1
|
Ocampo J, Carena S, López MDR, Vela VS, Zambrano Siri RT, Balestra SA, Alonso GD. Trypanosomatid histones: the building blocks of the epigenetic code of highly divergent eukaryotes. Biochem J 2025; 482:BCJ20240543. [PMID: 40094426 DOI: 10.1042/bcj20240543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Histones play a fundamental role in eukaryotic organisms not only as scaffolding proteins in DNA packaging but also in regulating gene expression. They constitute the protein reel around which DNA wraps forming nucleosomes. This initial packing gives rise to the chromatin fiber which is next folded into three-dimensional arrangements. Additionally, histones have expanded their functions through the emergence of histone variants which have specialized purposes and can deeply affect chromatin organization and dynamics. Moreover, both canonical histones and histone variants comprise the building blocks of the histone code by being targets of different post-translational modifications (PTMs) that occur in a highly regulated manner both in place and time. Most of the above-mentioned about chromatin organization is conserved among eukaryotes. However, trypanosomatid histones have many peculiarities that entail a special description. In this review, we compile the current knowledge of canonical core histones, histone variants, and their PTMs in trypanosomatids. We highlight the similarities and differences between histone variants and their canonical counterparts in trypanosomatids, and we compare them with those from model organisms. Finally, we discuss the crosstalk between different histone marks and their genomic distribution underlying the uniqueness of trypanosomatids.
Collapse
Affiliation(s)
- Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Carena
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Del Rosario López
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valentina Sol Vela
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina Trinidad Zambrano Siri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofia Antonella Balestra
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Daniel Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Jiao AL, Sendinc E, Zee BM, Wallner F, Shi Y. An E2 ubiquitin-conjugating enzyme links diubiquitinated H2B to H3K27M oncohistone function. Proc Natl Acad Sci U S A 2024; 121:e2416614121. [PMID: 39560642 PMCID: PMC11621828 DOI: 10.1073/pnas.2416614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The H3K27M oncogenic histone (oncohistone) mutation drives ~80% of incurable childhood brain tumors known as diffuse midline gliomas (DMGs). The major molecular feature of H3K27M mutant DMGs is a global loss of H3K27 trimethylation (H3K27me3), a phenotype conserved in Caenorhabditis elegans (C. elegans). Here, we perform unbiased genome-wide suppressor screens in C. elegans expressing H3K27M and isolate 20 suppressors, all of which at least partially restore H3K27me3. 19/20 suppressor mutations map to the same histone H3.3 gene in which the K27M mutation was originally introduced. Most of these create single amino acid substitutions between residues R26-Y54, which do not disrupt oncohistone expression. Rather, they are predicted to impair interactions with the Polycomb Repressive Complex 2 (PRC2) and are functionally conserved in human cells. Further, we mapped a single extragenic H3K27M suppressor to ubc-20, an E2 ubiquitin-conjugating enzyme, whose loss rescued H3K27me3 to nearly 50% wild-type levels despite continued oncohistone expression and chromatin incorporation. We demonstrate that ubc-20 is the major enzyme responsible for generating diubiquitinated histone H2B. Our study provides in vivo support for existing models of PRC2 inhibition via direct oncohistone contact and suggests that the effects of H3K27M may be modulated by H2B ubiquitination.
Collapse
Affiliation(s)
- Alan L. Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barry M. Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
3
|
Hicks C, Rahman S, Gloor S, Fields J, Husby N, Vaidya A, Maier K, Morgan M, Keogh MC, Wolberger C. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 2024; 52:9978-9995. [PMID: 39149911 PMCID: PMC11381367 DOI: 10.1093/nar/gkae698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
Collapse
Affiliation(s)
- Chad W Hicks
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sanim Rahman
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Susan L Gloor
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - James K Fields
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Anup Vaidya
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Keith E Maier
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Michael Morgan
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Cynthia Wolberger
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
6
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
7
|
Kawaf RR, Ramadan WS, El-Awady R. Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sci 2024; 346:122639. [PMID: 38615747 DOI: 10.1016/j.lfs.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.
Collapse
Affiliation(s)
- Rawan R Kawaf
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
8
|
Frisbie VS, Hashimoto H, Xie Y, De Luna Vitorino FN, Baeza J, Nguyen T, Yuan Z, Kiselar J, Garcia BA, Debler EW. Two DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids. Nat Commun 2024; 15:2467. [PMID: 38503750 PMCID: PMC10951340 DOI: 10.1038/s41467-024-46637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site loop flexible, implying a distinct mechanism of substrate recognition. We further reveal distinct methylation kinetics and substrate preferences of DOT1A (H3K76me0) and DOT1B (DOT1A products H3K76me1/me2) in vitro, determined by a Ser and Ala residue within motif IV, respectively, enabling DOT1A and DOT1B to mediate efficient H3K76 tri-methylation non-processively but cooperatively, and suggesting why kinetoplastids have evolved two DOT1 enzymes.
Collapse
Affiliation(s)
- Victoria S Frisbie
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Francisca N De Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Josue Baeza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tam Nguyen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhangerjiao Yuan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janna Kiselar
- Case Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
de Oliveira Filho RS, de Oliveira DA, Nisimoto MM, Marti LC. A Review of Advanced Cutaneous Melanoma Therapies and Their Mechanisms, from Immunotherapies to Lysine Histone Methyl Transferase Inhibitors. Cancers (Basel) 2023; 15:5751. [PMID: 38136297 PMCID: PMC10741407 DOI: 10.3390/cancers15245751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Renato Santos de Oliveira Filho
- Department of Plastic Surgery, Escola Paulista de Medicina–Universidade Federal de São Paulo–EPM-UNIFESP, São Paulo 04023-062, SP, Brazil
| | - Daniel Arcuschin de Oliveira
- Department of Plastic Surgery, Universidade Federal de São Paulo–UNIFESP-Skin Cancer and Melanoma Fellow, São Paulo 04023-900, SP, Brazil;
| | | | - Luciana Cavalheiro Marti
- Experimental Research Department, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
10
|
Spires LM, Wind E, Papp B, Toth Z. KSHV RTA utilizes the host E3 ubiquitin ligase complex RNF20/40 to drive lytic reactivation. J Virol 2023; 97:e0138923. [PMID: 37888983 PMCID: PMC10688343 DOI: 10.1128/jvi.01389-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.
Collapse
Affiliation(s)
- Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Eleanor Wind
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
- UF Center for Orphaned Autoimmune Disorders, Gainesville, Florida, USA
- UF Informatics Institute, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
11
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. Sci Rep 2023; 13:16731. [PMID: 37794081 PMCID: PMC10550974 DOI: 10.1038/s41598-023-43969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Collapse
Affiliation(s)
- Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah School of Medicine, 2000, Circle of Hope, Room 3715, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545485. [PMID: 37873190 PMCID: PMC10592830 DOI: 10.1101/2023.06.18.545485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo . We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo .
Collapse
|
13
|
Kriegesmann J, Brik A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem Sci 2023; 14:10025-10040. [PMID: 37772107 PMCID: PMC10529715 DOI: 10.1039/d3sc03664b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Ubiquitination plays a crucial role in controlling various biological processes such as translation, DNA repair and immune response. Protein degradation for example, is one of the main processes which is controlled by the ubiquitin system and has significant implications on human health. In order to investigate these processes and the roles played by different ubiquitination patterns on biological systems, homogeneously ubiquitinated proteins are needed. Notably, these conjugates that are made enzymatically in cells cannot be easily obtained in large amounts and high homogeneity by employing such strategies. Therefore, chemical and semisynthetic approaches have emerged to prepare different ubiquitinated proteins. In this review, we will present the key synthetic strategies and their applications for the preparation of various ubiquitinated proteins. Furthermore, the use of these precious conjugates in different biochemical and functional studies will be highlighted.
Collapse
Affiliation(s)
- Julia Kriegesmann
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| |
Collapse
|
14
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Structural insights on the KMT2-NCP interaction. Biochem Soc Trans 2023; 51:427-434. [PMID: 36695549 DOI: 10.1042/bst20221155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
The MLL/KMT2 family enzymes are frequently mutated in human cancers and congenital diseases. They deposit the majority of histone 3 lysine 4 (H3K4) mono-, di-, or tri-methylation in mammals and are tightly associated with gene activation. Structural and biochemical studies in recent years provide in-depth understanding of how the MLL1 and homologous yeast SET1 complexes interact with the nucleosome core particle (NCP) and how their activities for H3K4 methylation are regulated by the conserved core components. Here, we will discuss the recent single molecule cryo-EM studies on the MLL1 and ySET1 complexes bound on the NCP. These studies highlight the dynamic regulation of the MLL/SET1 family lysine methyltransferases with unique features as compared with other histone lysine methyltransferases. These studies provide insights for loci-specific regulation of H3K4 methylation states in cells. The mechanistic studies on the MLL1 complex have already led to the development of the MLL1 inhibitors that show efficacy in acute leukemia and metastatic breast cancers. Future studies on the MLL/SET1 family enzymes will continue to bring to light potential therapeutic opportunities.
Collapse
|
16
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
17
|
Zhang X, Zhang BW, Xiang L, Wu H, Sahiri Alexander SUPITA, Zhou P, Zi-Yu Dai M, Wang X, Xiong W, Zhang Y, Jin ZB, Deng LW. MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. iScience 2022; 25:104058. [PMID: 35359806 PMCID: PMC8961232 DOI: 10.1016/j.isci.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 03/07/2022] [Indexed: 11/06/2022] Open
Abstract
Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites. MLL5 is essential for the expression of critical photoreceptor genes MLL5 depletion reduces H3K4/K79 methylation at photoreceptor gene promoters MLL5 interacts with CRX via its CD4 domain Recognition of H3K4me2/3 by MLL5 is a prerequisite for CRX recruitment to chromatin
Collapse
|
18
|
Trans-tail regulation-mediated suppression of cryptic transcription. Exp Mol Med 2021; 53:1683-1688. [PMID: 34845331 PMCID: PMC8639711 DOI: 10.1038/s12276-021-00711-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Crosstalk between post-translational modifications of histone proteins influences the regulation of chromatin structure and gene expression. Among such crosstalk pathways, the best-characterized example is H2B monoubiquitination-mediated H3K4 and H3K79 methylation, which is referred to as trans-tail regulation. Although many studies have investigated the fragmentary effects of this pathway on silencing and transcription, its ultimate contribution to transcriptional control has remained unclear. Recent advances in molecular techniques and genomics have, however, revealed that the trans-tail crosstalk is linked to a more diverse cascade of histone modifications and has various functions in cotranscriptional processes. Furthermore, H2B monoubiquitination sequentially facilitates H3K4 dimethylation and histone sumoylation, thereby providing a binding platform for recruiting Set3 complex proteins, including two histone deacetylases, to restrict cryptic transcription from gene bodies. The removal of both ubiquitin and SUMO, small ubiquitin-like modifier, modifications from histones also facilitates a change in the phosphorylation pattern of the RNA polymerase II C-terminal domain that is required for subsequent transcriptional elongation. Therefore, this review describes recent findings regarding trans-tail regulation-driven processes to elaborate on their contribution to maintaining transcriptional fidelity. Crosstalk between different DNA-winding proteins, or histones, is a mechanism of molecular fidelity that helps prevent the initiation of aberrant gene expression, which may contribute to cancer and neurodegenerative disease. A team from South Korea, led by Jungmin Choi from the Korea University College of Medicine in Seoul and Hong-Yeoul Ryu from Kyungpook National University in Daegu, review the ways in which different histone proteins chemically modify parts of each other’s structure to regulate their functions. These modifications affect how histones interact with DNA, which in turn alters the dynamics of other factors implicated in gene expression. The correct interaction of histones is necessary to prevent the gene expression machinery from starting RNA synthesis from the wrong sites. Accurate control of these mechanisms is essential for cellular wellbeing
Collapse
|
19
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Ryu HY, Hochstrasser M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res 2021; 49:6043-6052. [PMID: 33885816 PMCID: PMC8216275 DOI: 10.1093/nar/gkab280] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin structure and gene expression are dynamically controlled by post-translational modifications (PTMs) on histone proteins, including ubiquitylation, methylation, acetylation and small ubiquitin-like modifier (SUMO) conjugation. It was initially thought that histone sumoylation exclusively suppressed gene transcription, but recent advances in proteomics and genomics have uncovered its diverse functions in cotranscriptional processes, including chromatin remodeling, transcript elongation, and blocking cryptic initiation. Histone sumoylation is integral to complex signaling codes that prime additional histone PTMs as well as modifications of the RNA polymerase II carboxy-terminal domain (RNAPII-CTD) during transcription. In addition, sumoylation of histone variants is critical for the DNA double-strand break (DSB) response and for chromosome segregation during mitosis. This review describes recent findings on histone sumoylation and its coordination with other histone and RNAPII-CTD modifications in the regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
22
|
Ryu HY, Zhao D, Li J, Su D, Hochstrasser M. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res 2020; 48:12151-12168. [PMID: 33231641 PMCID: PMC7708062 DOI: 10.1093/nar/gkaa1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Histones are substrates of the SUMO (small ubiquitin-like modifier) conjugation pathway. Several reports suggest histone sumoylation affects transcription negatively, but paradoxically, our genome-wide analysis shows the modification concentrated at many active genes. We find that trans-tail regulation of histone-H2B ubiquitylation and H3K4 di-methylation potentiates subsequent histone sumoylation. Consistent with the known control of the Set3 histone deacetylase complex (HDAC) by H3K4 di-methylation, histone sumoylation directly recruits the Set3 complex to both protein-coding and noncoding RNA (ncRNA) genes via a SUMO-interacting motif in the HDAC Cpr1 subunit. The altered gene expression profile caused by reducing histone sumoylation matches well to the profile in cells lacking Set3. Histone H2B sumoylation and the Set3 HDAC coordinately suppress cryptic ncRNA transcription initiation internal to mRNA genes. Our results reveal an elaborate co-transcriptional histone crosstalk pathway involving the consecutive ubiquitylation, methylation, sumoylation and deacetylation of histones, which maintains transcriptional fidelity by suppressing spurious transcription.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Correspondence may also be addressed to Hong-Yeoul Ryu. Tel: +82 53 950 6352;
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
23
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
24
|
Selvam K, Rahman SA, Forrester D, Bao A, Lieu M, Li S. Histone H4 LRS mutations can attenuate UV mutagenesis without affecting PCNA ubiquitination or sumoylation. DNA Repair (Amst) 2020; 95:102959. [PMID: 32927239 DOI: 10.1016/j.dnarep.2020.102959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
UV is a significant environmental agent that damages DNA. Translesion synthesis (TLS) is a DNA damage tolerance pathway that utilizes specialized DNA polymerases to replicate through the damaged DNA, often leading to mutagenesis. In eukaryotic cells, genomic DNA is organized into chromatin that is composed of nucleosomes. To date, if and/or how TLS is regulated by a specific nucleosome feature has been undocumented. We found that mutations of multiple histone H4 residues mostly or entirely embedded in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain attenuate UV mutagenesis in Saccharomyces cerevisiae. The attenuation is not caused by an alteration of ubiquitination or sumoylation of PCNA (proliferating cell nuclear antigen), the modifications well-known to regulate TLS. Also, the attenuation is not caused by decreased chromatin accessibility, or by alterations of methylation of histone H3 K79, which is at the center of the LRS surface. The attenuation may result from compromised TLS by both DNA polymerases ζ and η, in which Rad6 and Rad5 are but Rad18 is not implicated. We propose that a feature of the LRS is recognized or accessed by the TLS machineries either during/after a nucleosome is disassembled in front of a lesion-stalled replication fork, or during/before a nucleosome is reassembled behind a lesion-stalled replication fork.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Sheikh Arafatur Rahman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Derek Forrester
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Adam Bao
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael Lieu
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
25
|
Structural Basis for Recognition of Ubiquitylated Nucleosome by Dot1L Methyltransferase. Cell Rep 2020; 26:1681-1690.e5. [PMID: 30759380 PMCID: PMC6392056 DOI: 10.1016/j.celrep.2019.01.058] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Histone H3 lysine 79 (H3K79) methylation is enriched on actively transcribed genes, and its misregulation is a hallmark of leukemia. Methylation of H3K79, which resides on the structured disk face of the nucleosome, is mediated by the Dot1L methyltransferase. Dot1L activity is part of a trans-histone crosstalk pathway, requiring prior histone H2B ubiquitylation of lysine 120 (H2BK120ub) for optimal activity. However, the molecular details describing both how Dot1L binds to the nucleosome and why Dot1L is activated by H2BK120 ubiquitylation are unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of Dot1L bound to a nucleosome reconstituted with site-specifically ubiquitylated H2BK120. The structure reveals that Dot1L engages the nucleosome acidic patch using a variant arginine anchor and occupies a conformation poised for methylation. In this conformation, Dot1L and ubiquitin interact directly through complementary hydrophobic surfaces. This study establishes a path to better understand Dot1L function in normal and leukemia cells.
Collapse
|
26
|
Worden EJ, Zhang X, Wolberger C. Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. eLife 2020; 9:53199. [PMID: 31922488 PMCID: PMC7039682 DOI: 10.7554/elife.53199] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Methylation of histone H3K4 is a hallmark of actively transcribed genes that depends on mono-ubiquitination of histone H2B (H2B-Ub). H3K4 methylation in yeast is catalyzed by Set1, the methyltransferase subunit of COMPASS. We report here the cryo-EM structure of a six-protein core COMPASS subcomplex, which can methylate H3K4 and be stimulated by H2B-Ub, bound to a ubiquitinated nucleosome. Our structure shows that COMPASS spans the face of the nucleosome, recognizing ubiquitin on one face of the nucleosome and methylating H3 on the opposing face. As compared to the structure of the isolated core complex, Set1 undergoes multiple structural rearrangements to cement interactions with the nucleosome and with ubiquitin. The critical Set1 RxxxRR motif adopts a helix that mediates bridging contacts between the nucleosome, ubiquitin and COMPASS. The structure provides a framework for understanding mechanisms of trans-histone cross-talk and the dynamic role of H2B ubiquitination in stimulating histone methylation.
Collapse
Affiliation(s)
- Evan J Worden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xiangbin Zhang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
27
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
28
|
Selvam K, Rahman SA, Li S. Histone H4 H75E mutation attenuates global genomic and Rad26-independent transcription-coupled nucleotide excision repair. Nucleic Acids Res 2019; 47:7392-7401. [PMID: 31114907 PMCID: PMC6698655 DOI: 10.1093/nar/gkz453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023] Open
Abstract
Nucleotide excision repair (NER) consists of global genomic NER (GG-NER) and transcription coupled NER (TC-NER) subpathways. In eukaryotic cells, genomic DNA is wrapped around histone octamers (an H3–H4 tetramer and two H2A–H2B dimers) to form nucleosomes, which are well known to profoundly inhibit the access of NER proteins. Through unbiased screening of histone H4 residues in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain, we identified 24 mutations that enhance or decrease UV sensitivity of Saccharomyces cerevisiae cells. The histone H4 H75E mutation, which is largely embedded in the nucleosome and interacts with histone H2B, significantly attenuates GG-NER and Rad26-independent TC-NER but does not affect TC-NER in the presence of Rad26. All the other histone H4 mutations, except for T73F and T73Y that mildly attenuate GG-NER, do not substantially affect GG-NER or TC-NER. The attenuation of GG-NER and Rad26-independent TC-NER by the H4H75E mutation is not due to decreased chromatin accessibility, impaired methylation of histone H3 K79 that is at the center of the LRS domain, or lowered expression of NER proteins. Instead, the attenuation is at least in part due to impaired recruitment of Rad4, the key lesion recognition and verification protein, to chromatin following induction of DNA lesions.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sheikh Arafatur Rahman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
29
|
Li Y, Hu Y, Zhao K, Pan Y, Qu Y, Zhao J, Qin Y. The Indispensable Role of Histone Methyltransferase PoDot1 in Extracellular Glycoside Hydrolase Biosynthesis of Penicillium oxalicum. Front Microbiol 2019; 10:2566. [PMID: 31787956 PMCID: PMC6853848 DOI: 10.3389/fmicb.2019.02566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.
Collapse
Affiliation(s)
- Yanan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yueyan Hu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Kaili Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yunjun Pan
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jian Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Zheng S, Li D, Lu Z, Liu G, Wang M, Xing P, Wang M, Dong Y, Wang X, Li J, Zhang S, Peng H, Ira G, Li G, Chen X. Bre1-dependent H2B ubiquitination promotes homologous recombination by stimulating histone eviction at DNA breaks. Nucleic Acids Res 2019; 46:11326-11339. [PMID: 30304473 PMCID: PMC6265479 DOI: 10.1093/nar/gky918] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.
Collapse
Affiliation(s)
- Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhen Lu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guangxue Liu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Meng Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Dong
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Haoyang Peng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Grzegorz Ira
- The Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
31
|
PAS Domain Protein Pas3 Interacts with the Chromatin Modifier Bre1 in Regulating Cryptococcal Morphogenesis. mBio 2018; 9:mBio.02135-18. [PMID: 30425151 PMCID: PMC6234864 DOI: 10.1128/mbio.02135-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
For the ubiquitous environmental pathogen Cryptococcus neoformans, the morphological transition from yeast to filament confers resistance to natural predators like soil amoeba and is an integral differentiation event to produce infectious spores. Interestingly, filamentation is immuno-stimulatory and attenuates cryptococcal virulence in a mammalian host. Consistently, the morphogenesis transcription factor Znf2 profoundly shapes cryptococcal interaction with various hosts. Identifying the signaling pathways activating filamentation is thus, conductive to a better understanding of cryptococcal biology. In this study, we identified a PAS domain protein Pas3 that functions upstream of Znf2 in regulating cryptococcal filamentation. Interestingly, Pas3 interacts with the chromatin modifier Bre1 in the nucleus to regulate the transcript level of Znf2 and its prominent downstream targets. This is the first example of a PAS domain signaling regulator interacting with a chromatin modifier to control filamentation through their impact on cryptococcal transcriptome. Switching between different morphotypes is an adaptive cellular response in many microbes. In Cryptococcus neoformans, the yeast-to-hypha transition confers resistance to microbial predation in the soil and is an integral part of its life cycle. Morphogenesis is also known to be associated with virulence, with the filamentous form being immune-stimulatory and protective in mammalian models of cryptococcosis. Previous studies identified the transcription factor Znf2 as a master regulator of cryptococcal filamentation. However, the upstream regulators of Znf2 remain largely unknown. PAS domain proteins have long been recognized as transducers of diverse environmental signals. Here, we identified a PAS domain protein Pas3 as an upstream regulator of Znf2. Surprisingly, this small Pas3 protein lacks a nuclear localization signal but is enriched in the nucleus where it regulates the transcript level of ZNF2 and its prominent downstream targets. We discovered that the PAS domain is essential for Pas3’s nuclear enrichment and function. Intriguingly, Pas3 interacts with Bre1, which is required for Cryptococcus histone H2B monoubiquitination (H2Bub1) and H3 lysine 4 dimethylation (H3K4me2), two histone modifications known to be associated with active gene transcription. Indeed, Bre1 functions together with Pas3 in regulating cryptococcal filamentation based on loss-of-function, epistasis, and transcriptome analysis. These findings provide the first evidence of a signaling regulator acting with a chromatin modifier to control cryptococcal filamentation.
Collapse
|
32
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
33
|
Kim J, An YK, Park S, Lee JS. Bre1 mediates the ubiquitination of histone H2B by regulating Lge1 stability. FEBS Lett 2018; 592:1565-1574. [PMID: 29637554 DOI: 10.1002/1873-3468.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Abstract
Histone H2B ubiquitination mediated by the Rad6/Bre1 complex is crucial for regulating the stability and reassembly of the nucleosome. To understand the regulatory mechanisms of H2B ubiquitination, we explored proteins related to the Rad6/Bre1 complex. Interestingly, we observed that the stability of Lge1, reported to be a cofactor of Bre1, is greatly reduced in the absence of Bre1. The stability of Lge1 did require the middle fragment of Bre1 containing a coiled-coil structure, but not its E3 ligase activity. Additionally, we found that Lge1 is involved in the 'writing' step of H2B ubiquitination. Our data suggest that Bre1 mediates H2B ubiquitination more precisely by maintaining the stability of Lge1 as well as through its role as a known E3 ligase.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Yu-Kyoung An
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
34
|
Wood K, Tellier M, Murphy S. DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Biomolecules 2018; 8:E11. [PMID: 29495487 PMCID: PMC5871980 DOI: 10.3390/biom8010011] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
Collapse
Affiliation(s)
- Katherine Wood
- Department of Biochemistry, University of Oxford, Oxford OX1 3RE, UK.
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
35
|
Zukowski A, Johnson AM. The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Curr Genet 2018; 64:799-806. [PMID: 29464330 DOI: 10.1007/s00294-018-0812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Mono-ubiquitinated histone H2B (H2B-Ub) is important for chromatin regulation of transcription, chromatin assembly, and also influences heterochromatin. In this review, we discuss the effects of H2B-Ub from nucleosome to higher-order chromatin structure. We then assess what is currently known of the role of H2B-Ub in heterochromatic silencing in budding and fission yeasts (S. cerevisiae and S. pombe), which have distinct silencing mechanisms. In budding yeast, the SIR complex initiates heterochromatin assembly with the aid of a H2B-Ub deubiquitinase, Ubp10. In fission yeast, the RNAi-dependent pathway initiates heterochromatin in the context of low H2B-Ub. We examine how the different silencing machineries overcome the challenge of H2B-Ub chromatin and highlight the importance of using these microorganisms to further our understanding of H2B-Ub in heterochromatic silencing pathways.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
36
|
Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of Histone H3K4 Methylation Patterns. Mol Cell 2017; 68:773-785.e6. [PMID: 29129639 DOI: 10.1016/j.molcel.2017.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/23/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient" is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.
Collapse
Affiliation(s)
- Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - P Cody He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Evanno E, Godet J, Piccirilli N, Guilhot J, Milin S, Gombert JM, Fouchaq B, Roche J. Tri-methylation of H3K79 is decreased in TGF-β1-induced epithelial-to-mesenchymal transition in lung cancer. Clin Epigenetics 2017; 9:80. [PMID: 28804523 PMCID: PMC5549304 DOI: 10.1186/s13148-017-0380-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/31/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for gene expression. We explored global histone modifications during TGF-β1-induced EMT in two non-small cell lung cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT. RESULTS Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines during TGF-β1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin 3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting that both SEMA3C and PD-L1 could be the new markers of TGF-β1-induced EMT. H3K79me3 and H2BK120me1 were decreased in A549 and H358 cell lines after a 48-h TGF-β1 treatment, as well as H2BK120ac in A549 cells. However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L. Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946) or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-β1 effects by decreasing expression of PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin. CONCLUSION Histone methylation was modified during EMT, and combination of epigenetic compounds with conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses.
Collapse
Affiliation(s)
- Emilie Evanno
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
- Université de Poitiers, Laboratoire LNEC, F-86022 Poitiers, France
| | - Julie Godet
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | | | - Joëlle Guilhot
- INSERM CIC 0802, CHU de Poitiers, F-86021 Poitiers, France
| | - Serge Milin
- CHU de Poitiers, Service d’Anatomie et de Cytologie Pathologiques, F-86021 Poitiers, France
| | - Jean Marc Gombert
- INSERM U1082, CHU de Poitiers, F-86021 Poitiers, France
- Service Immunologie, CHU de Poitiers, F-86021 Poitiers, France
| | - Benoit Fouchaq
- Eurofins Cerep SA, Le Bois l’Evêque, F-86600 Celle L’Evescault, France
| | - Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions (EBI), Université de Poitiers, UMR-CNRS 7267, F-86073 Poitiers, France
| |
Collapse
|
38
|
A Novel Histone Crosstalk Pathway Important for Regulation of UV-Induced DNA Damage Repair in Saccharomyces cerevisiae. Genetics 2017; 206:1389-1402. [PMID: 28522541 DOI: 10.1534/genetics.116.195735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Histone post-translational modifications play vital roles in a variety of nuclear processes, including DNA repair. It has been previously shown that histone H3K79 methylation is important for the cellular response to DNA damage caused by ultraviolet (UV) radiation, with evidence that specific methylation states play distinct roles in UV repair. Here, we report that H3K79 methylation is reduced in response to UV exposure in Saccharomyces cerevisiae This reduction is specific to the dimethylated state, as trimethylation levels are minimally altered by UV exposure. Inhibition of this reduction has a deleterious effect on UV-induced sister chromatid exchange, suggesting that H3K79 dimethylation levels play a regulatory role in UV repair. Further evidence implicates an additional role for H3K79 dimethylation levels in error-free translesion synthesis, but not in UV-induced G1/S checkpoint activation or double-stranded break repair. Additionally, we find that H3K79 dimethylation levels are influenced by acetylatable lysines on the histone H4 N-terminal tail, which are hyperacetylated in response to UV exposure. Preclusion of H4 acetylation prevents UV-induced reduction of H3K79 dimethylation, and similarly has a negative effect on UV-induced sister chromatid exchange. These results point to the existence of a novel histone crosstalk pathway that is important for the regulation of UV-induced DNA damage repair.
Collapse
|
39
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 801] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
40
|
Kozhina TN, Evstiukhina TA, Peshekhonov VT, Chernenkov AY, Korolev VG. Dot1 and Set2 histone methylases control the spontaneous and UV-induced mutagenesis levels in the Saccharomyces cerevisiae yeasts. RUSS J GENET+ 2016. [DOI: 10.1134/s102279541602006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
42
|
Zhou L, Holt MT, Ohashi N, Zhao A, Müller MM, Wang B, Muir TW. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat Commun 2016; 7:10589. [PMID: 26830124 PMCID: PMC4740876 DOI: 10.1038/ncomms10589] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic 'designer' chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically 'corrals' the enzyme into a productive binding orientation.
Collapse
Affiliation(s)
- Linjiao Zhou
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Matthew T Holt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Nami Ohashi
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Boyuan Wang
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA.,Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| |
Collapse
|
43
|
Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 3:1-13. [PMID: 28357312 PMCID: PMC5354586 DOI: 10.15698/mic2016.01.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis or programmed cell death is an integrated, genetically controlled
suicide program that not only regulates tissue homeostasis of multicellular
organisms, but also the fate of damaged and aged cells of lower eukaryotes, such
as the yeast Saccharomyces cerevisiae. Recent years have
revealed key apoptosis regulatory proteins in yeast that play similar roles in
mammalian cells. Apoptosis is a process largely defined by characteristic
structural rearrangements in the dying cell that include chromatin condensation
and DNA fragmentation. The mechanism by which chromosomes restructure during
apoptosis is still poorly understood, but it is becoming increasingly clear that
altered epigenetic histone modifications are fundamental parameters that
influence the chromatin state and the nuclear rearrangements within apoptotic
cells. The present review will highlight recent work on the epigenetic
regulation of programmed cell death in budding yeast.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Rue Profs. Jeener et Brachet 12; 6041 Charleroi, Belgium
| |
Collapse
|
44
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
45
|
Huang F, Ramakrishnan S, Pokhrel S, Pflueger C, Parnell TJ, Kasten MM, Currie SL, Bhachech N, Horikoshi M, Graves BJ, Cairns BR, Bhaskara S, Chandrasekharan MB. Interaction of the Jhd2 Histone H3 Lys-4 Demethylase with Chromatin Is Controlled by Histone H2A Surfaces and Restricted by H2B Ubiquitination. J Biol Chem 2015; 290:28760-77. [PMID: 26451043 DOI: 10.1074/jbc.m115.693085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is a dynamic modification. In budding yeast, H3K4 methylation is catalyzed by the Set1-COMPASS methyltransferase complex and is removed by Jhd2, a JMJC domain family demethylase. The catalytic JmjC and JmjN domains of Jhd2 have the ability to remove all three degrees (mono-, di-, and tri-) of H3K4 methylation. Jhd2 also contains a plant homeodomain (PHD) finger required for its chromatin association and H3K4 demethylase functions. The Jhd2 PHD finger associates with chromatin independent of H3K4 methylation and the H3 N-terminal tail. Therefore, how Jhd2 associates with chromatin to perform H3K4 demethylation has remained unknown. We report a novel interaction between the Jhd2 PHD finger and histone H2A. Two residues in H2A (Phe-26 and Glu-57) serve as a binding site for Jhd2 in vitro and mediate its chromatin association and H3K4 demethylase functions in vivo. Using RNA sequencing, we have identified the functional target genes for Jhd2 and the H2A Phe-26 and Glu-57 residues. We demonstrate that H2A Phe-26 and Glu-57 residues control chromatin association and H3K4 demethylase functions of Jhd2 during positive or negative regulation of transcription at target genes. Importantly, we show that H2B Lys-123 ubiquitination blocks Jhd2 from accessing its binding site on chromatin, and thereby, we have uncovered a second mechanism by which H2B ubiquitination contributes to the trans-histone regulation of H3K4 methylation. Overall, our study provides novel insights into the chromatin binding dynamics and H3K4 demethylase functions of Jhd2.
Collapse
Affiliation(s)
- Fu Huang
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Saravanan Ramakrishnan
- From the Departments of Radiation Oncology and the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Srijana Pokhrel
- From the Departments of Radiation Oncology and the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Christian Pflueger
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Timothy J Parnell
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Margaret M Kasten
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Simon L Currie
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Niraja Bhachech
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Masami Horikoshi
- the Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Barbara J Graves
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Bradley R Cairns
- the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Srividya Bhaskara
- From the Departments of Radiation Oncology and the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Oncological Sciences and
| | - Mahesh B Chandrasekharan
- From the Departments of Radiation Oncology and the Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112,
| |
Collapse
|
46
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
47
|
Abstract
DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR.
Collapse
|
48
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
Rao SG, Janiszewski MM, Duca E, Nelson B, Abhinav K, Panagakou I, Vass S, Heck MMS. Invadolysin acts genetically via the SAGA complex to modulate chromosome structure. Nucleic Acids Res 2015; 43:3546-62. [PMID: 25779050 PMCID: PMC4402531 DOI: 10.1093/nar/gkv211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2015] [Indexed: 11/24/2022] Open
Abstract
Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Michal M Janiszewski
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Edward Duca
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryce Nelson
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kanishk Abhinav
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioanna Panagakou
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sharron Vass
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Margarete M S Heck
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
50
|
Swalm BM, Knutson SK, Warholic NM, Jin L, Kuntz KW, Keilhack H, Smith JJ, Pollock RM, Moyer MP, Scott MP, Copeland RA, Wigle TJ. Reaction coupling between wild-type and disease-associated mutant EZH2. ACS Chem Biol 2014; 9:2459-64. [PMID: 25154026 DOI: 10.1021/cb500548b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
EZH2 and EZH1 are protein methyltransferases (PMTs) responsible for histone H3, lysine 27 (H3K27) methylation. Trimethylation of H3K27 (H3K27me3) is a hallmark of many cancers, including non-Hodgkin lymphoma (NHL). Heterozygous EZH2 point mutations at Tyr641, Ala677, and Ala687 have been observed in NHL. The Tyr641 mutations enhance activity on H3K27me2 but have weak or no activity on unmethylated H3K27, whereas the Ala677 and Ala687 mutations use substrates of all methylation states effectively. It has been proposed that enzymatic coupling of the wild-type and mutant enzymes leads to the oncogenic H3K27me3 mark in mutant-bearing NHL. We show that coupling with the wild-type enzyme is needed to achieve H3K27me3 for several mutants, but that others are capable of achieving H3K27me3 on their own. All forms of PRC2 (wild-type and mutants) display kinetic signatures that are consistent with a distributive mechanism of catalysis.
Collapse
Affiliation(s)
- Brooke M. Swalm
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Sarah K. Knutson
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Natalie M. Warholic
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Lei Jin
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Kevin W. Kuntz
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Heike Keilhack
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Jesse J. Smith
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Roy M. Pollock
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Mikel P. Moyer
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Margaret Porter Scott
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Robert A. Copeland
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Tim J. Wigle
- Epizyme, Inc. 400 Technology Square,
Fourth Floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|