1
|
Kulkarni S, Tebar F, Rentero C, Zhao M, Sáez P. Competing signaling pathways controls electrotaxis. iScience 2025; 28:112329. [PMID: 40292314 PMCID: PMC12032939 DOI: 10.1016/j.isci.2025.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding how cells follow exogenous cues is a key question for biology, medicine, and bioengineering. Growing evidence shows that electric fields represent a precise and programmable method to control cell migration. Most data suggest that the polarization of membrane proteins and the following downstream signaling are central to electrotaxis. Unfortunately, how these multiple mechanisms coordinate with the motile machinery of the cell is still poorly understood. Here, we develop a mechanistic model that explains electrotaxis across different cell types. Using the zebrafish proteome, we identify membrane proteins directly related to migration signaling pathways that polarize anodally and cathodally. Further, we show that the simultaneous and asymmetric distribution of these membrane receptors establish multiple cooperative and competing stimuli for directing the anodal and cathodal migration of the cell. Using electric fields, we enhance, cancel, or switch directed cell migration, with clear implications in promoting tissue regeneration or arresting tumor progression.
Collapse
Affiliation(s)
- S. Kulkarni
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - F. Tebar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - C. Rentero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - M. Zhao
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - P. Sáez
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
- IMTech (Institute of Mathematics), Universitat Politècnica de Catalunya-BarcelonaTech., 08034 Barcelona, Spain
| |
Collapse
|
2
|
MacAinsh M, Muhammedkutty FNK, Prasad R, Zhou HX. Membrane Association of Intrinsically Disordered Proteins. Annu Rev Biophys 2025; 54:275-302. [PMID: 39952269 PMCID: PMC12055482 DOI: 10.1146/annurev-biophys-070124-092816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
It is now clear that membrane association of intrinsically disordered proteins or intrinsically disordered regions regulates many cellular processes, such as membrane targeting of Src family kinases and ion channel gating. Residue-specific characterization by nuclear magnetic resonance spectroscopy, molecular dynamics simulations, and other techniques has shown that polybasic motifs and amphipathic helices are the main drivers of membrane association; sequence-based prediction of residue-specific membrane association propensity has become possible. Membrane association facilitates protein-protein interactions and protein aggregation-these effects are due to reduced dimensionality but are similar to those afforded by condensate formation via liquid-liquid phase separation (LLPS). LLPS at the membrane surface provides a powerful means for recruiting and clustering proteins, as well as for membrane remodeling.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | | | - Ramesh Prasad
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
- Department of Physics, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
3
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2025; 16:e0186424. [PMID: 39714186 PMCID: PMC11796385 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Xu M, Wang L, Meng Y, Kang G, Jiang Q, Yan T, Che F. The role of lipid metabolism in cognitive impairment. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-13. [PMID: 39814004 PMCID: PMC11735072 DOI: 10.1055/s-0044-1792097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis. Generally, abnormalities in lipid metabolism can affect amyloid-beta (Aβ) deposition, tau hyperphosphorylation, and insulin resistance through lipid metabolic signaling cascades; affect the neuronal membrane structure, neurotransmitter synthesis and release; and promote synapse growth, which can impact neural signal transmission and exacerbate disease progression in individuals with cognitive impairment, including AD, DCI, and VD. Moreover, apolipoprotein E (APOE), a key protein in lipid transport, is involved in the occurrence and development of the aforementioned diseases by regulating lipid metabolism. The present article mainly discusses how lipid metabolic disorders in the brain microenvironment are involved in regulating the progression of cognitive impairment, and it explores the regulatory effects of targeting the key lipid transport protein APOE in the context of the role of lipid metabolism in the common pathogenesis of three diseases-Aβ deposition, tau hyperphosphorylation, and insulin resistance-which will help elucidate the potential of targeting lipid metabolism for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Meifang Xu
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Liyuan Wang
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
| | - Yun Meng
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Guiqiong Kang
- Guangzhou University of Chinese Medicine, Linyi People's Hospital, Linyi Shandong Province, China.
| | - Qing Jiang
- Harbin Medical University, First Affiliated Hospital, Department of Neurosurgery, Harbin Heilongjiang Province, China.
- Key Colleges and Universities, Laboratory of Neurosurgery, Harbin Heilongjiang Province, China.
| | - Tao Yan
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Fengyuan Che
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| |
Collapse
|
5
|
Cavini IA, Fontes MG, Zeraik AE, Lopes JLS, Araujo APU. Novel lipid-interaction motifs within the C-terminal domain of Septin10 from Schistosoma mansoni. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184371. [PMID: 39025256 DOI: 10.1016/j.bbamem.2024.184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Marina G Fontes
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Eliza Zeraik
- Laboratory of Chemistry and Function of Proteins and Peptides, Center for Biosciences and Biotechnology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Jose L S Lopes
- Laboratory of Molecular Biophysics, Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
6
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
8
|
Jung O, Baek MJ, Wooldrik C, Johnson KR, Fisher KW, Lou J, Ricks TJ, Wen T, Best MD, Cryns VL, Anderson RA, Choi S. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. EMBO J 2024; 43:1740-1769. [PMID: 38565949 PMCID: PMC11066040 DOI: 10.1038/s44318-024-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.
Collapse
Affiliation(s)
- Oisun Jung
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Min-Jeong Baek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Colin Wooldrik
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keith R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Memphis, 3744 Walker Avenue, Memphis, TN, 38152, USA
| | - Tianmu Wen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Vincent L Cryns
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Labus J, Tang K, Henklein P, Krüger U, Hofmann A, Hondke S, Wöltje K, Freund C, Lucka L, Danker K. The α 1 integrin cytoplasmic tail interacts with phosphoinositides and interferes with Akt activation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184257. [PMID: 37992949 DOI: 10.1016/j.bbamem.2023.184257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Integrin α1β1 is an adhesion receptor that binds to collagen and laminin. It regulates cell adhesion, cytoskeletal organization, and migration. The cytoplasmic tail of the α1 subunit consists of 15 amino acids and contains six positively charged lysine residues. In this study, we present evidence that the α1 integrin cytoplasmic tail (α1CT) directly associates with phosphoinositides, preferentially with phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). Since the association was disrupted by calcium, magnesium and phosphate ions, this interaction appears to be in ionic nature. Here, the peptide-lipid interaction was driven by the conserved KIGFFKR motif. The exchange of both two potential phospholipid-binding lysines for glycines in the KIGFFKR motif increased α1β1 integrin-specific adhesion and F-actin cytoskeleton formation compared to cells expressing the unmodified α1 subunit, whereas only mutation of the second lysine at position 1171 increased levels of constitutively active α1β1 integrins on the cell surface. In addition, enhanced focal adhesion formation and increased phosphorylation of focal adhesion kinase, but decreased phosphorylation of AKT was observed in these cells. We conclude that the KIGFFKR motif, and in particular lysine1171 is involved in the dynamic regulation of α1β1 integrin activity and that the interaction of α1CT with phosphoinositides may contribute to this process.
Collapse
Affiliation(s)
- Josephine Labus
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Hannover Medical School, Department of Cellular Neurophysiology, 30625 Hannover, Germany.
| | - Kerstin Tang
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Senate Department for Higher Education and Research, Health, Long-Term Care and Gender Equality, Sector Pharmaceuticals and Medical Devices, Oranienstraße 106, 10969 Berlin, Germany.
| | - Petra Henklein
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Ulrike Krüger
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; BIH Core Facility Genomik, Charité-Universitätsmedizin Berlin, CVK, Charitéplatz 1, 10117 Berlin, Germany.
| | - Andreas Hofmann
- Structural Chemistry Program, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; Dept of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; NRZ-Authent, Max-Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, 95326 Kulmbach, Germany.
| | - Sylvia Hondke
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Kerstin Wöltje
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, Med. Klinik m.S. Infektiologie & Pneumologie, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| | - Lothar Lucka
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Kerstin Danker
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Dey S, Zhou HX. Why Does Synergistic Activation of WASP, but Not N-WASP, by Cdc42 and PIP 2 Require Cdc42 Prenylation? J Mol Biol 2023; 435:168035. [PMID: 36863659 PMCID: PMC10079582 DOI: 10.1016/j.jmb.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA. https://twitter.com/SouvikDeyUIC
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
11
|
Dey S, Zhou HX. N-WASP is competent for downstream signaling before full release from autoinhibition. J Chem Phys 2023; 158:091105. [PMID: 36889962 PMCID: PMC9995167 DOI: 10.1063/5.0137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Allosteric regulation of intrinsically disordered proteins (IDPs) is still vastly understudied compared to the counterpart of structured proteins. Here, we used molecular dynamics simulations to characterize the regulation of the IDP N-WASP by the binding of its basic region with inter- and intramolecular ligands (PIP2 and an acidic motif, respectively). The intramolecular interactions keep N-WASP in an autoinhibited state; PIP2 binding frees the acidic motif for interacting with Arp2/3 and thereby initiating actin polymerization. We show that PIP2 and the acidic motif compete in binding with the basic region. However, even when PIP2 is present at 30% in the membrane, the acidic motif is free of contact with the basic region ("open" state) in only 8.5% of the population. The very C-terminal three residues of the A motif are crucial for Arp2/3 binding; conformations where only the A tail is free are present at a much higher population than the open state (40- to 6-fold, depending on the PIP2 level). Thus, N-WASP is competent for Arp2/3 binding before it is fully freed from autoinhibition.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
12
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
13
|
Zhang S, Liao X, Chen S, Qian W, Li M, Xu Y, Yang M, Li X, Mo S, Tang M, Wu X, Hu Y, Li Z, Yu R, Abudourousuli A, Song L, Li J. Large Oncosome-Loaded VAPA Promotes Bone-Tropic Metastasis of Hepatocellular Carcinoma Via Formation of Osteoclastic Pre-Metastatic Niche. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201974. [PMID: 36169100 PMCID: PMC9631052 DOI: 10.1002/advs.202201974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/23/2022] [Indexed: 05/31/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) function as critical mediators in selective modulation of the microenvironment of distant organs to generate a pre-metastatic niche that facilitates organotropic metastasis. Identifying the organ-specific molecular determinants of EVs can develop potential anti-metastatic therapeutic targets. In the current study, large oncosomes (LOs), atypically large cancer-derived EVs, are found to play a crucial role in facilitating bone-tropic metastasis of hepatocellular carcinoma (HCC) cells by engineering an osteoclastic pre-metastatic niche and establishing a vicious cycle between the osteoclasts and HCC cells. Transmembrane protein, VAMP-associated protein A (VAPA), is significantly enriched on LOs surface via direct interaction with LOs marker αV-integrin. VAPA-enriched LOs-induced pre-metastatic education transforms the bone into a fertile milieu, which supports the growth of metastatic HCC cells. Mechanically, LOs-delivered VAPA integrates to plasma membrane of osteoclasts and directly interacts with and activates neural Wiskott-Aldrich syndrome protein (N-WASP) via dual mechanisms, consequently resulting in ARP2/3 complex-mediated reorganization of actin cytoskeleton in osteoclasts and osteoclastogenesis. Importantly, treatment with N-WASP inhibitor 187-1-packaged LOs (LOs/187-1) dramatically abolishes the inductive effect of VAPA-enriched LOs on pre-metastatic niche formation and precludes HCC bone metastasis. These findings reveal a plausible mechanism for bone-tropism of HCC and can represent a potential strategy to prevent HCC bone metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Xinyi Liao
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Suwen Chen
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Wanying Qian
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Man Li
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Yingru Xu
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Meisongzhu Yang
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Xincheng Li
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Shuang Mo
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Miaoling Tang
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Xingui Wu
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Yameng Hu
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Ziwen Li
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Ruyuan Yu
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Ainiwaerjiang Abudourousuli
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080P. R. China
| | - Jun Li
- Program of Cancer ResearchKey Laboratory of Protein Modification and Degradation and Guangzhou Institute of OncologyAffiliated Guangzhou Women and Children's HospitalSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou510623P. R. China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| |
Collapse
|
14
|
Falginella FL, Kravec M, Drabinová M, Paclíková P, Bryja V, Vácha R. Binding of DEP domain to phospholipid membranes: More than just electrostatics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183983. [PMID: 35750206 DOI: 10.1016/j.bbamem.2022.183983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades an extensive effort has been made to provide a more comprehensive understanding of Wnt signaling, yet many regulatory and structural aspects remain elusive. Among these, the ability of Dishevelled (DVL) protein to relocalize at the plasma membrane is a crucial step in the activation of all Wnt pathways. The membrane binding of DVL was suggested to be mediated by the preferential interaction of its C-terminal DEP domain with phosphatidic acid (PA). However, due to the scarcity and fast turnover of PA, we investigated the role on the membrane association of other more abundant phospholipids. The combined results from computational simulations and experimental measurements with various model phospholipid membranes, demonstrate that the membrane binding of DEP/DVL constructs is governed by the concerted action of generic electrostatics and finely-tuned intermolecular interactions with individual lipid species. In particular, while we confirmed the strong preference for PA lipid, we also observed a weak but non-negligible affinity for phosphatidylserine, the most abundant anionic phospholipid in the plasma membrane, and phosphatidylinositol 4,5-bisphosphate. The obtained molecular insight into DEP-membrane interaction helps to elucidate the relation between changes in the local membrane composition and the spatiotemporal localization of DVL and, possibly, other DEP-containing proteins.
Collapse
Affiliation(s)
- Francesco L Falginella
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Martina Drabinová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Vítĕzslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno 612 65, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
15
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
16
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Case LB, De Pasquale M, Henry L, Rosen MK. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. eLife 2022; 11:e72588. [PMID: 35049497 PMCID: PMC8791637 DOI: 10.7554/elife.72588] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Milagros De Pasquale
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Lisa Henry
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
19
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
20
|
Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun 2021; 12:3412. [PMID: 34099696 DOI: 10.1038/s41467-021-23794-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
De novo designed self-assembling peptides (SAPs) are promising building blocks of supramolecular biomaterials, which can fulfill a wide range of applications, such as scaffolds for tissue culture, three-dimensional cell culture, and vaccine adjuvants. Nevertheless, the use of SAPs in intracellular spaces has mostly been unexplored. Here, we report a self-assembling peptide, Y15 (YEYKYEYKYEYKYEY), which readily forms β-sheet structures to facilitate bottom-up synthesis of functional protein assemblies in living cells. Superfolder green fluorescent protein (sfGFP) fused to Y15 assembles into fibrils and is observed as fluorescent puncta in mammalian cells. Y15 self-assembly is validated by fluorescence anisotropy and pull-down assays. By using the Y15 platform, we demonstrate intracellular reconstitution of Nck assembly, a Src-homology 2 and 3 domain-containing adaptor protein. The artificial clusters of Nck induce N-WASP (neural Wiskott-Aldrich syndrome protein)-mediated actin polymerization, and the functional importance of Nck domain valency and density is evaluated.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | - Taichi Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Avila Ponce de León MA, Félix B, Othmer HG. A phosphoinositide-based model of actin waves in frustrated phagocytosis. J Theor Biol 2021; 527:110764. [PMID: 34029577 DOI: 10.1016/j.jtbi.2021.110764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Phagocytosis is a complex process by which phagocytes such as lymphocytes or macrophages engulf and destroy foreign bodies called pathogens in a tissue. The process is triggered by the detection of antibodies that trigger signaling mechanisms that control the changes of the cellular cytoskeleton needed for engulfment of the pathogen. A mathematical model of the entire process would be extremely complicated, because the signaling and cytoskeletal changes produce large mechanical deformations of the cell. Recent experiments have used a confinement technique that leads to a process called frustrated phagocytosis, in which the membrane does not deform, but rather, signaling triggers actin waves that propagate along the boundary of the cell. This eliminates the large-scale deformations and facilitates modeling of the wave dynamics. Herein we develop a model of the actin dynamics observed in frustrated phagocytosis and show that it can replicate the experimental observations. We identify the key components that control the actin waves and make a number of experimentally-testable predictions. In particular, we predict that diffusion coefficients of membrane-bound species must be larger behind the wavefront to replicate the internal structure of the waves. Our model is a first step toward a more complete model of phagocytosis, and provides insights into circular dorsal ruffles as well.
Collapse
Affiliation(s)
| | - Bryan Félix
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Abstract
The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions—the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton’s tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.
Collapse
Affiliation(s)
- Tyler A. Jepson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jean K. Chung
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Wen Y, Vogt VM, Feigenson GW. PI(4,5)P 2 Clustering and Its Impact on Biological Functions. Annu Rev Biochem 2021; 90:681-707. [PMID: 33441034 DOI: 10.1146/annurev-biochem-070920-094827] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| |
Collapse
|
24
|
Abstract
A large proportion of proteins are expected to interact with cellular membranes to carry out their physiological functions in processes such as membrane transport, morphogenesis, cytoskeletal organization, and signal transduction. The recruitment of proteins at the membrane-cytoplasm interface and their activities are precisely regulated by phosphoinositides, which are negatively charged phospholipids found on the cytoplasmic leaflet of cellular membranes and play critical roles in membrane homeostasis and cellular signaling. Thus, it is important to reveal which proteins interact with phosphoinositides and to elucidate the underlying mechanisms. Here, we present two standard in vitro methods, liposome co-sedimentation and co-flotation assays, to study lipid-protein interactions. Liposomes can mimic various biological membranes in these assays because their lipid compositions and concentrations can be varied. Thus, in addition to mechanisms of lipid-protein interactions, these methods provide information on the possible specificities of proteins toward certain lipids such as specific phosphoinositide species and can hence shed light on the roles of membrane interactions on the functions of membrane-associated proteins.
Collapse
|
25
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
26
|
Zhou Y, Feng Z, Cao F, Liu X, Xia X, Yu CH. Abl-mediated PI3K activation regulates macrophage podosome formation. J Cell Sci 2020; 133:jcs234385. [PMID: 32393599 DOI: 10.1242/jcs.234385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Podosomes play crucial roles in macrophage adhesion and migration. Wiskott-Aldrich syndrome protein (WASP; also known as WAS)-mediated actin polymerization is one of the key events initiating podosome formation. Nevertheless, membrane signals to trigger WASP activation at macrophage podosomes remain unclear. Here, we show that phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] lipids are enriched at the podosome and stably recruit WASP rather than the WASP-5KE mutant. Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit β (PIK3CB) is spatially located at the podosome core. Inhibition of PIK3CB and overexpression of phosphatase and tensin homolog (PTEN) impede F-actin polymerization of the podosome. PIK3CB activation is regulated by Abl1 and Src family kinases. At the podosome core, Src and Hck promote the phosphorylation of Tyr488 in the consensus Y-x-x-M motif of Abl1, which enables the association of phosphoinositide 3-kinase (PI3K) regulatory subunits. Knockdown of Abl1 rather than Abl2 suppresses the PI3K/Akt pathway, regardless of Src and Hck activities. Reintroduction of wild-type Abl1 rather than the Abl1-Y488F mutant rescues PI3KR1 recruitment and PI3K activation. When PIK3CB, Abl1 or Src/Hck is suppressed, macrophage podosome formation, matrix degradation and chemotactic migration are inhibited. Thus, Src/Hck-mediated phosphorylation of Abl1 Tyr488 triggers PIK3CB-dependent PI(3,4,5)P3 production and orchestrates the assembly and function of macrophage podosomes.
Collapse
Affiliation(s)
- Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaoting Liu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Xiaojie Xia
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
27
|
Fatunmbi O, Bradley RP, Kandy SK, Bucki R, Janmey PA, Radhakrishnan R. A multiscale biophysical model for the recruitment of actin nucleating proteins at the membrane interface. SOFT MATTER 2020; 16:4941-4954. [PMID: 32436537 PMCID: PMC7373224 DOI: 10.1039/d0sm00267d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics and organization of the actin cytoskeleton are crucial to many cellular events such as motility, polarization, cell shaping, and cell division. The intracellular and extracellular signaling associated with this cytoskeletal network is communicated through cell membranes. Hence the organization of membrane macromolecules and actin filament assembly are highly interdependent. Although the actin-membrane linkage is known to happen through many routes, the major class of interactions is through the direct interaction of actin-binding proteins with the lipid class containing poly-phosphatidylinositols (PPIs). Among the PPIs, phosphatidylinositol bisphosphate (PI(4,5)P2) acts as a significant factor controlling actin polymerization in the proximity of the membrane by binding to actin-associated proteins. The molecular interactions between these actin-binding proteins and the membrane lipids remain elusive. Here, using molecular modeling, analytical theory, and experimental methods, we investigate the binding of three different actin-binding proteins, mDia2, NWASP, and gelsolin, to membranes containing PI(4,5)P2 lipids. We perform molecular dynamics simulations on the protein-bilayer system and analyze the membrane binding in the form of hydrogen bonds and salt bridges at various PI(4,5)P2 and cholesterol concentrations. Our experimental study with PI(4,5)P2-containing large unilamellar vesicles mimics the computational experiments. Using the multivalencies of the proteins obtained in molecular simulations and the cooperative binding mechanisms of the proteins, we also propose a multivalent binding model that predicts the actin filament distributions at various PI(4,5)P2 and protein concentrations.
Collapse
Affiliation(s)
- Ololade Fatunmbi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
The virulence domain of Shigella IcsA contains a subregion with specific host cell adhesion function. PLoS One 2020; 15:e0227425. [PMID: 31910229 PMCID: PMC6946128 DOI: 10.1371/journal.pone.0227425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella species cause bacillary dysentery, especially among young individuals. Shigellae target the human colon for invasion; however, the initial adhesion mechanism is poorly understood. The Shigella surface protein IcsA, in addition to its role in actin-based motility, acts as a host cell adhesin through unknown mechanism(s). Here we confirmed the role of IcsA in cell adhesion and defined the region required for IcsA adhesin activity. Purified IcsA passenger domain was able block S. flexneri adherence and was also used as a molecular probe that recognised multiple components from host cells. The region within IcsA's functional passenger domain (aa 138-148) was identified by mutagenesis. Upon the deletion of this region, the purified IcsAΔ138-148 was found to no longer block S. flexneri adherence and had reduced ability to interact with host molecules. Furthermore, S. flexneri expressing IcsAΔ138-148 was found to be significantly defective in both cell adherence and invasion. Taken together, our data identify an adherence region within the IcsA functional domain and provides useful information for designing therapeutics for Shigella infection.
Collapse
|
30
|
Amato C, Thomason PA, Davidson AJ, Swaminathan K, Ismail S, Machesky LM, Insall RH. WASP Restricts Active Rac to Maintain Cells' Front-Rear Polarization. Curr Biol 2019; 29:4169-4182.e4. [PMID: 31786060 PMCID: PMC6926487 DOI: 10.1016/j.cub.2019.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Efficient motility requires polarized cells, with pseudopods at the front and a retracting rear. Polarization is maintained by restricting the pseudopod catalyst, active Rac, to the front. Here, we show that the actin nucleation-promoting factor Wiskott-Aldrich syndrome protein (WASP) contributes to maintenance of front-rear polarity by controlling localization and cellular levels of active Rac. Dictyostelium cells lacking WASP inappropriately activate Rac at the rear, which affects their polarity and speed. WASP's Cdc42 and Rac interacting binding ("CRIB") motif has been thought to be essential for its activation. However, we show that the CRIB motif's biological role is unexpectedly complex. WASP CRIB mutants are no longer able to restrict Rac activity to the front, and cannot generate new pseudopods when SCAR/WAVE is absent. Overall levels of Rac activity also increase when WASP is unable to bind to Rac. However, WASP without a functional CRIB domain localizes normally at clathrin pits during endocytosis, and activates Arp2/3 complex. Similarly, chemical inhibition of Rac does not affect WASP localization or activation at sites of endocytosis. Thus, the interaction between small GTPases and WASP is more complex than previously thought-Rac regulates a subset of WASP functions, but WASP reciprocally restricts active Rac through its CRIB motif.
Collapse
Affiliation(s)
- Clelia Amato
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - Peter A Thomason
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Andrew J Davidson
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Karthic Swaminathan
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Shehab Ismail
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Laura M Machesky
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Robert H Insall
- CRUK Beatson Institute, Switchback Road, Bearsden G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Weeber F, Becher A, Seibold T, Seufferlein T, Eiseler T. Concerted regulation of actin polymerization during constitutive secretion by cortactin and PKD2. J Cell Sci 2019; 132:jcs.232355. [PMID: 31727638 DOI: 10.1242/jcs.232355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Constitutive secretion from the trans-Golgi-network (TGN) is facilitated by a concerted regulation of vesicle biogenesis and fission processes. The protein kinase D family (PKD) has been previously described to enhance vesicle fission by modifying the lipid environment. PKD also phosphorylates the actin regulatory protein cortactin at S298 to impair synergistic actin polymerization. We here report additional functions for PKD2 (also known as PRKD2) and cortactin in the regulation of actin polymerization during the fission of transport carriers from the TGN. Phosphorylation of cortactin at S298 impairs the interaction between WIP (also known as WIPF1) and cortactin. WIP stabilizes the autoinhibited conformation of N-WASP (also known as WASL). This leads to an inhibition of synergistic Arp2/3-complex-dependent actin polymerization at the TGN. PKD2 activity at the TGN is controlled by active CDC42-GTP which directly activates N-WASP, inhibits PKD2 and shifts the balance to non-S298-phosphorylated cortactin, which can in turn sequester WIP from N-WASP. Consequently, synergistic actin polymerization at the TGN and constitutive secretion are enhanced.
Collapse
Affiliation(s)
- Florian Weeber
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Alexander Becher
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tanja Seibold
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| |
Collapse
|
32
|
WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes. Nat Commun 2019; 10:3699. [PMID: 31420534 PMCID: PMC6697732 DOI: 10.1038/s41467-019-11694-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
WHAMM, a member of the Wiskott-Aldrich syndrome protein (WASP) family, is an actin nucleation promoting factor (NPF) that also associates with membranes and microtubules. Here we report that WHAMM is required for autophagic lysosome reformation (ALR). WHAMM knockout causes impairment of autolysosome tubulation, which results in accumulation of enlarged autolysosomes during prolonged starvation. Mechanistically, WHAMM is recruited to the autolysosome membrane through its specific interaction with PI(4,5)P2. WHAMM then works as an NPF which promotes assembly of an actin scaffold on the surface of the autolysosome to promote autolysosome tubulation. Our study demonstrates an unexpected role of the actin scaffold in regulating autophagic lysosome reformation. After autophagic cargo degradation, autolysosomes undergo a reformation process to recycle lysosomal membrane components. Here, Dai et al. demonstrate that the actin nucleation promoting factor WHAMM is required for autolysosome reformation by providing an actin scaffold to drive tubulation.
Collapse
|
33
|
Brouwer M, Farzana F, Koopmans F, Chen N, Brunner JW, Oldani S, Li KW, van Weering JR, Smit AB, Toonen RF, Verhage M. SALM1 controls synapse development by promoting F-actin/PIP2-dependent Neurexin clustering. EMBO J 2019; 38:e101289. [PMID: 31368584 PMCID: PMC6717895 DOI: 10.15252/embj.2018101289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis‐regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion‐like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1β‐ and Neuroligin1‐mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1β clustering in an F‐actin‐ and PIP2‐dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F‐actin/PIP2‐dependent clustering of Neurexin.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Fatima Farzana
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ning Chen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Silvia Oldani
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jan Rt van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Ziegler AB, Tavosanis G. Glycerophospholipids – Emerging players in neuronal dendrite branching and outgrowth. Dev Biol 2019; 451:25-34. [DOI: 10.1016/j.ydbio.2018.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 01/12/2023]
|
35
|
Chung JK, Nocka LM, Decker A, Wang Q, Kadlecek TA, Weiss A, Kuriyan J, Groves JT. Switch-like activation of Bruton's tyrosine kinase by membrane-mediated dimerization. Proc Natl Acad Sci U S A 2019; 116:10798-10803. [PMID: 31076553 PMCID: PMC6561188 DOI: 10.1073/pnas.1819309116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transformation of molecular binding events into cellular decisions is the basis of most biological signal transduction. A fundamental challenge faced by these systems is that reliance on protein-ligand chemical affinities alone generally results in poor sensitivity to ligand concentration, endangering the system to error. Here, we examine the lipid-binding pleckstrin homology and Tec homology (PH-TH) module of Bruton's tyrosine kinase (Btk). Using fluorescence correlation spectroscopy (FCS) and membrane-binding kinetic measurements, we identify a phosphatidylinositol (3-5)-trisphosphate (PIP3) sensing mechanism that achieves switch-like sensitivity to PIP3 levels, surpassing the intrinsic affinity discrimination of PIP3:PH binding. This mechanism employs multiple PIP3 binding as well as dimerization of Btk on the membrane surface. Studies in live cells confirm that mutations at the dimer interface and peripheral site produce effects comparable to that of the kinase-dead Btk in vivo. These results demonstrate how a single protein module can institute an allosteric counting mechanism to achieve high-precision discrimination of ligand concentration. Furthermore, this activation mechanism distinguishes Btk from other Tec family member kinases, Tec and Itk, which we show are not capable of dimerization through their PH-TH modules. This suggests that Btk plays a critical role in the stringency of the B cell response, whereas T cells rely on other mechanisms to achieve stringency.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Aubrianna Decker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Qi Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Theresa A Kadlecek
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Arthur Weiss
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
| |
Collapse
|
36
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
37
|
Hsieh CW, Yang WY. Omegasome-proximal PtdIns(4,5)P 2 couples F-actin mediated mitoaggregate disassembly with autophagosome formation during mitophagy. Nat Commun 2019; 10:969. [PMID: 30814505 PMCID: PMC6393429 DOI: 10.1038/s41467-019-08924-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/06/2019] [Indexed: 01/27/2023] Open
Abstract
Cells govern their homeostasis through autophagy by sequestering substrates, ranging from proteins to aggregates and organelles, into autophagosomes for lysosomal degradation. In these processes cells need to coordinate between substrate remodeling and autophagosome formation for efficient engulfment. We found that in Parkin-mediated mitophagy, mitochondria to be turned over first become grape-like mitoaggregates, followed by their disassembly into smaller pieces via the actinomyosin system. At the disassembly step, we observed spatially-associated, synchronous formation of circular F-actin and BATS-labeled autophagy initiation sites near mitochondria, suggesting coordination between substrate downsizing and autophagosome formation during mitophagy. Interestingly, PtdIns(4,5)P2, instead of PtdIns(3)P, regulates this mitophagy-associated formation of circular F-actin and BATS-sites. Selective depletion of PtdIns(4,5)P2 near omegasomes, the endoplasmic reticulum (ER) subdomains involved in autophagosome formation, impaired mitoaggregate disassembly. Our findings demonstrate the presence of a pool of PtdIns(4,5)P2 adjacent to omegasomes, and that they coordinate mitoaggregate disassembly with autophagy initiation during Parkin-mediated mitophagy. Autophagic cells coordinate substrate remodeling with sequestration during autophagosome formation. Here, the authors show that during Parkin-mediated mitophagy, mitochondria are disassembled into progressively smaller aggregates near autophagy initiation sites in a PtdIns(4,5)P2-dependent manner.
Collapse
Affiliation(s)
- Cheng-Wei Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. .,Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Regulation of actin dynamics by PI(4,5)P2 in cell migration and endocytosis. Curr Opin Cell Biol 2019; 56:7-13. [DOI: 10.1016/j.ceb.2018.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
|
39
|
Zhang Y, Cao F, Zhou Y, Feng Z, Sit B, Krendel M, Yu CH. Tail domains of myosin-1e regulate phosphatidylinositol signaling and F-actin polymerization at the ventral layer of podosomes. Mol Biol Cell 2019; 30:622-635. [PMID: 30601698 PMCID: PMC6589698 DOI: 10.1091/mbc.e18-06-0398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During podosome formation, distinct phosphatidylinositol 3,4,5-trisphosphate lipid (PI(3,4,5)P3) production and F-actin polymerization take place at integrin-mediated adhesions. Membrane-associated actin regulation factors, such as myosin-1, serve as key molecules to link phosphatidylinositol signals to podosome assembly. Here, we report that long-tailed myosin-1e (Myo1e) is enriched at the ventral layer of the podosome core in a PI(3,4,5)P3-dependent manner. The combination of TH1 and TH2 (TH12) of Myo1e tail domains contains the essential motif for PI(3,4,5)P3-dependent membrane association and ventral localization at the podosome. TH12 KR2A (K772A and R782A) becomes dissociated from the plasma membrane. While F-actin polymerizations are initialized from the ventral layer of the podosome, TH12 precedes the recruitment of N-WASP and Arp2/3 in the initial phase of podosome formation. Overexpression of TH12, not TH12 KR2A, impedes PI(3,4,5)P3 signaling, restrains F-actin polymerization, and inhibits podosome formation. TH12 also suppresses gelatin degradation and migration speed of invadopodia-forming A375 melanoma cells. Thus, TH12 domain of Myo1e serves as a regulatory component to connect phosphatidylinositol signaling to F-actin polymerization at the podosome.
Collapse
Affiliation(s)
- Yage Zhang
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fakun Cao
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Yuhuan Zhou
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Brian Sit
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong.,Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Mira Krendel
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Cheng-Han Yu
- School of Biomedical Sciences, Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
|
41
|
Meca J, Massoni-Laporte A, Martinez D, Sartorel E, Loquet A, Habenstein B, McCusker D. Avidity-driven polarity establishment via multivalent lipid-GTPase module interactions. EMBO J 2018; 38:embj.201899652. [PMID: 30559330 DOI: 10.15252/embj.201899652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.
Collapse
Affiliation(s)
- Julien Meca
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Aurélie Massoni-Laporte
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Elodie Sartorel
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Antoine Loquet
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Birgit Habenstein
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Derek McCusker
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| |
Collapse
|
42
|
CRIB effector disorder: exquisite function from chaos. Biochem Soc Trans 2018; 46:1289-1302. [PMID: 30154092 DOI: 10.1042/bst20170570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
The CRIB (Cdc42/Rac interactive binding) family of small G-protein effectors contain significant regions with intrinsic disorder. The G-protein-binding regions are contained within these intrinsically disordered regions. Most CRIB proteins also contain stretches of basic residues associated with their G-protein-binding regions. The basic region (BR) and G-protein-binding region together allow the CRIB effectors to bind to their cognate G-protein via a dock- and coalesce-binding mechanism. The BRs of these proteins take on multiple roles: steering G-protein binding, interacting with elements of the membrane and regulating intramolecular regulatory interactions. The ability of these regions of the CRIBs to undergo multivalent interactions and mediate charge neutralizations equips them with all the properties required to drive liquid-liquid phase separation and therefore to initiate and drive signalosome formation. It is only recently that the structural plasticity in these proteins is being appreciated as the driving force for these vital cellular processes.
Collapse
|
43
|
Tetley GJN, Szeto A, Fountain AJ, Mott HR, Owen D. Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region. J Biol Chem 2018; 293:15136-15151. [PMID: 30104412 PMCID: PMC6166713 DOI: 10.1074/jbc.ra118.003290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Wiskott-Aldrich syndrome protein (WASP) activates the actin-related protein 2/3 homolog (Arp2/3) complex and regulates actin polymerization in a physiological setting. Cell division cycle 42 (Cdc42) is a key activator of WASP, which binds Cdc42 through a Cdc42/Rac-interactive binding (CRIB)-containing region that defines a subset of Cdc42 effectors. Here, using site-directed mutagenesis and binding affinity determination and kinetic assays, we report the results of an investigation into the energetic contributions of individual WASP residues to both the Cdc42-WASP binding interface and the kinetics of complex formation. Our results support the previously proposed dock-and-coalesce binding mechanism, initiated by electrostatic steering driven by WASP's basic region and followed by a coalescence phase likely driven by the conserved CRIB motif. The WASP basic region, however, appears also to play a role in the final complex, as its mutation affected both on- and off-rates, suggesting a more comprehensive physiological role for this region centered on the C-terminal triad of positive residues. These results highlight the expanding roles of the basic region in WASP and other CRIB-containing effector proteins in regulating complex cellular processes and coordinating multiple input signals. The data presented improve our understanding of the Cdc42-WASP interface and also add to the body of information available for Cdc42-effector complex formation, therapeutic targeting of which has promise for Ras-driven cancers. Our findings suggest that combining high-affinity peptide-binding sequences with short electrostatic steering sequences could increase the efficacy of peptidomimetic candidates designed to interfere with Cdc42 signaling in cancer.
Collapse
Affiliation(s)
- George J N Tetley
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Aydan Szeto
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Adam J Fountain
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Helen R Mott
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Darerca Owen
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
44
|
Schön M, Mey I, Steinem C. Influence of cross-linkers on ezrin-bound minimal actin cortices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:91-101. [PMID: 30093083 DOI: 10.1016/j.pbiomolbio.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
The actin cortex is a thin network coupled to the plasma membrane of cells, responsible for e.g., cell shape, motility, growth and division. Several model systems for minimal actin cortices (MACs) have been discussed in literature trying to mimic the complex interplay of membrane and actin. We recapitulate on different types of MACs using either three dimensional droplet interfaces or lipid bilayers to which F-actin networks are attached to or planar lipid bilayers with bound actin networks. Binding of the network to the membrane interface significantly influences its properties as well as its dynamics. This in turn also influences, how cross-linkers as well as myosin motors act on the network. Here, we describe the coupling of a filamentous actin network to a model membrane via the protein ezrin, a member of the ezrin-radixin-moesin family, which forms a direct linkage between the plasma membrane and the cortical web. Ezrin binding to the membrane is achieved by the lipid PtdIns(4,5)P2, while attachment to F-actin is mediated via the C-terminal domain of the protein leading to a two dimensional arrangement of actin filaments on the membrane. Addition of cross-linkers such as fascin and α-actinin influences the architecture of the actin network, which we have investigated by means of fluorescence microscopy. The results are discussed in terms of the dynamics of the filaments on the membrane surface.
Collapse
Affiliation(s)
- Markus Schön
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| | - Claudia Steinem
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Abstract
Establishing and maintaining cell polarity are dynamic processes that necessitate complicated but highly regulated protein interactions. Phosphorylation is a powerful mechanism for cells to control the function and subcellular localization of a target protein, and multiple kinases have played critical roles in cell polarity. Among them, atypical protein kinase C (aPKC) is likely the most studied kinase in cell polarity and has the largest number of downstream substrates characterized so far. More than half of the polarity proteins that are essential for regulating cell polarity have been identified as aPKC substrates. This review covers mainly studies of aPKC in regulating anterior-posterior polarity in the worm one-cell embryo and apical-basal polarity in epithelial cells and asymmetrically dividing cells (for example,
Drosophila neuroblasts). We will go through aPKC target proteins in cell polarity and discuss various mechanisms by which aPKC phosphorylation controls their subcellular localizations and biological functions. We will also review the recent progress in determining the detailed molecular mechanisms in spatial and temporal control of aPKC subcellular localization and kinase activity during cell polarization.
Collapse
Affiliation(s)
- Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, S325 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
46
|
Hakala M, Kalimeri M, Enkavi G, Vattulainen I, Lappalainen P. Molecular mechanism for inhibition of twinfilin by phosphoinositides. J Biol Chem 2018; 293:4818-4829. [PMID: 29425097 DOI: 10.1074/jbc.ra117.000484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Membrane phosphoinositides control organization and dynamics of the actin cytoskeleton by regulating the activities of several key actin-binding proteins. Twinfilin is an evolutionarily conserved protein that contributes to cytoskeletal dynamics by interacting with actin monomers, filaments, and the heterodimeric capping protein. Twinfilin also binds phosphoinositides, which inhibit its interactions with actin, but the underlying mechanism has remained unknown. Here, we show that the high-affinity binding site of twinfilin for phosphoinositides is located at the C-terminal tail region, whereas the two actin-depolymerizing factor (ADF)/cofilin-like ADF homology domains of twinfilin bind phosphoinositides only with low affinity. Mutagenesis and biochemical experiments combined with atomistic molecular dynamics simulations reveal that the C-terminal tail of twinfilin interacts with membranes through a multivalent electrostatic interaction with a preference toward phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), PI(4,5)P2, and PI(3,4,5)P3 This initial interaction places the actin-binding ADF homology domains of twinfilin in close proximity to the membrane and subsequently promotes their association with the membrane, thus leading to inhibition of the actin interactions. In support of this model, a twinfilin mutant lacking the C-terminal tail inhibits actin filament assembly in a phosphoinositide-insensitive manner. Our mutagenesis data also reveal that the phosphoinositide- and capping protein-binding sites overlap in the C-terminal tail of twinfilin, suggesting that phosphoinositide binding additionally inhibits the interactions of twinfilin with the heterodimeric capping protein. The results demonstrate that the conserved C-terminal tail of twinfilin is a multifunctional binding motif, which is crucial for interaction with the heterodimeric capping protein and for tethering twinfilin to phosphoinositide-rich membranes.
Collapse
Affiliation(s)
- Markku Hakala
- Institute of Biotechnology, FI-00014 Helsinki, Finland
| | - Maria Kalimeri
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland; MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense, Denmark
| | | |
Collapse
|
47
|
Abstract
Selective enrichment of the polyphosphoinositides (PPIn), such as PtdIns(4,5)P2 and PtdIns4P, helps to determine the identity of the plasma membrane (PM) and regulates many aspects of cell biology through a vast number of protein effectors. Polarity proteins had long been assumed to be non-PPIn-binding proteins that mainly associate with PM/cell cortex through their extensive protein-protein interaction network. However, recent studies began to reveal that several key polarity proteins electrostatically bind to PPIn through their positively charged protein domains or structures and such PPIn-binding property is essential for their direct and specific attachment to PM. Although the physical nature of the charge-based PPIn binding appears to be simple and nonspecific, it serves as an elegant mechanism that can be efficiently and specifically regulated for achieving polarized PM targeting of polarity proteins. As an unexpected consequence, subcellular localization of PPIn-binding polarity proteins are also subject to regulations by physiological conditions such as hypoxia and ischemia that acutely and reversibly depletes PPIn from PM.
Collapse
Affiliation(s)
- Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
48
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
49
|
Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proc Natl Acad Sci U S A 2017; 114:E8977-E8986. [PMID: 29073094 DOI: 10.1073/pnas.1705032114] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton powers membrane deformation during many cellular processes, such as migration, morphogenesis, and endocytosis. Membrane phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], regulate the activities of many actin-binding proteins (ABPs), including profilin, cofilin, Dia2, N-WASP, ezrin, and moesin, but the underlying molecular mechanisms have remained elusive. Moreover, because of a lack of available methodology, the dynamics of membrane interactions have not been experimentally determined for any ABP. Here, we applied a combination of biochemical assays, photobleaching/activation approaches, and atomistic molecular dynamics simulations to uncover the molecular principles by which ABPs interact with phosphoinositide-rich membranes. We show that, despite using different domains for lipid binding, these proteins associate with membranes through similar multivalent electrostatic interactions, without specific binding pockets or penetration into the lipid bilayer. Strikingly, our experiments reveal that these proteins display enormous differences in the dynamics of membrane interactions and in the ranges of phosphoinositide densities that they sense. Profilin and cofilin display transient, low-affinity interactions with phosphoinositide-rich membranes, whereas F-actin assembly factors Dia2 and N-WASP reside on phosphoinositide-rich membranes for longer periods to perform their functions. Ezrin and moesin, which link the actin cytoskeleton to the plasma membrane, bind membranes with very high affinity and slow dissociation dynamics. Unlike profilin, cofilin, Dia2, and N-WASP, they do not require high "stimulus-responsive" phosphoinositide density for membrane binding. Moreover, ezrin can limit the lateral diffusion of PI(4,5)P2 along the lipid bilayer. Together, these findings demonstrate that membrane-interaction mechanisms of ABPs evolved to precisely fulfill their specific functions in cytoskeletal dynamics.
Collapse
|
50
|
Zhang SX, Duan LH, He SJ, Zhuang GF, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res 2017; 27:253-273. [PMID: 28106075 DOI: 10.1038/cr.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/24/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Neurite initiation is critical for neuronal morphogenesis and early neural circuit development. Recent studies showed that local actin aggregation underneath the cell membrane determined the site of neurite initiation. An immediately arising question is what signaling mechanism initiated actin aggregation. Here we demonstrate that local clustering of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), a phospholipid with relatively few known signaling functions, is necessary and sufficient for aggregating actin and promoting neuritogenesis. In contrast, the related and more extensively studied phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol (3,4,5)-trisphosphate (PIP3) molecules did not have such functions. Specifically, we showed that beads coated with PI(3,4)P2 promoted actin aggregation and neurite initiation, while pharmacological interference with PI(3,4)P2 synthesis inhibited both processes. PI(3,4)P2 clustering occurred even when actin aggregation was pharmacologically blocked, demonstrating that PI(3,4)P2 functioned as the upstream signaling molecule. Two enzymes critical for PI(3,4)P2 generation, namely, SH2 domain-containing inositol 5-phosphatase and class II phosphoinositide 3-kinase α, were complementarily and non-redundantly required for actin aggregation and neuritogenesis, as well as for subsequent dendritogenesis. Finally, we demonstrate that neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex functioned downstream of PI(3,4)P2 to mediate neuritogenesis and dendritogenesis. Together, our results identify PI(3,4)P2 as an important signaling molecule during early development and demonstrate its critical role in regulating actin aggregation and neuritogenesis.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Feng Zhuang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|