in a wide range of cancers, driving tumor initiation, cell proliferation, and metastasis. Here we report that SRC-3 supports the TIC/CSC state and induces an epithelial-to-mesenchymal transition (EMT) by driving expression of the master EMT regulators and stem cell markers. We also show that inhibition of SRC-3 and SRC-1 with SI-2, a second-generation SRC-3/SRC-1 small-molecule inhibitor, targets the CSC/TIC population both in vitro and in vivo Collectively, these results identify SRC coactivators as regulators of stem-like capacity in cancer cells and that these coactivators can serve as potential therapeutic targets to prevent the recurrence of cancer. Cancer Res; 77(16); 4293-304. ©2017 AACR.
Collapse
Affiliation(s)
- Aarti D Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Lei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Andrew Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
28
|
Melissa PSW, Phelim YVC, Navaratnam V, Yoke Yin C. DNA Microarray Analysis of Estrogen Responsive Genes in Ishikawa Cells by Glabridin. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417721676. [PMID: 28804245 PMCID: PMC5533267 DOI: 10.1177/1178626417721676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/15/2017] [Indexed: 12/04/2022]
Abstract
Based on a previous study, glabridin displayed a dose-dependent increase in estrogenic activity and cell proliferative activity in Ishikawa cells. However, when treated in combination with 17β-E2, synergistic estrogenic effect was observed but without the same synergistic increase in cell proliferative effect. This study aimed to identify the estrogen and nonestrogen-regulated activities induced by glabridin and in combination with 17β-E2 in comparison with 17β-E2. The results showed that 10 µM glabridin and the combination treatment of 100 nM glabridin with 1 nM 17β-E2 regulated both the genomic and nongenomic estrogen pathways to possibly provide benefits of estrogens in cardiovascular, circulatory, and vasculature systems. Meanwhile, the combination of 100 nM glabridin with 1 nM 17β-E2 seems to be more suitable to be used as an estrogen replacement. Finally, the results of this study have added on to the present knowledge of glabridin’s function as a phytoestrogen and suggested new ideas for the usage of glabridin.
Collapse
Affiliation(s)
- Poh Su Wei Melissa
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Yong Voon Chen Phelim
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Chia Yoke Yin
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
29
|
Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman JP. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget 2017; 8:72281-72301. [PMID: 29069787 PMCID: PMC5641130 DOI: 10.18632/oncotarget.20261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
Amplification and/or overexpression of the human epidermal growth factor 2 (HER2) oncogene occurs in about 13–15% of invasive breast cancer and triggers breast cancer cell proliferation, survival and metastatic progression. Around half of all breast cancers with HER2 overexpression co-express hormone receptors (HR) such as those for estrogen and progesterone. Aberrant signaling through HER2 and other members of the HER-family mediates endocrine-resistance in estrogen receptor alpha (ERα) positive breast cancer. On the other hand, ERα co-expression has been shown to attenuate the efficiency of anti-HER2 therapies. These findings indicate that HER2 and ERα synergize to escape from both anti-ERα and anti-HER2-targeted therapies. Rationally designed clinical trials that combine endocrine therapy with anti-HER2 agents to interfere with HER2/ERα cross-talk have been conducted. However, the outcome of these trials suggests that novel therapeutic approaches are needed to further improve inhibition of HER2 and other HER-family members in conjunction with a more efficient ERα blockade. Here, we demonstrate that carfilzomib and bortezomib stabilize the HER2-specific protein tyrosine phosphatase BDP1 leading to decreased HER2 autophosphorylation, reduced HER2 activity and subsequently attenuated activation of the PI3K/Akt-pathway, together with blockade of ERα expression. We further observed that proteasome inhibitors (PIs) reverse autophosphorylation and thereby inhibit the activity of constitutively active mutant HER2. We also demonstrate that PIs cause cell death in lapatinib and endocrine-resistant HER2+/ER+ breast cancer cells. These findings suggest that PIs might have the potential to improve the management of HER2+/ER+ breast cancer patients by efficiently disrupting the bi-directional HER2/ERα cross-talk.
Collapse
Affiliation(s)
- Sonja Thaler
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sven Roβwag
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gitta Thiede
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Arno Schad
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jonathan P Sleeman
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, Karlsruhe, Germany
| |
Collapse
|
30
|
Abstract
A growing epidemic of nonalcoholic fatty liver disease (NAFLD) is paralleling the increase in the incidence of obesity and diabetes mellitus in countries that consume a Western diet. As NAFLD can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma, an understanding of the factors that trigger its development and pathological progression is needed. Although by definition this disease is not associated with alcohol consumption, exposure to environmental agents that have been linked to other diseases might have a role in the development of NAFLD. Here, we focus on one class of these agents, endocrine-disrupting chemicals (EDCs), and their potential to influence the initiation and progression of a cascade of pathological conditions associated with hepatic steatosis (fatty liver). Experimental studies have revealed several potential mechanisms by which EDC exposure might contribute to disease pathogenesis, including the modulation of nuclear hormone receptor function and the alteration of the epigenome. However, many questions remain to be addressed about the causal link between acute and chronic EDC exposure and the development of NAFLD in humans. Future studies that address these questions hold promise not only for understanding the linkage between EDC exposure and liver disease but also for elucidating the molecular mechanisms that underpin NAFLD, which in turn could facilitate the development of new prevention and treatment opportunities.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Lindsey S Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Cheryl L Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
32
|
Ochnik AM, Peterson MS, Avdulov SV, Oh AS, Bitterman PB, Yee D. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells. Neoplasia 2016; 18:100-10. [PMID: 26936396 PMCID: PMC5005264 DOI: 10.1016/j.neo.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/27/2023] Open
Abstract
Background Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. Materials and Methods To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)+ (MCF-7L) and ERα- (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. Results AIB1 positively regulated IGF-I-induced mRNA translation in both ERα+ and ERα- cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα+ and ERα- knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. Conclusion The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Mark S Peterson
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Svetlana V Avdulov
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Annabell S Oh
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Peter B Bitterman
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, MN, USA.
| | - Douglas Yee
- Masonic Cancer Center, Departments of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Śliwiński L, Cegieła U, Pytlik M, Folwarczna J, Janas A, Zbrojkiewicz M. Effects of fenoterol on the skeletal system depend on the androgen level. Pharmacol Rep 2016; 69:260-267. [PMID: 28126642 DOI: 10.1016/j.pharep.2016.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/22/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. METHODS The effects of fenoterol, a selective β2-adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. RESULTS Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. CONCLUSIONS The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling.
Collapse
Affiliation(s)
- Leszek Śliwiński
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Pytlik
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Janas
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Zbrojkiewicz
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
34
|
Lonard DM, O'Malley BW. Molecular Pathways: Targeting Steroid Receptor Coactivators in Cancer. Clin Cancer Res 2016; 22:5403-5407. [PMID: 27654711 DOI: 10.1158/1078-0432.ccr-15-1958] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
Coactivators represent a large class of proteins that partner with nuclear receptors and other transcription factors to regulate gene expression. Given their pleiotropic roles in the control of transcription, coactivators have been implicated in a broad range of human disease states, including cancer. This is best typified by the three members of the steroid receptor coactivator (SRC) family, each of which integrates steroid hormone signaling and growth factor pathways to drive oncogenic gene expression programs in breast, endometrial, ovarian, prostate, and other cancers. Because of this, coactivators represent emerging targets for cancer therapeutics, and efforts are now being made to develop SRC-targeting agents, such as the SI-2 inhibitor and the novel SRC stimulator, MCB-613, that are able to block cancer growth in cell culture and animal model systems. Here, we will discuss the mechanisms through which coactivators drive cancer progression and how targeting coactivators represent a novel conceptual approach to combat tumor growth that is distinct from the use of other targeted therapeutic agents. We also will describe efforts to develop next-generation SRC inhibitors and stimulators that can be taken into the clinic for the treatment of recurrent, drug-resistant cancers. Clin Cancer Res; 22(22); 5403-7. ©2016 AACR.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
35
|
The Role of Steroid Receptor Coactivators in Hormone Dependent Cancers and Their Potential as Therapeutic Targets. Discov Oncol 2016; 7:229-35. [PMID: 27125199 DOI: 10.1007/s12672-016-0261-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/08/2016] [Indexed: 10/21/2022] Open
Abstract
Steroid receptor coactivator (SRC) family members (SRC-1, SRC-2, SRC-3) interact with nuclear receptors (NRs) and many transcription factors to enhance target gene transcription. Deregulation of SRCs is widely implicated in NR mediated diseases, especially hormone dependent cancers. By integrating steroid hormone signaling and growth factor pathways, SRC proteins exert multiple modes of oncogenic regulation in cancers and represent emerging targets for cancer therapeutics. Recent work has identified SRC-targeting agents that show promise in blocking tumor growth in vitro and in vivo, and have the potential to function as powerful and broadly encompassing treatments for different cancers.
Collapse
|
36
|
Anbarasu K, Jayanthi S. Designing and optimization of novel human LMTK3 inhibitors against breast cancer – a computational approach. J Recept Signal Transduct Res 2016; 37:51-59. [DOI: 10.3109/10799893.2016.1155069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K. Anbarasu
- Computational Drug Design Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - S. Jayanthi
- Computational Drug Design Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
37
|
Nikolai BC, Lanz RB, York B, Dasgupta S, Mitsiades N, Creighton CJ, Tsimelzon A, Hilsenbeck SG, Lonard DM, Smith CL, O'Malley BW. HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Res 2016; 76:1463-75. [PMID: 26833126 PMCID: PMC4794399 DOI: 10.1158/0008-5472.can-15-2383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/22/2015] [Indexed: 12/29/2022]
Abstract
Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2(+) tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. Although the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell-cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin-dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor palbociclib, defines overlap and divergence of adjuvant pharmacologic targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacologic combinations in preclinical models of adjuvant treatment and therapeutic resistance.
Collapse
Affiliation(s)
- Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas. Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Anna Tsimelzon
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
38
|
Zwart W, Flach KD, Rudraraju B, Abdel-Fatah TMA, Gojis O, Canisius S, Moore D, Nevedomskaya E, Opdam M, Droog M, Hofland I, Chan S, Shaw J, Ellis IO, Coombes RC, Carroll JS, Ali S, Palmieri C. SRC3 Phosphorylation at Serine 543 Is a Positive Independent Prognostic Factor in ER-Positive Breast Cancer. Clin Cancer Res 2016; 22:479-91. [PMID: 26369632 DOI: 10.1158/1078-0432.ccr-14-3277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 08/18/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The steroid receptor coactivator SRC3 is essential for the transcriptional activity of estrogen receptor α (ERα). SRC3 is sufficient to cause mammary tumorigenesis, and has also been implicated in endocrine resistance. SRC3 is posttranslationally modified by phosphorylation, but these events have not been investigated with regard to functionality or disease association. Here, we investigate the spatial selectivity of SRC3-pS543/DNA binding over the human genome and its expression in primary human breast cancer in relation with outcome. EXPERIMENTAL DESIGN Chromatin immunoprecipitation, coupled with sequencing, was used to determine the chromatin binding patterns of SRC3-pS543 in the breast cancer cell line MCF7 and two untreated primary breast cancers. IHC was used to assess the expression of SRC3 and SRC3-pS543 in 1,650 primary breast cancers. The relationship between the expression of SRC3 and SRC3-pS543, disease-free survival (DFS), and breast cancer specific survival (BCSS) was assessed. RESULTS Although total SRC3 is selectively found at enhancer regions, SRC3-pS543 is recruited to promoters of ERα responsive genes, both in the MCF7 cell line and primary breast tumor specimens. SRC3-pS543 was associated with both improved DFS (P = 0.003) and BCSS (P = 0.001) in tamoxifen untreated high-risk patients, such a correlation was not seen in tamoxifen-treated cases, the interaction was statistically significant (P = 0.001). Multivariate analysis showed SRC3-pS543 to be an independent prognostic factor. CONCLUSIONS Phosphorylation of SRC3 at S543 affects its genomic interactions on a genome-wide level, where SRC3-pS543 is selectively recruited to promoters of ERα-responsive genes. SRC3-pS543 is a prognostic marker, and a predictive marker of response to endocrine therapy.
Collapse
Affiliation(s)
- Wilbert Zwart
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Koen D Flach
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Tarek M A Abdel-Fatah
- Clinical Oncology Department, Nottingham University City Hospital NHS Trust, Nottingham, United Kingdom
| | - Ondrej Gojis
- Cancer Research UK Laboratories, Imperial Centre for Translational and Experimental Medicine, Division of Cancer, Imperial College London, London, United Kingdom
| | - Sander Canisius
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David Moore
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Ekaterina Nevedomskaya
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark Opdam
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolein Droog
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ingrid Hofland
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steve Chan
- Cancer Research UK Laboratories, Imperial Centre for Translational and Experimental Medicine, Division of Cancer, Imperial College London, London, United Kingdom
| | - Jacqui Shaw
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Ian O Ellis
- Division of Pathology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - R Charles Coombes
- Clinical Oncology Department, Nottingham University City Hospital NHS Trust, Nottingham, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Simak Ali
- Clinical Oncology Department, Nottingham University City Hospital NHS Trust, Nottingham, United Kingdom
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom. Liverpool and Merseyside Academic Breast Unit, The Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool, United Kingdom. Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom.
| |
Collapse
|
39
|
Wang L, Yu Y, Chow DC, Yan F, Hsu CC, Stossi F, Mancini MA, Palzkill T, Liao L, Zhou S, Xu J, Lonard DM, O'Malley BW. Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell 2015; 28:240-52. [PMID: 26267537 PMCID: PMC4536575 DOI: 10.1016/j.ccell.2015.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/12/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022]
Abstract
By integrating growth pathways on which cancer cells rely, steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) represent emerging targets in cancer therapeutics. High-throughput screening for SRC small molecule inhibitors (SMIs) uncovered MCB-613 as a potent SRC small molecule "stimulator" (SMS). We demonstrate that MCB-613 can super-stimulate SRCs' transcriptional activity. Further investigation revealed that MCB-613 increases SRCs' interactions with other coactivators and markedly induces ER stress coupled to the generation of reactive oxygen species (ROS). Because cancer cells overexpress SRCs and rely on them for growth, we show that we can exploit MCB-613 to selectively induce excessive stress in cancer cells. This suggests that over-stimulating the SRC oncogenic program can be an effective strategy to kill cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Nardone A, De Angelis C, Trivedi MV, Osborne CK, Schiff R. The changing role of ER in endocrine resistance. Breast 2015; 24 Suppl 2:S60-6. [PMID: 26271713 DOI: 10.1016/j.breast.2015.07.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor (ER) is expressed in approximately 70% of newly diagnosed breast tumors. Although endocrine therapy targeting ER is highly effective, intrinsic or acquired resistance is common, significantly jeopardizing treatment outcomes and minimizing overall survival. Even in the presence of endocrine resistance, a continued role of ER signaling is suggested by several lines of clinical and preclinical evidence. Indeed, inhibition or down-regulation of ER reduces tumor growth in preclinical models of acquired endocrine resistance, and many patients with recurrent ER+ breast tumors progressing on one type of ER-targeted treatment still benefit from sequential endocrine treatments that target ER by a different mechanism. New insights into the nature and biology of ER have revealed several mechanisms sustaining altered ER signaling in endocrine-resistant tumors, including deregulated growth factor receptor signaling that results in ligand-independent ER activation, unbalanced ER co-regulator activity, and genomic alterations involving the ER gene ESR1. Therefore, biopsies of recurrent lesions are needed to assess the changes in epi/genomics and signaling landscape of ER and associated pathways in order to tailor therapies to effectively overcome endocrine resistance. In addition, more completely abolishing the levels and activity of ER and its co-activators, in combination with selected signal transduction inhibitors or agents blocking the upstream or downstream targets of the ER pathway, may provide a better therapeutic strategy in combating endocrine resistance.
Collapse
Affiliation(s)
- Agostina Nardone
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA; Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Italy
| | - Meghana V Trivedi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Pharmacy Practice and Translational Research, University of Houston, College of Pharmacy, Houston, TX 77030, USA
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, USA; Department of Medicine, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
41
|
Perillo B, Di Santi A, Cernera G, Ombra MN, Castoria G, Migliaccio A. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS. The role of Akt, IKKα, and DNA damage repair enzymes. Nucleus 2015; 5:482-91. [PMID: 25482200 PMCID: PMC4164490 DOI: 10.4161/nucl.36274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.
We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells.
Collapse
Affiliation(s)
- Bruno Perillo
- a Istituto di Scienze dell'Alimentazione; Avellino, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Mou C, Zhang Y, Zhang W, Ding Y, Chen L. Lysine residues 639 and 673 of mouse Ncoa3 are ubiquitination sites for the regulation of its stability. Acta Biochim Biophys Sin (Shanghai) 2014; 46:1066-71. [PMID: 25348736 DOI: 10.1093/abbs/gmu096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ncoa3 is a transcriptional coactivator involved in a wide range of biological processes. Regulation of Ncoa3 protein stability is important to control its activity precisely. Here, we found that deleting amino acid residues 614-740 of Ncoa3 enhances the protein expression level. Replacing two lysine residues, K639 and K673, within this region by arginine, increases the stability of the luciferase fusion protein as well as Ncoa3 protein. When these two lysine residues are mutated to arginine, the overall ubiquitination level of Ncoa3 decreases, indicating that lysine 639 and 673 are its ubiquitination sites. Taken together, we identified two ubiquitination sites at lysine 639 and 673 of Ncoa3. Ubiquitination of these two lysine residues leads to proteasomal degradation of Ncoa3.
Collapse
Affiliation(s)
- Chunlin Mou
- State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanqin Zhang
- State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiyu Zhang
- State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Ding
- State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingyi Chen
- State key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Abstract
Selective estrogen receptor modulators (SERMs) are a class of small-molecule chemical compounds that bind to estrogen receptor (ER) ligand binding domain (LBD) with high affinity and selectively modulate ER transcriptional activity in a cell- and tissue-dependent manner. The prototype of SERMs is tamoxifen, which has agonist activity in bone, but has antagonist activity in breast. Tamoxifen can reduce the risk of breast cancer and, at same time, prevent osteoporosis in postmenopausal women. Tamoxifen is widely prescribed for treatment and prevention of breast cancer. Mechanistically the activity of SERMs is determined by the selective recruitment of coactivators and corepressors in different cell types and tissues. Therefore, understanding the coregulator function is the key to understanding the tissue selective activity of SERMs.
Collapse
Affiliation(s)
- Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Dasgupta S, O'Malley BW. Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol 2014; 53:R47-59. [PMID: 25024406 PMCID: PMC4152414 DOI: 10.1530/jme-14-0080] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcriptional coactivators have evolved as an important new class of functional proteins that participate with virtually all transcription factors and nuclear receptors (NRs) to intricately regulate gene expression in response to a wide variety of environmental cues. Recent findings have highlighted that coactivators are important for almost all biological functions, and consequently, genetic defects can lead to severe pathologies. Drug discovery efforts targeting coactivators may prove valuable for treatment of a variety of diseases.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
46
|
Wang W, Bian K, Vallabhaneni S, Zhang B, Wu RC, O'Malley BW, Long W. ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J Cell Physiol 2014; 229:1529-37. [PMID: 24585635 DOI: 10.1002/jcp.24596] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023]
Abstract
Despite a regain of interest recently in ERK3 kinase signaling, the molecular regulations of both ERK3 gene expression and protein kinase activity are still largely unknown. While it is shown that disruption of ERK3 gene causes neonatal lethality, cell type-specific functions of ERK3 signaling remain to be explored. In this study, we report that ERK3 gene expression is upregulated by cytokines through c-Jun in endothelial cells; c-Jun binds to the ERK3 gene and regulates its transcription. We further reveal a new role for ERK3 in regulating endothelial cell migration, proliferation and tube formation by upregulating SRC-3/SP-1-mediated VEGFR2 expression. The underlying molecular mechanism involves ERK3-stimulated formation of a transcriptional complex involving coactivator SRC-3, transcription factor SP-1 and the secondary coactivator CBP. Taken together, our study identified a molecular regulatory mechanism of ERK3 gene expression and revealed a previously unknown role of ERK3 in regulating endothelial cell functions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
47
|
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 2014; 32:3-15. [PMID: 24841429 DOI: 10.3892/or.2014.3190] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Baiza-Gutman
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Fabio Salamanca-Gómez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Guadalupe Martínez-Hernández
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Ruth Ruiz Esparza-Garrido
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Miguel Angel Velázquez-Flores
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Diego Arenas-Aranda
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
48
|
Xia X, Wan W, Chen Q, Liu K, Majaz S, Mo P, Xu J, Yu C. Deficiency in steroid receptor coactivator 3 enhances cytokine production in IgE-stimulated mast cells and passive systemic anaphylaxis in mice. Cell Biosci 2014; 4:21. [PMID: 24834318 PMCID: PMC4021842 DOI: 10.1186/2045-3701-4-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Background Steroid receptor coactivator 3 (SRC-3) is a multifunctional protein that plays an important role in malignancy of several cancers and in regulation of bacterial LPS-induced inflammation. However, the involvement of SRC-3 in allergic response remains unclear. Herein we used passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA) mouse models to assess the role of SRC-3 in allergic response. Results SRC-3-deficient mice exhibited more severe allergic response as demonstrated by a significant drop in body temperature and a delayed recovery period compared to wild-type mice in PSA mouse model, whereas no significant difference was observed between two kinds of mice in PCA mouse models. Mast cells play a pivotal role in IgE-mediated allergic response. Antigen-induced aggregation of IgE receptor (FcϵRI) on the surface of mast cell activates a cascade of signaling events leading to the degranulation and cytokine production in mast cells. SRC-3-deficient bone marrow derived mast cells (BMMCs) developed normally but secreted more proinflammatory cytokines such as TNF-α and IL-6 than wild-type cells after antigen stimulation, whereas there was no significant difference in degranulation between two kinds of mast cells. Further studies showed that SRC-3 inhibited the activation of nuclear factor NF-κB pathway and MAPKs including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in antigen-stimulated mast cells. Conclusions Our data demonstrate that SRC-3 suppresses cytokine production in antigen-stimulated mast cells as well as PSA in mice at least in part through inhibiting NF-κB and MAPK signaling pathways. Therefore, SRC-3 plays a protective role in PSA and it may become a drug target for anaphylactic diseases.
Collapse
Affiliation(s)
- Xiaochun Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China.,The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wei Wan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Kun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Sidra Majaz
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang-An South Road, Xiamen, Fujian 360112, China
| |
Collapse
|
49
|
Chumsri S, Schech A, Chakkabat C, Sabnis G, Brodie A. Advances in mechanisms of resistance to aromatase inhibitors. Expert Rev Anticancer Ther 2014; 14:381-93. [PMID: 24559291 DOI: 10.1586/14737140.2014.882233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clinically, there are two distinct types of aromatase inhibitor (AI) resistance, namely acquired and innate resistance. Because the underlying mechanisms of these two types of resistance may not be mutually exclusive, strategies to tackle these resistances may not be effective when used interchangeably. Activation of growth factor receptor pathways is the hallmark of acquired AI resistance. These pathways can be targeted either at the cell surface receptor level or their downstream signaling cascades. Currently, everolimus in combination with exemestane represents a new standard of care for patients progressing on non-steroidal AIs. HDAC inhibitors have also shown promising results For innate resistance, the combination of fulvestrant and AI in the front line setting represents a new treatment option, particularly for patients who present with de novo metastatic disease. A Phase III trial is currently ongoing to evaluate the benefit of CDK 4/6 inhibitor, palbociclib, in the first line setting in combination with AI.
Collapse
Affiliation(s)
- Saranya Chumsri
- Department of Medicine, University of Maryland, School of Medicine and the Greenebaum Cancer Center, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
50
|
Wagner M, Koslowski M, Paret C, Schmidt M, Türeci O, Sahin U. NCOA3 is a selective co-activator of estrogen receptor α-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer 2013; 13:570. [PMID: 24304549 PMCID: PMC4235021 DOI: 10.1186/1471-2407-13-570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/28/2013] [Indexed: 01/01/2023] Open
Abstract
Background The placenta-specific 1 (PLAC1) gene encodes a membrane-associated protein which is selectively expressed in the placental syncytiotrophoblast and in murine fetal tissues during embryonic development. In contrast to its transcriptional repression in all other adult normal tissues, PLAC1 is frequently activated and highly expressed in a variety of human cancers, in particular breast cancer, where it associates with estrogen receptor α (ERα) positivity. In a previous study, we showed that ERα-signaling in breast cancer cells transactivates PLAC1 expression in a non-classical pathway. As the members of the p160/nuclear receptor co-activator (NCOA) family, NCOA1, NCOA2 and NCOA3 are known to be overexpressed in breast cancer and essentially involved in estrogen-mediated cancer cell proliferation we asked if these proteins are involved in the ERα-mediated transactivation of PLAC1 in breast cancer cells. Methods Applying quantitative real-time RT-PCR (qRT-PCR), Western Blot analysis and chromatin immunoprecipitation, we analyzed the involvement of NCOA1, NCOA2, NCOA3 in the ERα-mediated transactivation of PLAC1 in the breast cancer cell lines MCF-7 and SK-BR-3. RNAi-mediated silencing of NCOA3, qRT-PCR, Western blot analysis and ERα activation assays were used to examine the role of NCOA3 in the ERα-mediated regulation of PLAC1 in further detail. Transcript expression of NCOA3 and PLAC1 in 48 human breast cancer samples was examined by qRT-PCR and statistical analysis was performed using Student’s t-test. Results We detected selective recruitment of NCOA3 but not NCOA1 or NCOA2 to the PLAC1 promoter only in ERα-positive MCF-7 cells but not in ERα-negative SK-BR-3 breast cancer cells. In addition, we demonstrate that silencing of NCOA3 results in a remarkable decrease of PLAC1 expression levels in MCF-7 cells which cannot be restored by treatment with estradiol (E2). Moreover, significant higher transcript levels of PLAC1 were found only in ERα-positive human breast cancer samples which also show a NCOA3 overexpression. Conclusions In this study, we identified NCOA3 as a selective co-activator of ERα-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. Our data introduce PLAC1 as novel target gene of NCOA3 in breast cancer, supporting the important role of both factors in breast cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- Department of Internal Medicine III, Division of Translational and Experimental Oncology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|