1
|
Li Z, Duan J, Liu Z, Li W, Mai Y, Fu H, Yuan G, Wang J. A triple-mode strategy on JQ1-loaded nanoplatform for superior antitumor therapy in pancreatic cancer. Mater Today Bio 2025; 32:101696. [PMID: 40225138 PMCID: PMC11986615 DOI: 10.1016/j.mtbio.2025.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic cancer's dire prognosis urgently calls for innovative therapeutic strategies. JQ1, a bromodomain 4 inhibitor, exhibits potent anti-tumor activity in preclinical models but faces limitations due to rapid resistance development. Here, we developed a novel multifunctional nanoplatform, JQ1@MSN/FeTA-iRGD, which implemented a triple-mode strategy integrating apoptosis, ferroptosis, and immunogenic cell death for optimized treatment of pancreatic cancer. The particles could precisely target tumors in mice and achieve efficient release of JQ1 and Fe2+ through internalization in the acidic tumor environment. The nanoplatform amplified reactive oxygen species and mitochondrial damage to disrupt the redox homeostasis, thus synergistically escalating apoptosis and ferroptosis for the destruction of tumor cells, circumventing the rapid drug resistance associated with monotherapy. Meanwhile, dying cancer cells released damage-associated molecular patterns, which facilitated immunogenic cell death and triggered antitumor immune responses, guaranteeing the sustained efficacy of the treatment. Moreover, the system exhibited favorable biocompatibility, supporting its feasibility for clinical translation. Our results demonstrated that this novel strategy, combining apoptosis, ferroptosis, and immunogenic cell death, overcame the limitations of monotherapy with JQ1, providing a superior, targeted, and sustainable treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Zhiguo Li
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinxin Duan
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhiwen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weifan Li
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiyin Mai
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hao Fu
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guotao Yuan
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, China
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Shenzhen, 518116, China
| | - Jiawei Wang
- Guangzhou Key Laboratory of Medical Nanomaterials, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
2
|
Puidebat O, Egloff S. The 7SK snRNP complex: a critical regulator in carcinogenesis. Biochimie 2025:S0300-9084(25)00084-7. [PMID: 40368082 DOI: 10.1016/j.biochi.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Cyclin-Dependent Kinase 9 (CDK9) is a critical regulator of transcriptional elongation, functioning within the Positive Transcription Elongation Factor b (P-TEFb) complex alongside Cyclin T1. P-TEFb facilitates the release of RNA polymerase II (RNAPII) from promoter-proximal pausing, thereby enabling productive transcriptional elongation. CDK9 activity is tightly controlled by the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, comprising 7SK snRNA, LARP7, MEPCE, and HEXIM1/2. Under homeostatic conditions, the 7SK snRNP sequesters and inactivates a fraction of P-TEFb, maintaining it in a repressed state. However, in response to cellular stress or increased transcriptional demand, P-TEFb is released from 7SK snRNP, activating CDK9 to ensure precise, context-dependent transcriptional control. This regulatory switch allows dynamic adaptation to environmental and intracellular cues. Emerging evidence implicates 7SK snRNP deregulation in cancer progression. This review explores the intricate interplay between 7SK snRNP and CDK9, highlighting how disruptions in individual 7SK snRNP components drive transcriptional imbalances, amplify oncogenic programs, and promote a tumorigenic environment.
Collapse
Affiliation(s)
- Oriana Puidebat
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse Cedex, France
| | - Sylvain Egloff
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse Cedex, France.
| |
Collapse
|
3
|
Pellaers E, Janssens J, Wils L, Denis A, Bhat A, Van Belle S, Feng D, Christ F, Zhan P, Debyser Z. BRD4 modulator ZL0580 and LEDGINs additively block and lock HIV-1 transcription. Nat Commun 2025; 16:4226. [PMID: 40335477 PMCID: PMC12059001 DOI: 10.1038/s41467-025-59398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
The persistence of HIV-1 in a latent state within long-lived immune cells remains a major barrier to a cure for HIV-1 infection. The "block-and-lock" strategy aims to silence the HIV-1 provirus permanently using latency promoting agents (LPAs). LEDGINs, a well-known class of LPAs, inhibit the interaction between viral integrase and LEDGF/p75, reducing viral integration and retargeting the provirus to regions resistant to reactivation. However, proximity to enhancers may still permit residual transcription. Given BRD4's central role in the enhancer biology, we now test two BRD4 modulators, JQ1 and ZL0580. Mechanistic studies reveal that JQ1 and ZL0580 have contrasting effects on Tat-dependent HIV-1 transcription, resulting in JQ1 promoting viral reactivation and ZL0580 inducing transcriptional silencing. Combining ZL0580 with LEDGINs has an additive effect in blocking HIV-1 transcription and reactivation, in both cell lines and primary cells. These findings demonstrate the potential of ZL0580 to enhance the block-and-lock cure strategy.
Collapse
Affiliation(s)
- Eline Pellaers
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Julie Janssens
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lore Wils
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Alexe Denis
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Anayat Bhat
- Department of Microbiology, Washington University (WashU), Saint Louis, MI, USA
| | - Siska Van Belle
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Frauke Christ
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zeger Debyser
- Laboratory for Advanced Disease Modelling, Targeted Drug Discovery and Gene Therapy (ADVANTAGE), Herestraat 49, Leuven, Flanders, Belgium.
| |
Collapse
|
4
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 PMCID: PMC11995790 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Huang Z, Chu T, Ma A, Lin W, Gao Y, Zhang N, Shi M, Zhang X, Yang Y, Ma W. Discovery of Bi-magnolignan as a novel BRD4 inhibitor inducing apoptosis and DNA damage for cancer therapy. Biochem Pharmacol 2025; 235:116843. [PMID: 40024351 DOI: 10.1016/j.bcp.2025.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Bi-magnolignan (BM), a novel compound isolated from Magnolia Officinalis leaves, exhibits significant anti-tumor activity in vitro. However, the underlying mechanism remains elusive. This study examines the anti-tumor properties of BM and its mechanism of action, specifically through its interaction with BRD4, a key regulator in oncogene transcription and genome stability. Molecular docking and biolayer interferometry assay (BLI) collectively demonstrate that BM exhibits strong binding affinity to the bromodomain (BD) region of BRD4. Cellular thermal shift assay (CETSA) results confirm that BM binding increases the thermostability of BRD4, providing further evidence of the interaction between BM and BRD4. RNA-seq analysis and western blotting reveal that BM abolishes the G2/M DNA damage checkpoint and disrupts homologous recombination (HR) repair mechanisms. To explore the downstream effects of BRD4, we performed gene set enrichment analysis (GSEA) using RNA-seq data. The results indicate that BM significantly inhibits BRD4 function, leading to the downregulation of various BRD4 target genes at the transcriptional level, including MYC. Importantly, overexpression of BRD4 rescues cells from BM-induced apoptosis, DNA damage, disrupted G2/M checkpoint, and HR deficiency (HRD), highlighting the specificity of BM for BRD4. Furthermore, in vivo experiments demonstrate that BM effectively suppresses tumor growth. Collectively, these findings underscore the potential of BM as a novel and potent BRD4 inhibitor, suggesting promising prospects for the development of targeted anti-tumor therapies that specifically inhibit BRD4.
Collapse
Affiliation(s)
- Zifeng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Tong Chu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Aijun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Na Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yanchao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
6
|
Doskey LC, Scholtz CR, Vail NR, Khanal S, Lee AL, Kandanur SGS, Hoell ZJ, Huehls AM, Issa MR, Kostallari E, Cao S, Reid JM, Shah VH, Malhi H, Pomerantz WCK. Efficacy and Toxicity Analysis of Selective BET Bromodomain Inhibitors in Models of Inflammatory Liver Disease. J Med Chem 2025; 68:8091-8105. [PMID: 40227166 DOI: 10.1021/acs.jmedchem.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BET bromodomain inhibitors demonstrate significant promise as anti-inflammatory agents. However, clinical data demonstrated that nonselective BET bromodomain inhibitors led to significant dose-limiting toxicity in clinical settings. Here, we use three orally bioavailable inhibitors, 1-3, that are either BRD4-D1 selective or pan-D1-biased + BRD4-D2, for assessing their cellular and in vivo efficacy and safety profile compared to known BET inhibitors in two inflammatory disease models. Our results show that pan-D1-biased + BRD4-D2 inhibitor, 3, is as efficacious as pan-BET inhibitor, I-BET151, in reducing inflammation in both models, whereas pan-D2 inhibitors are less effective. BRD4-D1 selective inhibitors are also efficacious; however, inhibitors with improved cellular engagement will be necessary to better assess their effects. Finally, BRD4-D1 selective inhibitors are better tolerated in a preclinical thrombocytopenia model than 3, while gastrointestinal toxicity may be a BRD4-driven effect. These results highlight the importance of assessing specific BET bromodomain functions due to their diverse roles in disease models.
Collapse
Affiliation(s)
- Luke C Doskey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Cole R Scholtz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nora R Vail
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Amani L Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Amelia M Huehls
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Mohamed R Issa
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Joel M Reid
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Turner AMW, Bashore FM, Falcinelli SD, Fox JA, Keller AL, Fenton AD, Geyer RF, Allard B, Kirchherr JL, Archin NM, James LI, Margolis DM. BET degraders reveal BRD4 disruption of 7SK and P-TEFb is critical for effective reactivation of latent HIV in CD4+ T-cells. J Virol 2025; 99:e0177724. [PMID: 40067013 PMCID: PMC11998493 DOI: 10.1128/jvi.01777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents. We observed that despite highly potent and selective BRD4 degradation in primary CD4+ T-cells from ART-suppressed donors, BRD4 degraders failed to induce latency reversal as compared to BET inhibitors. Furthermore, BRD4 degraders failed to mimic previously observed synergistic HIV reactivation between BET inhibitors and an activator of the non-canonical NF-κB pathway. Mechanistic investigation of this discrepancy revealed that latency reversal by BET inhibitors is not related to the abatement of competition between Tat and BRD4 for P-TEFb, but rather the ability of BRD4 to disrupt 7SK and increase the levels of free P-TEFb. This activity is dependent on the shift of BRD4 from chromatin-bound to soluble and retargeting of P-TEFb to chromatin, which is dependent on intact BRD4 but independent of the bromodomains. IMPORTANCE Multiple factors and pathways contribute to the maintenance of HIV latency, including bromo and extra-terminal domain (BET) family member BRD4. While small molecule inhibitors of the BET family result in latency reversal, enthusiasm for the use of BET inhibitors in HIV cure is limited due to toxicity concerns. We examined BRD4-selective chemical degraders as alternatives to BET inhibitors but found two robust degraders failed to induce latency reversal. We observed key differences in the ability of BET inhibitors versus BET degraders to disrupt P-TEFb, a key cellular activator of transcription and a complex required for HIV reactivation. We present a new model for the role of BRD4 in HIV latency and propose that BRD4 be reconsidered as an activator rather than a repressor of HIV transcription in the context of HIV cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Frances M. Bashore
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua A. Fox
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alana L. Keller
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony D. Fenton
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Renee F. Geyer
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr JL, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. eLife 2025; 13:RP103064. [PMID: 40207620 PMCID: PMC11984954 DOI: 10.7554/elife.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N Gray
- Department of Microbiology, University of WashingtonSeattleUnited States
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Derek H Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jennifer L Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Terry L Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nancie M Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Edward P Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- UNC HIV Cure Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
9
|
Chen Y, Zhou H, Yu J, Gao J, Xue S, Ding H, Lin H, Luo C. A patent review of BRD4 inhibitors (2020-present). Expert Opin Ther Pat 2025; 35:371-386. [PMID: 39918129 DOI: 10.1080/13543776.2025.2463150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4) stands as a pivotal member within the Bromodomain and Extra-Terminal Domain (BET) family, contributing significantly to epigenetic control and gene expression. Given its association with various cancers, BRD4 emerges as a promising therapeutic target, suggesting a substantial role in the treatment of diverse pathological conditions. AREAS COVERED The present review is centered on patent applications concerning inhibitors targeting BRD4's bromodomain site, published from 2020 to present. A comprehensive evaluation was conducted on a total of 70 applications. The latest patented studies of BRD4 are summarized by using the keywords 'BRD4' in SciFinder, PubMed, and The lens Patents and databases in the year from 2020 to present. EXPERT OPINION Despite the substantial progress achieved in the clinical research of numerous BET bromodomain inhibitors, their development remains fraught with challenges. To mitigate the dose-limiting toxicity (DLT) and other clinical adverse effects associated with pan-BET inhibitors, current research efforts are increasingly focus on the development of selective BRD4-BD1 or -BD2 inhibitors. These selective inhibitors exhibit considerable potential as more efficacious candidate drugs, thereby paving the way for novel avenues in both fundamental and translational research within this domain.
Collapse
Affiliation(s)
- Yanfang Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huanmin Zhou
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Cheng Luo
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Wang M, Huang X, Zhang D, Liu Y, Liu P. The role of fructose-1,6-bisphosphatase 1 on regulating the cancer progression and drug resistance. Discov Oncol 2025; 16:346. [PMID: 40100307 PMCID: PMC11920503 DOI: 10.1007/s12672-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1) is the enzyme that limits the process of gluconeogenesis as it facilitates the hydrolysis of fructose-1,6-bisphosphate(F-1,6-BP) to produce fructose-6-phosphate(F6P) and inorganic phosphate. Gluconeogenesis is the production of glucose from small carbohydrate substrates. The gluconeogenic process is typically suppressed in cancer because it inhibits glycolysis. Apart from its involvement in cellular glucose metabolism, FBP1 also plays a role in gene transcription, mRNA translation and stability regulation, and the immune microenvironment of tumors. Because of its multifaceted functions, the mechanisms by which FBP1 is involved in tumor development are complex. Moreover, FBP1 deficiency is associated with radiation and chemotherapy resistance and poor prognosis in cancer patients. Restoration of FBP1 expression in cancer cells is expected to hold promise for cancer therapy. However, up to now few reviews have systematically summarized the important functional mechanisms of FBP1 in tumorigenesis and the small molecule compounds that restore FBP1 expression. Therefore, this article addresses the question "How does FBP1 contribute to cancer progression, and can targeting FBP1 be a potential therapeutic approach?" by summarizing the effects of FBP1 on cancer development and progression as well as its mediated drug resistance and the future clinical applications of potential small molecule modulators targeting FBP1.
Collapse
Affiliation(s)
- Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yisan Liu
- Department of Urology, People's Hospital of Cili, Cili, 427200, Hunan, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
11
|
Zheng B, Iwanaszko M, Soliman SHA, Ishi Y, Gold S, Qiu R, Howard BC, Das M, Zhao Z, Hashizume R, Wang L, Shilatifard A. Ectopic expression of testis-specific transcription elongation factor in driving cancer. SCIENCE ADVANCES 2025; 11:eads4200. [PMID: 40085698 PMCID: PMC11908497 DOI: 10.1126/sciadv.ads4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
The testis-specific BET protein BRDT structurally resembles the ubiquitous BRD4 and is misexpressed in cancer, and we show that BRDT misexpression may affect lung cancer progression. BRDT knockdown in lung cancer cells slowed tumor growth and prolonged survival in a xenograft model. Comparative characterization of PTEFb complex participation and chromatin binding indicates BRD4-redundant and BRD4-distinct BRDT functions. Unlike dual depletion, individual BRD4 or BRDT knockdown did not impair transcriptional responses to hypoxia in BRDT-expressing cells, consistent with redundant function. However, BRD4 depletion/BRDT complementation revealed that BRDT can also release paused RNA polymerase II independently of its bromodomains as we previously demonstrated not to be required for Pol II pause/release function of BRD4, underscoring the functional importance of the C-terminal domains in both BRD4 and BRDT and their potential as therapeutic targets in solid tumors. Based on this study, future investigations should explore BRD4-distinct BRDT functions and BRDT misexpression driving cancer pathogenesis.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shimaa Hassan AbdelAziz Soliman
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruxuan Qiu
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madhurima Das
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zibo Zhao
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Alexander AK, Rodriguez KF, Chen YY, Amato C, Estermann MA, Nicol B, Xu X, Yao HHC. Single-nucleus multiomics reveals the gene regulatory networks underlying sex determination of murine primordial germ cells. eLife 2025; 13:RP96591. [PMID: 40063068 PMCID: PMC11893106 DOI: 10.7554/elife.96591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not well understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type-specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs toward a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Ciro Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Martin A Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Humphrey HC Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| |
Collapse
|
13
|
Imai C, Goda T, Mochizuki K. Histone acetylation and BRD4 binding are associated with induction of TNF mRNA expression by temporal high-glucose exposure and subsequent low-glucose culture in juvenile macrophage-like THP-1 cells. Biochim Biophys Acta Gen Subj 2025; 1869:130759. [PMID: 39814272 DOI: 10.1016/j.bbagen.2025.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells. METHODS THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0). Thereafter, the cells were returned to a low-glucose medium without (+)-JQ1 and cultured for 2 or 4 days and samples were collected. mRNA expression of inflammation genes, and histone H3 K9/14 acetylation and binding of BRD4 and RNA polymerase II around the TNF gene were measured by RT-qPCR and chromatin immunoprecipitation, respectively. RESULTS TNF mRNA levels, histone H3 K9/14 acetylation, and bindings of BRD4 and RNA polymerase II to the TNF gene were higher in cells exposed to high-glucose culture for 24 h and subsequently cultured in low-glucose medium for 2-4 days, compared with cells cultured in a low-glucose medium. The addition of (+)-JQ1 to the high-glucose medium for 24 h reduced histone H3 K9/14 acetylation, and BRD4 and RNA polymerase II bindings around TNF gene, and the mRNA levels. CONCLUSIONS Histone H3 K9/14 acetylation and BRD4 binding are associated with the sustained expression of TNF mRNA induced by temporal high-glucose exposure in juvenile macrophage-like THP-1 cells.
Collapse
Affiliation(s)
- Chihiro Imai
- Faculty of Education, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.
| | - Toshinao Goda
- Department of Nutrition and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Kazuki Mochizuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| |
Collapse
|
14
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
15
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
17
|
Nichols A, Norman R, Chen Y, Choi Y, Striepen J, Salataj E, Toufektchan E, Koche R, Maciejowski J. Mitotic transcription ensures ecDNA inheritance through chromosomal tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637945. [PMID: 39990406 PMCID: PMC11844496 DOI: 10.1101/2025.02.12.637945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extrachromosomal DNA (ecDNA) are circular DNA bodies that play critical roles in tumor progression and treatment resistance by amplifying oncogenes across a wide range of cancer types. ecDNA lack centromeres and are thus not constrained by typical Mendelian segregation, enabling their unequal accumulation within daughter cells and associated increases in copy number. Despite intrinsic links to their oncogenic potential, the fidelity and mechanisms of ecDNA inheritance are poorly understood. Here, we show that ecDNA are protected against cytosolic mis-segregation through mitotic clustering and by tethering to the telomeric and subtelomeric regions of mitotic chromosomes. ecDNA-chromosome tethering depends on BRD4 transcriptional co-activation and mitotic transcription of the long non-coding RNA PVT1 , which is co-amplified with MYC in colorectal and prostate cancer cell lines. Disruption of ecDNA-chromosome tethering through BRD4 inhibition, PVT1 depletion, or inhibiting mitotic transcription results in cytosolic mis-segregation, ecDNA reintegration, and the formation of homogeneously staining regions (HSRs). We propose that nuclear inheritance of ecDNA is facilitated by an RNA-mediated physical tether that links ecDNA to mitotic chromosomes and thus protects against cytosolic mis-segregation and chromosomal integration.
Collapse
|
18
|
Shah V, Giotopoulos G, Osaki H, Meyerhöfer M, Meduri E, Gallego-Crespo A, Behrendt MA, Saura-Pañella M, Tarkar A, Schubert B, Yun H, Horton SJ, Agrawal-Singh S, Haehnel PS, Basheer F, Lugo D, Eleftheriadou I, Barbash O, Dhar A, Kühn MWM, Guezguez B, Theobald M, Kindler T, Gallipoli P, Yeh P, Dawson MA, Prinjha RK, Huntly BJP, Sasca D. Acute resistance to BET inhibitors remodels compensatory transcriptional programs via p300 coactivation. Blood 2025; 145:748-764. [PMID: 39651888 DOI: 10.1182/blood.2022019306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Initial clinical trials with drugs targeting epigenetic modulators, such as bromodomain and extraterminal protein (BET) inhibitors, demonstrate modest results in acute myeloid leukemia (AML). A major reason for this involves an increased transcriptional plasticity within AML, which allows the cells to escape therapeutic pressure. In this study, we investigated the immediate epigenetic and transcriptional responses after BET inhibition and demonstrated that BET inhibitor-mediated release of bromodomain-containing protein 4 from chromatin is accompanied by acute compensatory feedback that attenuates downregulation or even increases the expression of specific transcriptional modules. This adaptation is marked at key AML maintenance genes and is mediated by p300, suggesting a rational therapeutic opportunity to improve outcomes by combining BET and p300 inhibition. p300 activity is required during all steps of resistance adaptation; however, the specific transcriptional programs that p300 regulates to induce resistance to BET inhibition differ, in part, between AML subtypes. As a consequence, in some AMLs, the requirement for p300 is highest during the earlier stages of resistance to BET inhibition, when p300 regulates transitional transcriptional patterns that allow leukemia-homeostatic adjustments. In other AMLs, p300 shapes a linear resistance to BET inhibition and remains critical throughout all stages of the evolution of resistance. Altogether, our study elucidates the mechanisms that underlie an "acute" state of resistance to BET inhibition, achieved through p300 activity, and how these mechanisms remodel to mediate "chronic" resistance. Importantly, our data also suggest that sequential treatment with BET and p300 inhibition may prevent resistance development, thereby improving outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- E1A-Associated p300 Protein/metabolism
- E1A-Associated p300 Protein/genetics
- Transcription, Genetic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Cell Line, Tumor
- Bromodomain Containing Proteins
- Proteins
- Cell Cycle Proteins
Collapse
Affiliation(s)
- Viral Shah
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - George Giotopoulos
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hikari Osaki
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Markus Meyerhöfer
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Eshwar Meduri
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Aaron Gallego-Crespo
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Malte A Behrendt
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Maria Saura-Pañella
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Aarti Tarkar
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Benedict Schubert
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Haiyang Yun
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Sarah J Horton
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shuchi Agrawal-Singh
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Patricia S Haehnel
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Faisal Basheer
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dave Lugo
- Adaptive Immunity and Immuno-epigenetics Research Unit, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | | | - Olena Barbash
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Arindam Dhar
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Michael W M Kühn
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Borhane Guezguez
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Thomas Kindler
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paul Yeh
- Monash Haematology, Monash Health and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Mark A Dawson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rab K Prinjha
- Adaptive Immunity and Immuno-epigenetics Research Unit, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | - Brian J P Huntly
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Sasca
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
19
|
Hamilton GA, Ruiz PD, Ye K, Gamble MJ. Acetylation of histone H2B on lysine 120 regulates BRD4 binding to intergenic enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637147. [PMID: 39975207 PMCID: PMC11839021 DOI: 10.1101/2025.02.07.637147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BRD4 is a bromodomain-containing transcriptional co-regulator that plays important roles in driving transcription by binding to histone acetyl-lysines at enhancers and promoters while recruiting additional transcriptional cofactors. While the mechanisms by which BRD4 regulates transcription have been explored, the critical acetylations primarily responsible for targeting it to chromatin remain unclear. Through a machine learning approach, we determined that distinct sets of histone acetylations dominate the prediction of chromatin accessibility and BRD4 binding in distinct chromatin contexts (e.g. intergenic enhancers, gene body enhancers and promoters). Using human fibroblasts engineered to predominantly express specific histones with lysine-to-arginine mutations, we demonstrate that one such acetylation, H2BK120ac, is required to recruit BRD4 specifically to intergenic enhancers, while not affecting chromatin accessibility. Loss of H2BK120ac did not affect BRD4 binding to either promoters or gene body enhancers, demonstrating that the rules governing BRD4 recruitment to regulatory regions depends on the specific genomic context. Highlighting the importance of H2BK120ac in directing BRD4 recruitment, we found that expression of the H2BK120R mutant significantly reduces the phenotypes driven by BRD4-NUT, an oncogenic fusion protein that drives NUT midline carcinoma. This work demonstrates the critical nature that genomic context plays in BRD4 recruitment to distinct classes of regulatory elements, and suggests that intergenic and gene body enhancers represent classes of functional distinct elements.
Collapse
|
20
|
Schuetze KB, Stratton MS, Bagchi RA, Hobby ARH, Felisbino MB, Rubino M, Toni LS, Reges C, Cavasin MA, McMahan RH, Alexanian M, Vagnozzi RJ, McKinsey TA. BRD4 inhibition rewires cardiac macrophages toward a protective phenotype marked by low MHC class II expression. Am J Physiol Heart Circ Physiol 2025; 328:H294-H309. [PMID: 39716819 DOI: 10.1152/ajpheart.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Bromodomain and extraterminal domain (BET) proteins, including BRD4, bind acetylated chromatin and coactivate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined. Here, we demonstrate that BRD4 knockdown reduced expression of genes encoding CC chemokines in cardiac fibroblasts, suggesting a role for this epigenetic reader in controlling fibroblast-immune cell cross talk. Consistent with this, JQ1 dramatically suppressed recruitment of monocytes to the heart in response to stress. Normal mouse hearts were found to have approximately equivalent numbers of major histocompatibility complex (MHC-II)high and MHC-IIlow resident macrophages, whereas MHC-IIlow macrophages predominated following JQ1 treatment. Single-cell RNA-seq data confirmed that JQ1 treatment or BRD4 knockout in CX3CR1+ cells reduced MHC-II gene expression in cardiac macrophages, and studies with cultured macrophages further illustrated a cell autonomous role for BET proteins in controlling the MHC-II axis. Bulk RNA-seq analysis demonstrated that JQ1 blocked pro-inflammatory macrophage gene expression through a mechanism that likely involves repression of NF-κB signaling. JQ1 treatment reduced cardiac infarct size in mice subjected to ischemia/reperfusion. Our findings illustrate that BET inhibition affords a powerful pharmacological approach to manipulate monocyte-derived and resident macrophages in the heart. Such an approach has the potential to enhance the reparative phenotype of macrophages to promote wound healing and limit infarct expansion following myocardial ischemia.NEW & NOTEWORTHY BRD4 inhibition blocks stress-induced recruitment of pro-inflammatory monocytes to the heart. BRD4 inhibition reprograms resident cardiac macrophages toward a reparative phenotype marked by reduced NF-κB signaling and diminished MHC-II expression. BRD4 inhibition reduces infarct size in an acute model of ischemia/reperfusion injury in mice.
Collapse
Affiliation(s)
- Katherine B Schuetze
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander R H Hobby
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marina B Felisbino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lee S Toni
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caroline Reges
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, California, United States
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, California, United States
- Department of Pediatrics, University of California, San Francisco, California, United States
| | - Ronald J Vagnozzi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
21
|
Lu X, Zhu M, Pei X, Ma J, Wang R, Wang Y, Chen S, Yan Y, Zhu Y. Super-enhancers in hepatocellular carcinoma: regulatory mechanism and therapeutic targets. Cancer Cell Int 2025; 25:7. [PMID: 39773719 PMCID: PMC11706108 DOI: 10.1186/s12935-024-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Super-enhancers (SEs) represent a distinct category of cis-regulatory elements notable for their robust transcriptional activation capabilities. In tumor cells, SEs intricately regulate the expression of oncogenes and pivotal cancer-associated signaling pathways, offering significant potential for cancer treatment. However, few studies have systematically discussed the crucial role of SEs in hepatocellular carcinoma (HCC), which is one of the most common liver cancers with late-stage diagnosis and limited treatment methods for advanced disease. Herein, we first summarize the identification methods and the intricate processes of formation and organization of super-enhancers. Subsequently, we delve into the roles and molecular mechanisms of SEs within the framework of HCC. Finally, we discuss the inhibitors targeting the key SE-components and their potential effects on the treatment of HCC. In conclusion, this review meticulously encapsulates the distinctive characteristics of SEs and underscores their pivotal roles in the context of hepatocellular carcinoma, presenting a novel perspective on the potential of super-enhancers as emerging therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xingyue Pei
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Shuwen Chen
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yan
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China.
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. Nat Struct Mol Biol 2025; 32:98-112. [PMID: 39251822 DOI: 10.1038/s41594-024-01384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator reduces BRD4's enhancer occupancy. Profiling changes of the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6 and the polymerase-associated factor 1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sicong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
23
|
Malarvannan M, Unnikrishnan S, Monohar S, Ravichandiran V, Paul D. Design and optimization strategies of PROTACs and its Application, Comparisons to other targeted protein degradation for multiple oncology therapies. Bioorg Chem 2025; 154:107984. [PMID: 39591691 DOI: 10.1016/j.bioorg.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Recent years have witnessed notable breakthroughs in the field of biotherapeutics. Proteolysis Targeting Chimeras (PROTACs) are novel molecules which used to degrade particular proteins despite the blockage by small drug molecules, which leads to a predicted therapeutic activity. This is a unique finding, especially at the cellular level targets degradations. Clinical trials and studies on PROTACs are in progress for oncology indications for demonstration of high potency and activity. PROTAC molecules are having excellent tissue distribution properties and their capacity to mutate the proteins and target overexpressed. This concept has attained wide attention from modern researchers in oncological drug discovery with particular physical qualities not offered by other therapeutic approaches. The modular nature of the PROTACs enables their methodical optimization and logical design. A thorough review was conducted in order to delve deeper into the subject and gain a better understanding of its development, computational supports, important factors for the optimization of developed PROTAC candidates, pharmacokinetic and pharmacodynamic (PK-PD) aspects, safety risks such as the degradation of undesired proteins, and other PROTAC-related issues and their target immunotherapeutic response. Furthermore discussed about the benefits, possible challenges, viewpoints, comparison with other targeted protein degraders (LYTACs, AUTOTACs) and the most current research results of PROTACs technology in multiple oncology therapies. Abbreviations: PROTACs, Proteolysis Targeting Chimeras; PK, Pharmacokinetic; PD, Pharmacodynamic; MetAP-2, (methionine aminopeptidase 2); BCL6, B-cell lymphoma 6; GCN5, General Control Nonderepressible 5; BKT, Bruton's tyrosine kinase; BET, Bromodomain and extra-terminal; AR, Androgen or Androgen receptor; ER, Estrogen or Estrogen receptor; FDA, Food and Drug Administration; mCRPC, Metastatic castration-resistant prostate cancer; STAT3, Signal Transducer and Activator of Transcription 3; FAK, Focal adhesion kinase; POI, Protein of interest; PEG, Polyethylene glycol; UPS, Ubiquitin-Proteasome System; VHL, Von Hippel-Lindau; CRBN, Cereblon; MDM2, Mouse Double Minute 2 homologue; cIAP, Cellular Inhibitor of Apoptosis; RNF, Ring Finger Protein; BRD, Bromodomain; CDK, Cyclin-dependent kinase; PAMPA, Parallel Artificial Membrane Permeability studies; BRET, Bioluminescence Resonance Energy Transfer; MCL, Mantle cell lymphoma; MCL-1, Myeloid Cell Leukemia 1; BCL-XL, B-cell lymphoma extra-large; TRK, Tropomyosin Receptor Kinase; RTKs, Transmembrane Receptor Tyrosine Kinase; NTRK, Neurotrophic Tyrosine Receptor Kinase; DHT, Dihydrotestosterone; EGFR, Epidermal Growth Factor Receptor; EGFR-TKIs, EGFR tyrosine kinase inhibitors; NSCLC, non-small cell lung cancer; BCR, B-cell receptor; CML, Chronic myelogenous leukemia; TKI, Tyrosine kinase inhibitors; MoA, Mechanism of action; TPD, Targetted protein degraders; LYTACs, Lysosome targeting chimeras; ASGPR, Asialoglycoprotein receptor; AUTOTACs, Autophagy-Targeting Chimeras; ATTECs, Autophagy-tethering compounds; CRISPR-Cas9, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9; TALEN, Transcription Activator-Like Effector Nuclease; ZFN, Zinc Finger Nuclease.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Sujith Unnikrishnan
- Department of Pharmaceutical Analysis, Al Shifa College of Pharmacy, Perinthalmanna, Kerala 679325, India
| | - S Monohar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| |
Collapse
|
24
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cissé II. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024; 187:7079-7090.e17. [PMID: 39426378 PMCID: PMC11793346 DOI: 10.1016/j.cell.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
Collapse
Affiliation(s)
- Choongman Lee
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Quintana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ida Suppanz
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim I Cissé
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
26
|
Arora S, Vachhani P, Bose P. Investigational drugs in early phase trials for myelofibrosis. Expert Opin Investig Drugs 2024; 33:1231-1244. [PMID: 39604120 PMCID: PMC11669310 DOI: 10.1080/13543784.2024.2434696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, cytopenias, and organomegaly. Four JAK inhibitors are US-FDA approved for treatment of MF. While these drugs reduce symptom burden and spleen size to varying degrees, they do not affect the natural disease course or decrease the risk of leukemic transformation. Therefore, there is a strong need for newer therapies to further advance the field and improve the outcomes of MF. In this review, we cover novel therapies for MF currently in early stages of development. AREAS COVERED We present the latest data from early phase clinical trials in MF using drugs with diverse therapeutic mechanisms, including novel JAK-STAT pathway inhibitors, epigenetic therapies, antifibrotic agents, and immunotherapeutic strategies. Additionally, we cover drugs targeted toward anemia improvement in MF. EXPERT OPINION Numerous agents representing diverse drug classes are in clinical development for MF. While deeper and durable improvements in splenomegaly, symptoms, and anemia are the main clinical objectives, a number of putative biomarkers are being assessed as measures of potential 'disease modification.' Although JAK inhibitor monotherapy represents the current standard, it is hoped that JAK inhibitor-based rational combinations and driver mutation-specific therapies will soon usher in a new era.
Collapse
Affiliation(s)
- Sankalp Arora
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
27
|
Li C, Zhang M, Du Y, Liu S, Li D, Zhang S, Ji F, Zhang J, Jiao J. Compromised cell competition exhausts neural stem cells pool. Cell Prolif 2024; 57:e13710. [PMID: 39010274 PMCID: PMC11628731 DOI: 10.1111/cpr.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Blood vessels play a crucial role in maintaining the stem cell niche in both tumours and developing organs. Cell competition is critical for tumour progression. We hypothesise that blood vessels may act as a regulator of this process. As a pioneer, the secretions of blood vessels regulate the intensity of cell competition, which is essential for tumour invasion and developmental organ extension. Brd4 expresses highly in endothelial cells within various tumours and is positively correlated with numerous invasive genes, making it an ideal focal point for further research on the relationship between blood vessels and cell competition. Our results indicated that the absence of endothelial Brd4 led to a reduction in neural stem cell mortality and compromised cell competition. Endothelial Brd4 regulated cell competition was dependent on Testican2. Testican2 was capable of depositing Sparc and acted as a suppressor of Sparc. Compromised cell competition resulted in the depletion of neural stem cells and accelerated brain ageing. Testican2 could rescue the run-off of neural stem cells and accelerate the turnover rate of neurons. AD patients show compromised cell competition. Through the cloning of a point mutant of Brd4 identified in a subset of AD patients, it was demonstrated that the mutant lacked the ability to promote cell competition. This study suggests a novel approach for treating age-related diseases by enhancing the intensity of cell competition.
Collapse
Affiliation(s)
- Chenxiao Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Yushan Du
- College of Basic Medicine, Qingdao UniversityQingdaoChina
| | - Shuang Liu
- Jiaozuo Hospital of Traditional Chinese MedicineHenanChina
| | - Da Li
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
28
|
Butterfield SP, Sizer RE, Saunders FL, White RJ. Selective Recruitment of a Synthetic Histone Acetyltransferase Can Boost CHO Cell Productivity. Biotechnol J 2024; 19:e202400474. [PMID: 39655408 PMCID: PMC11629143 DOI: 10.1002/biot.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Industrial production of biologics typically involves the integration of transgenes into host cell genomes, most often Chinese hamster ovary (CHO) cells. Epigenetic control of transgene expression is a major determinant of production titers. Although the cytomegalovirus (CMV) promoter has long been used to drive industrial transgene expression, we found that its associated histones are suboptimally acetylated in CHO cells, providing an opportunity to enhance productivity through epigenetic manipulation. Expression of monoclonal antibody mRNAs increased up to 12-fold when a CRISPR-dCas9 system delivered the catalytic domain of a histone acetyltransferase to the CMV promoter. This effect was far stronger than when promoter DNA was selectively demethylated using dCas9 fused to a 5-methylcytosine dioxygenase. Mechanistically, acetylation-mediated transcriptional activation involved heightened phosphorylation and activity of RNA polymerase II, enabling it to escape promoter-proximal pausing at the transgene. This approach almost doubled the titer and specific productivity of antibody-producing CHO cells, demonstrating the potential for biomanufacturing.
Collapse
|
29
|
Rossi T, Iorio E, Chirico M, Pisanu ME, Amodio N, Cantafio MEG, Perrotta I, Colciaghi F, Fiorillo M, Gianferrari A, Puccio N, Neri A, Ciarrocchi A, Pistoni M. BET inhibitors (BETi) influence oxidative phosphorylation metabolism by affecting mitochondrial dynamics leading to alterations in apoptotic pathways in triple-negative breast cancer (TNBC) cells. Cell Prolif 2024; 57:e13730. [PMID: 39223828 PMCID: PMC11628750 DOI: 10.1111/cpr.13730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Repressing BET proteins' function using bromodomain inhibitors (BETi) has been shown to elicit antitumor effects by regulating the transcription of genes downstream of BRD4. We previously showed that BETi promoted cell death of triple-negative breast cancer (TNBC) cells. Here, we proved that BETi induce altered mitochondrial dynamics fitness in TNBC cells falling in cell death. We demonstrated that BETi treatment downregulated the expression of BCL-2, and proteins involved in mitochondrial fission and increased fused mitochondria. Impaired mitochondrial fission affected oxidative phosphorylation (OXPHOS) inducing the expression of OXPHOS-related genes, SDHa and ATP5a, and increased cell death. Consistently, the amount of mitochondrial DNA and mitochondrial membrane potential (∆Ψm) increased in BETi-treated cells compared to control cells. Lastly, BETi in combination with Metformin reduced cell growth. Our results indicate that mitochondrial dynamics and OXPHOS metabolism support breast cancer proliferation and represent novel BETi downstream targets in TNBC cells.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Egidio Iorio
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Mattea Chirico
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Maria Elena Pisanu
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Nicola Amodio
- Department of Experimental and Clinical MedicineUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | | | - Ida Perrotta
- Department of Biology, Ecology and Earth SciencesCentre for Microscopy and Microanalysis (CM2), University of CalabriaCosenzaItaly
| | | | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Alessia Gianferrari
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Noemi Puccio
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Antonino Neri
- Scientific DirectorateAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Alessia Ciarrocchi
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Mariaelena Pistoni
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| |
Collapse
|
30
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
31
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
32
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Liu N, Wang S, Li M, Zhao N, Wang D, Zhang R, Yu M, Zhao L, Zhang S, Han F, Zhao Y, Liu Q. BET degrader exhibits lower antiproliferative activity than its inhibitor via EGR1 recruiting septins to promote E2F1-3 transcription in triple-negative breast cancer. Pharmacol Res 2024; 208:107377. [PMID: 39209080 DOI: 10.1016/j.phrs.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Munan Li
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Rui Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Mingxin Yu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Luoyi Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Fangbin Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Ying Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
34
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
35
|
Htet M, Estay-Olmos C, Hu L, Wu Y, Powers BE, Campbell CD, Ahmed MR, Hohman TJ, Schneider JA, Bennett DA, Menon V, De Jager PL, Kaas GA, Colbran RJ, Greer CB. HEXIM1 is correlated with Alzheimer's disease pathology and regulates immediate early gene dynamics in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615234. [PMID: 39386727 PMCID: PMC11463448 DOI: 10.1101/2024.09.27.615234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Impaired memory formation and recall is a distinguishing feature of Alzheimer's disease, and memory requires de novo gene transcription in neurons. Rapid and robust transcription of many genes is facilitated by the formation of a poised basal state, in which RNA polymerase II (RNAP2) has initiated transcription, but is paused just downstream of the gene promoter. Neuronal depolarization releases the paused RNAP2 to complete the synthesis of messenger RNA (mRNA) transcripts. Paused RNAP2 release is controlled by positive transcription elongation factor b (P-TEFb), which is sequestered into a larger inactive complex containing Hexamethylene bisacetamide inducible protein 1 (HEXIM1) under basal conditions. In this work, we find that neuronal expression of HEXIM1 mRNA is highly correlated with human Alzheimer's disease pathologies. Furthermore, P-TEFb regulation by HEXIM1 has a significant impact on the rapid induction of neuronal gene transcription, particularly in response to repeated depolarization. These data indicate that HEXIM1/P-TEFb has an important role in inducible gene transcription in neurons, and for setting and resetting the poised state that allows for the robust activation of genes necessary for synaptic plasticity. GRAPHICAL ABSTRACT
Collapse
|
36
|
Alexander AK, Rodriguez KF, Chen YY, Amato CM, Estermann MA, Nicol B, Xu X, Hung-Chang Yao H. Single-nucleus multiomics reveals the gene-regulatory networks underlying sex determination of murine primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581036. [PMID: 39386556 PMCID: PMC11463670 DOI: 10.1101/2024.02.19.581036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K. Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina F. Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Martin A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
37
|
Dey A, Butcher M, Gegonne A, Singer DS, Zhu J, Ozato K. BRD4 expression in microglia supports recruitment of T cells into the CNS and exacerbates EAE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612948. [PMID: 39372778 PMCID: PMC11451676 DOI: 10.1101/2024.09.13.612948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In EAE, a mouse model of multiple sclerosis, immunization with MOG autoantigen results in the generation of Th1/Th17 T cells in the periphery. MOG-specific T cells then invade into the central nervous system (CNS), resulting in neuronal demyelination. Microglia, innate immune cells in the CNS are known to regulate various neuronal diseases. However, the role of microglia in EAE has remained elusive. BRD4 is a BET protein expressed in microglia, whether BRD4 in microglia contributes to EAE has not been determined. We show that EAE pathology was markedly reduced with microglia-specific Brd4 conditional knockout (cKO). In these mice, microglia- T cell interactions were greatly reduced, leading to the lack of T cell reactivation. Microglia specific transcriptome data showed downregulation of genes required for interaction with and reactivation of T cells in Brd4 cKO samples. In summary, BRD4 plays a critical role in regulating microglia function in normal and EAE CNS. Summary This study demonstrates that in a EAE model, microglia-specific Brd4 conditional knockout mice were defective in expressing genes required for microglia- T cells interaction and those involved in neuroinflammation, and demyelination resulting in fewer CNS T cell invasion and display marked reduction in EAE pathology.
Collapse
|
38
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
39
|
Wang M, Huang Z, Li X, He P, Sun H, Peng Y, Fan Q. Apabetalone, a BET protein inhibitor, inhibits kidney damage in diabetes by preventing pyroptosis via modulating the P300/H3K27ac/PLK1 axis. Pharmacol Res 2024; 207:107306. [PMID: 39002871 DOI: 10.1016/j.phrs.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Many inflammatory disorders, including diabetic kidney disease (DKD), are associated with pyroptosis, a type of inflammation-regulated cell death. The purpose of this work was to ascertain the effects of apabetalone, which targets BRD4, a specific inhibitor of the bromodomain (BRD) and extra-terminal (BET) proteins that target bromodomain 2, on kidney injury in DKD. This study utilized pharmacological and genetic approaches to investigate the effects of apabetalone on pyroptosis in db/db mice and human tubular epithelial cells (HK-2). BRD4 levels were elevated in HK-2 cells exposed to high glucose and in db/db mice. Modulating BRD4 levels led to changes in the generation of inflammatory cytokines and cell pyroptosis linked to NLRP3 inflammasome in HK-2 cells and db/db mice. Likewise, these cellular processes were mitigated by apabetalone through inhibition BRD4. Apabetalone or BRD4 siRNA suppressed PLK1 expression in HK-2 cells under high glucose by P300-dependent H3K27 acetylation on the PLK1 gene promoter, as demonstrated through chromatin immunoprecipitation and immunoprecipitation assays. To summarize, apabetalone relieves renal proptosis and fibrosis in DKD. BRD4 regulates the P300/H3K27ac/PLK1 axis, leading to the activation of the NLRP3 inflammasome and subsequent cell pyroptosis, inflammation, and fibrosis. These results may provide new perspectives on DKD treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaohui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yali Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - QiuLing Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
41
|
Schep R, Trauernicht M, Vergara X, Friskes A, Morris B, Gregoricchio S, Manzo SG, Zwart W, Beijersbergen R, Medema RH, van Steensel B. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res 2024; 52:8815-8832. [PMID: 38953163 PMCID: PMC11347147 DOI: 10.1093/nar/gkae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.
Collapse
Affiliation(s)
- Ruben Schep
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Max Trauernicht
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stefano G Manzo
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - René H Medema
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
42
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
43
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
44
|
Sui Y, Wang T, Mei Y, Zhu Y, Jiang W, Shen J, Yan S, Lu W, Zhao K, Mo J, Wang C, Tang Y. Targeting Super-Enhancer-Driven Transcriptional Dependencies Suppresses Aberrant Hedgehog Pathway Activation and Overcomes Smoothened Inhibitor Resistance. Cancer Res 2024; 84:2690-2706. [PMID: 38775809 DOI: 10.1158/0008-5472.can-23-3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 08/16/2024]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway plays important roles in oncogenesis and therapeutic resistance in several types of cancer. The clinical application of FDA-approved Hh-targeted smoothened inhibitors (SMOi) is hindered by the emergence of primary or acquired drug resistance. Epigenetic and transcriptional-targeted therapies represent a promising direction for developing improved anti-Hh therapies. In this study, we integrated epigenetic/transcriptional-targeted small-molecule library screening with CRISPR/Cas9 knockout library screening and identified CDK9 and CDK12, two transcription elongation regulators, as therapeutic targets for antagonizing aberrant Hh activation and overcoming SMOi resistance. Inhibition of CDK9 or CDK12 potently suppressed Hh signaling and tumor growth in various SMOi responsive or resistant Hh-driven tumor models. Systemic epigenomic profiling elucidated the Hh-driven super-enhancer (SE) landscape and identified IRS1, encoding a critical component and cytoplasmic adaptor protein of the insulin-like growth factor (IGF) pathway, as an oncogenic Hh-driven SE target gene and effective therapeutic target in Hh-driven tumor models. Collectively, this study identifies SE-driven transcriptional dependencies that represent promising therapeutic vulnerabilities for suppressing the Hh pathway and overcoming SMOi resistance. As CDK9 and IRS inhibitors have already entered human clinical trials for cancer treatment, these findings provide comprehensive preclinical support for developing trials for Hh-driven cancers. Significance: Dissecting transcriptional dependencies driven by super-enhancers uncovers therapeutic targets in Hedgehog-driven cancers and identifies strategies for overcoming resistance to smoothened inhibitors.
Collapse
Affiliation(s)
- Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Yanqing Mei
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Jiang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Shen
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Shanghai, China
| | - Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Lu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Mo
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Trzaskoma P, Jung S, Pękowska A, Bohrer CH, Wang X, Naz F, Dell’Orso S, Dubois WD, Olivera A, Vartak SV, Zhao Y, Nayak S, Overmiller A, Morasso MI, Sartorelli V, Larson DR, Chow CC, Casellas R, O’Shea JJ. 3D chromatin architecture, BRD4, and Mediator have distinct roles in regulating genome-wide transcriptional bursting and gene network. SCIENCE ADVANCES 2024; 10:eadl4893. [PMID: 39121214 PMCID: PMC11313860 DOI: 10.1126/sciadv.adl4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.
Collapse
Affiliation(s)
- Pawel Trzaskoma
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - SeolKyoung Jung
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aleksandra Pękowska
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | - Xiang Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Faiza Naz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Dell’Orso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wendy D. Dubois
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Supriya V. Vartak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongbing Zhao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subhashree Nayak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Overmiller
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vittorio Sartorelli
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R. Larson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carson C. Chow
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafael Casellas
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
47
|
Wu D, Yin H, Yang C, Zhang Z, Fang F, Wang J, Li X, Xie Y, Hu X, Zhuo R, Chen Y, Yu J, Li T, Li G, Pan J. The BET PROTAC inhibitor GNE-987 displays anti-tumor effects by targeting super-enhancers regulated gene in osteosarcoma. BMC Cancer 2024; 24:928. [PMID: 39090568 PMCID: PMC11292958 DOI: 10.1186/s12885-024-12691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.
Collapse
Affiliation(s)
- Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Tiandan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| |
Collapse
|
48
|
Lara-Ureña N, Gómez-Marín E, Pozuelo-Sánchez I, Reyes JC, García-Domínguez M. SARS-CoV-2 E protein interacts with BRD2 and BRD4 SEED domains and alters transcription in a different way than BET inhibition. Cell Mol Life Sci 2024; 81:313. [PMID: 39066826 PMCID: PMC11335234 DOI: 10.1007/s00018-024-05343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Bromodomain and extra-terminal (BET) proteins are relevant chromatin adaptors involved in the transcriptional control of thousands of genes. Two tandem N-terminal bromodomains are essential for chromatin attachment through acetyl-histone recognition. Recently, the BET proteins members BRD2 and BRD4 were found to interact with the SARS-CoV-2 envelope (E) protein, raising the question of whether the interaction constitutes a virus hijacking mechanism for transcription alteration in the host cell. To shed light on this question, we have compared the transcriptome of cells overexpressing E with that of cells treated with the BET inhibitor JQ1. Notably, E overexpression leads to a strong upregulation of natural immunity- and interferon response-related genes. However, BET inhibition results in the downregulation of most of these genes, indicating that these two conditions, far from causing a significant overlap of the altered transcriptomes, course with quite different outputs. Concerning the interaction of E protein with BET members, and differing from previous reports indicating that it occurs through BET bromodomains, we find that it relies on SEED and SEED-like domains, BET regions rich in Ser, Asp, and Glu residues. By taking advantage of this specific interaction, we have been able to direct selective degradation of E protein through a PROTAC system involving a dTAG-SEED fusion, highlighting the possible therapeutic use of this peptide for targeted degradation of a viral essential protein.
Collapse
Affiliation(s)
- Nieves Lara-Ureña
- Department of Cell Dynamics and Signaling, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | - Elena Gómez-Marín
- Department of Genome Biology, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | | | - José C Reyes
- Department of Genome Biology, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | - Mario García-Domínguez
- Department of Cell Dynamics and Signaling, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain.
| |
Collapse
|
49
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605008. [PMID: 39211208 PMCID: PMC11361192 DOI: 10.1101/2024.07.25.605008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Bromodomain and Extra-Terminal Domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor due to an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, BRD4 binds to estrogen receptor binding sites and activates transcription of critical oncogenes independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator complex reduces BRD4's enhancer occupancy. Profiling changes in the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6, and PAF1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
|
50
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024; 27:109797. [PMID: 38993671 PMCID: PMC11237862 DOI: 10.1016/j.isci.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear. Here, we investigated this question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells; they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. In summary, BRD4 epigenetically marks above genes and serves as a master regulator of normal cell growth.
Collapse
Affiliation(s)
- Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitong Hou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Avenue Box 65, New York, NY 10065, USA
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, Experimental Immunology Branch, CCR, NCI NIH Bldg 10 Rm 4A05, Bethesda, MD 20892, USA
| | - Fuki Kudoh
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sakshi Chauhan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|