1
|
Schrock MN, Parsawar K, Hughes KT, Chevance FFV. D-stem mutation in an essential tRNA increases translation speed at the cost of fidelity. PLoS Genet 2025; 21:e1011569. [PMID: 39903774 PMCID: PMC11805395 DOI: 10.1371/journal.pgen.1011569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The efficiency with which aminoacyl-tRNA and GTP-bound translation elongation factor EF-Tu recognizes the A-site codon of the ribosome is dependent on codons and tRNA species present in the polypeptide (P) and exit (E) codon sites. To understand how codon context affects the efficiency of codon recognition by tRNA-bound EF-Tu, a genetic system was developed to select for fast translation through slow-translating codon combinations. Selection for fast translation through the slow-translated UCA-UAC pair, flanked by histidine codons, resulted in the isolation of an A25G base substitution mutant in the D-stem of an essential tRNA LeuZ, which recognizes the UUA and UUG leucine codons. The LeuZ(A25G) substitution allowed for faster translation through all codon pairs tested that included the UCA codon. Insertion of leucine at the UCA serine codon was enhanced in the presence of LeuZ(A25G) tRNA. This work, taken in context with the Hirsh UGA nonsense suppressor G24A mutation in TrpT tRNA, provides genetic evidence that the post-GTP hydrolysis proofreading step by elongation factor Tu may be controlled by structural interactions in the hinge region of tRNA species. Our results support a model in which the tRNA bending component of the accommodation step in mRNA translation allows EF Tu time to enhance its ability to differentiate tRNA interactions between cognate and near-cognate mRNA codons.
Collapse
Affiliation(s)
- Madison N. Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, United States of America
| | - Kelly T. Hughes
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Fabienne F. V. Chevance
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
2
|
Nakano Y, Gamper H, McGuigan H, Maharjan S, Li J, Sun Z, Yigit E, Grünberg S, Krishnan K, Li NS, Piccirilli JA, Kleiner R, Nichols N, Gregory BD, Hou YM. Genome-wide profiling of tRNA modifications by Induro-tRNAseq reveals coordinated changes. Nat Commun 2025; 16:1047. [PMID: 39865096 PMCID: PMC11770116 DOI: 10.1038/s41467-025-56348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq. We show that Induro progressively increases readthrough over time by selectively overcoming RT stops without altering the misincorporation frequency. In a parallel analysis of Induro vs. a related RT, we provide comparative datasets to facilitate the prediction of each modification. We assess tRNA modifications across five human cell lines and three mouse tissues and show that, while the landscape of modifications is highly variable throughout the tRNA sequence framework, it is stabilized for modifications that are required for reading of the genetic code. The coordinated changes have fundamental importance for development of tRNA modifications in protein homeostasis.
Collapse
Affiliation(s)
- Yuko Nakano
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henri McGuigan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiatong Li
- Department of Biology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Zhiyi Sun
- New England Biolabs, Ipswich, MA, USA
| | | | | | | | - Nan-Sheng Li
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joseph A Piccirilli
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Ralph Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kraemer S, Schneider DJ, Paterson C, Perry D, Westacott MJ, Hagar Y, Katilius E, Lynch S, Russell TM, Johnson T, Astling DP, DeLisle RK, Cleveland J, Gold L, Drolet DW, Janjic N. Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome. J Proteome Res 2024; 23:4771-4788. [PMID: 39038188 PMCID: PMC11536431 DOI: 10.1021/acs.jproteome.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.
Collapse
Affiliation(s)
- Stephan Kraemer
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel J. Schneider
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Clare Paterson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Darryl Perry
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Matthew J. Westacott
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Yolanda Hagar
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Evaldas Katilius
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Sean Lynch
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Theresa M. Russell
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Ted Johnson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - David P. Astling
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Robert Kirk DeLisle
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Jason Cleveland
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Larry Gold
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel W. Drolet
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Nebojsa Janjic
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| |
Collapse
|
4
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
6
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
8
|
Haase N, Holtkamp W, Christ S, Heinemann D, Rodnina MV, Rudorf S. Decomposing bulk signals to reveal hidden information in processive enzyme reactions: A case study in mRNA translation. PLoS Comput Biol 2024; 20:e1011918. [PMID: 38442108 PMCID: PMC10942256 DOI: 10.1371/journal.pcbi.1011918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/15/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.
Collapse
Affiliation(s)
- Nadin Haase
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| | - Wolf Holtkamp
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, Göttingen, Germany
- Paul-Ehrlich-Institut, Division of Allergology, Langen, Germany
| | - Simon Christ
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| | - Dag Heinemann
- Leibniz University Hannover, Hannover Centre for Optical Technologies (HOT), Hannover, Germany
- Leibniz University Hannover, Institute of Horticultural Production Systems, Hannover, Germany
- Leibniz University Hannover, PhoenixD Cluster of Excellence, Hannover, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, Göttingen, Germany
| | - Sophia Rudorf
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, Germany
| |
Collapse
|
9
|
Marina VI, Bidzhieva M, Tereshchenkov AG, Orekhov D, Sagitova VE, Sumbatyan NV, Tashlitsky VN, Ferberg AS, Maviza TP, Kasatsky P, Tolicheva O, Paleskava A, Polshakov VI, Osterman IA, Dontsova OA, Konevega AL, Sergiev PV. An easy tool to monitor the elemental steps of in vitro translation via gel electrophoresis of fluorescently labeled small peptides. RNA (NEW YORK, N.Y.) 2024; 30:298-307. [PMID: 38164606 PMCID: PMC10870375 DOI: 10.1261/rna.079766.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.
Collapse
Affiliation(s)
- Valeriya I Marina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Medina Bidzhieva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Andrey G Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry Orekhov
- R&D Department, VIC Animal Health, Severny, Belgorod Region 308519, Russia
| | | | - Nataliya V Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem S Ferberg
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tinashe P Maviza
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Olga Tolicheva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Alena Paleskava
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Moscow 119991, Russia
| | - Ilya A Osterman
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Olga A Dontsova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Petr V Sergiev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
10
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
11
|
Jain S, Koziej L, Poulis P, Kaczmarczyk I, Gaik M, Rawski M, Ranjan N, Glatt S, Rodnina MV. Modulation of translational decoding by m 6A modification of mRNA. Nat Commun 2023; 14:4784. [PMID: 37553384 PMCID: PMC10409866 DOI: 10.1038/s41467-023-40422-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
N6-methyladenosine (m6A) is an abundant, dynamic mRNA modification that regulates key steps of cellular mRNA metabolism. m6A in the mRNA coding regions inhibits translation elongation. Here, we show how m6A modulates decoding in the bacterial translation system using a combination of rapid kinetics, smFRET and single-particle cryo-EM. We show that, while the modification does not impair the initial binding of aminoacyl-tRNA to the ribosome, in the presence of m6A fewer ribosomes complete the decoding process due to the lower stability of the complexes and enhanced tRNA drop-off. The mRNA codon adopts a π-stacked codon conformation that is remodeled upon aminoacyl-tRNA binding. m6A does not exclude canonical codon-anticodon geometry, but favors alternative more dynamic conformations that are rejected by the ribosome. These results highlight how modifications outside the Watson-Crick edge can still interfere with codon-anticodon base pairing and complex recognition by the ribosome, thereby modulating the translational efficiency of modified mRNAs.
Collapse
Affiliation(s)
- Sakshi Jain
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Panagiotis Poulis
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-387, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow, 30-387, Poland
| | - Namit Ranjan
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland.
| | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, 37077, Germany.
| |
Collapse
|
12
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
13
|
Nguyen H, Hoffer E, Fagan C, Maehigashi T, Dunham C. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. J Biol Chem 2023; 299:104608. [PMID: 36924943 PMCID: PMC10140155 DOI: 10.1016/j.jbc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- HaAn Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - EricD Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - CrystalE Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - ChristineM Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
| |
Collapse
|
14
|
Le LQ, Zhu K, Su H. Bridging ribosomal synthesis to cell growth through the lens of kinetics. Biophys J 2023; 122:544-553. [PMID: 36564946 PMCID: PMC9941725 DOI: 10.1016/j.bpj.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding prokaryotic cell growth requires a multiscale modeling framework from the kinetics perspective. The detailed kinetics pathway of ribosomes exhibits features beyond the scope of the classical Hopfield kinetics model. The complexity of the molecular responses to various nutrient conditions poses additional challenge to elucidate the cell growth. Herein, a kinetics framework is developed to bridge ribosomal synthesis to cell growth. For the ribosomal synthesis kinetics, the competitive binding between cognate and near-cognate tRNAs for ribosomes can be modulated by Mg2+. This results in distinct patterns of the speed - accuracy relation comprising "trade-off" and "competition" regimes. Furthermore, the cell growth rate is optimized by varying the characteristics of ribosomal synthesis through cellular responses to different nutrient conditions. In this scenario, cellular responses to nutrient conditions manifest by two quadratic scaling relations: one for nutrient flux versus cell mass, the other for ribosomal number versus growth rate. Both are in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Luan Quang Le
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
15
|
Nguyen HA, Hoffer ED, Fagan CE, Maehigashi T, Dunham CM. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526049. [PMID: 36747737 PMCID: PMC9900946 DOI: 10.1101/2023.01.28.526049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNA Lys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Eric D. Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Crystal E. Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| |
Collapse
|
16
|
Zabolotskii AI, Kozlovskiy SV, Katrukha AG. The Influence of the Nucleotide Composition of Genes and Gene Regulatory Elements on the Efficiency of Protein Expression in Escherichia coli. BIOCHEMISTRY (MOSCOW) 2023; 88:S176-S191. [PMID: 37069120 DOI: 10.1134/s0006297923140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.
Collapse
Affiliation(s)
- Artur I Zabolotskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | - Alexey G Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
17
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
18
|
Thommen M, Draycheva A, Rodnina MV. Ribosome selectivity and nascent chain context in modulating the incorporation of fluorescent non-canonical amino acid into proteins. Sci Rep 2022; 12:12848. [PMID: 35896582 PMCID: PMC9329280 DOI: 10.1038/s41598-022-16932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions −1 to −4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
19
|
Fages-Lartaud M, Hohmann-Marriott MF. Overview of tRNA Modifications in Chloroplasts. Microorganisms 2022; 10:226. [PMID: 35208681 PMCID: PMC8877259 DOI: 10.3390/microorganisms10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon-anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplasts. Here, we synthesize all available information concerning tRNA modifications in the chloroplast and assign translation efficiency for each modified anticodon-codon pair. In addition, we perform a bioinformatics analysis that links enzymes to tRNA modifications and aminoacylation in the chloroplast of Chlamydomonas reinhardtii. This work provides the first comprehensive analysis of codon and anticodon interactions of chloroplasts and its implication for translation efficiency.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
- United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
20
|
Kazantsev A, Ignatova Z. Constraints on error rate revealed by computational study of G•U tautomerization in translation. Nucleic Acids Res 2021; 49:11823-11833. [PMID: 34669948 PMCID: PMC8599798 DOI: 10.1093/nar/gkab947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
In translation, G•U mismatch in codon-anticodon decoding is an error hotspot likely due to transition of G•U from wobble (wb) to Watson-Crick (WC) geometry, which is governed by keto/enol tautomerization (wb-WC reaction). Yet, effects of the ribosome on the wb-WC reaction and its implications for decoding mechanism remain unclear. Employing quantum-mechanical/molecular-mechanical umbrella sampling simulations using models of the ribosomal decoding site (A site) we determined that the wb-WC reaction is endoergic in the open, but weakly exoergic in the closed A-site state. We extended the classical ‘induced-fit’ model of initial selection by incorporating wb-WC reaction parameters in open and closed states. For predicted parameters, the non-equilibrium exoergic wb-WC reaction is kinetically limited by the decoding rates. The model explains early observations of the WC geometry of G•U from equilibrium structural studies and reveals discrimination capacity for the working ribosome operating at non-equilibrium conditions. The equilibration of the exoergic wb-WC reaction counteracts the equilibration of the open-closed transition of the A site, constraining the decoding accuracy and potentially explaining the persistence of the G•U as an error hotspot. Our results unify structural and mechanistic views of codon-anticodon decoding and generalize the ‘induced-fit’ model for flexible substrates.
Collapse
Affiliation(s)
- Andriy Kazantsev
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
21
|
Baulin EF. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure. BIOCHEMISTRY (MOSCOW) 2021; 86:952-961. [PMID: 34488572 DOI: 10.1134/s000629792108006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A-minor motifs are RNA tertiary structure motifs that generally involve a canonical base pair and an adenine base forming hydrogen bonds with the minor groove of the base pair. Such motifs are among the most common tertiary interactions in known RNA structures, comparable in number with the non-canonical base pairs. They are often found in functionally important regions of non-coding RNAs and, in particular, play a central role in protein synthesis. Here, we review local variations of the A-minor geometry and discuss difficulties associated with their annotation, as well as various structural contexts and common A-minor co-motifs, and diverse functions of A-minors in various processes in a living cell.
Collapse
Affiliation(s)
- Eugene F Baulin
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
22
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
23
|
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci 2021; 78:1909-1928. [PMID: 33128106 PMCID: PMC11072601 DOI: 10.1007/s00018-020-03685-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
The central dogma of molecular biology entails that genetic information is transferred from nucleic acid to proteins. Notwithstanding retro-transcribing genetic elements, DNA is transcribed to RNA which in turn is translated into proteins. Recent advancements have shown that each stage is regulated to control protein abundances for a variety of essential physiological processes. In this regard, mRNA regulation is essential in fine-tuning or calibrating protein abundances. In this review, we would like to discuss one of several mRNA-intrinsic features of mRNA regulation that has been gaining traction of recent-codon bias and optimality. Specifically, we address the effects of codon bias with regard to codon optimality in several biological processes centred on translation, such as mRNA stability and protein folding among others. Finally, we examine how different organisms or cell types, through this system, are able to coordinate physiological pathways to respond to a variety of stress or growth conditions.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Disruption of evolutionarily correlated tRNA elements impairs accurate decoding. Proc Natl Acad Sci U S A 2020; 117:16333-16338. [PMID: 32601241 DOI: 10.1073/pnas.2004170117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial transfer RNAs (tRNAs) contain evolutionarily conserved sequences and modifications that ensure uniform binding to the ribosome and optimal translational accuracy despite differences in their aminoacyl attachments and anticodon nucleotide sequences. In the tRNA anticodon stem-loop, the anticodon sequence is correlated with a base pair in the anticodon loop (nucleotides 32 and 38) to tune the binding of each tRNA to the decoding center in the ribosome. Disruption of this correlation renders the ribosome unable to distinguish correct from incorrect tRNAs. The molecular basis for how these two tRNA features combine to ensure accurate decoding is unclear. Here, we solved structures of the bacterial ribosome containing either wild-type [Formula: see text] or [Formula: see text] containing a reversed 32-38 pair on cognate and near-cognate codons. Structures of wild-type [Formula: see text] bound to the ribosome reveal 23S ribosomal RNA (rRNA) nucleotide A1913 positional changes that are dependent on whether the codon-anticodon interaction is cognate or near cognate. Further, the 32-38 pair is destabilized in the context of a near-cognate codon-anticodon pair. Reversal of the pairing in [Formula: see text] ablates A1913 movement regardless of whether the interaction is cognate or near cognate. These results demonstrate that disrupting 32-38 and anticodon sequences alters interactions with the ribosome that directly contribute to misreading.
Collapse
|
25
|
Piñeros WD, Tlusty T. Kinetic proofreading and the limits of thermodynamic uncertainty. Phys Rev E 2020; 101:022415. [PMID: 32168722 DOI: 10.1103/physreve.101.022415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
To mitigate errors induced by the cell's heterogeneous noisy environment, its main information channels and production networks utilize the kinetic proofreading (KPR) mechanism. Here, we examine two extensively studied KPR circuits, DNA replication by the T7 DNA polymerase and translation by the E. coli ribosome. Using experimental data, we analyze the performance of these two vital systems in light of the fundamental bounds set by the recently discovered thermodynamic uncertainty relation (TUR), which places an inherent trade-off between the precision of a desirable output and the amount of energy dissipation required. We show that the DNA polymerase operates close to the TUR lower bound, while the ribosome operates ∼5 times farther from this bound. This difference originates from the enhanced binding discrimination of the polymerase which allows it to operate effectively as a reduced reaction cycle prioritizing correct product formation. We show that approaching this limit also decouples the thermodynamic uncertainty factor from speed and error, thereby relaxing the accuracy-speed trade-off of the system. Altogether, our results show that operating near this reduced cycle limit not only minimizes thermodynamic uncertainty, but also results in global performance enhancement of KPR circuits.
Collapse
Affiliation(s)
- William D Piñeros
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
26
|
Garofalo R, Wohlgemuth I, Pearson M, Lenz C, Urlaub H, Rodnina MV. Broad range of missense error frequencies in cellular proteins. Nucleic Acids Res 2019; 47:2932-2945. [PMID: 30649420 PMCID: PMC6451103 DOI: 10.1093/nar/gky1319] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/25/2022] Open
Abstract
Assessment of the fidelity of gene expression is crucial to understand cell homeostasis. Here we present a highly sensitive method for the systematic Quantification of Rare Amino acid Substitutions (QRAS) using absolute quantification by targeted mass spectrometry after chromatographic enrichment of peptides with missense amino acid substitutions. By analyzing incorporation of near- and non-cognate amino acids in a model protein EF-Tu, we show that most of missense errors are too rare to detect by conventional methods, such as DDA, and are estimated to be between <10−7–10-5 by QRAS. We also observe error hotspots of up to 10−3 for some types of mismatches, including the G-U mismatch. The error frequency depends on the expression level of EF-Tu and, surprisingly, the amino acid position in the protein. QRAS is not restricted to any particular miscoding event, organism, strain or model protein and is a reliable tool to analyze very rare proteogenomic events.
Collapse
Affiliation(s)
- Raffaella Garofalo
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Michael Pearson
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
27
|
Thomas EN, Simms CL, Keedy HE, Zaher HS. Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome. Nucleic Acids Res 2019; 47:9857-9870. [PMID: 31400119 PMCID: PMC6765139 DOI: 10.1093/nar/gkz701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Of the four bases, guanine is the most susceptible to oxidation, which results in the formation of 8-oxoguanine (8-oxoG). In protein-free DNA, 8-oxodG adopts the syn conformation more frequently than the anti one. In the syn conformation, 8-oxodG base pairs with dA. The equilibrium between the anti and syn conformations of the adduct are known to be altered by the enzyme recognizing 8-oxodG. We previously showed that 8-oxoG in mRNA severely disrupts tRNA selection, but the underlying mechanism for these effects was not addressed. Here, we use miscoding antibiotics and ribosome mutants to probe how 8-oxoG interacts with the tRNA anticodon in the decoding center. Addition of antibiotics and introduction of error-inducing mutations partially suppressed the effects of 8-oxoG. Under these conditions, rates and/or endpoints of peptide-bond formation for the cognate (8-oxoG•C) and near-cognate (8-oxoG•A) aminoacyl-tRNAs increased. In contrast, the antibiotics had little effect on other mismatches, suggesting that the lesion restricts the nucleotide from forming other interactions. Our findings suggest that 8-oxoG predominantly adopts the syn conformation in the A site. However, its ability to base pair with adenosine in this conformation is not sufficient to promote the necessary structural changes for tRNA selection to proceed.
Collapse
Affiliation(s)
- Erica N Thomas
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Hannah E Keedy
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
28
|
Hoffer ED, Maehigashi T, Fredrick K, Dunham CM. Ribosomal ambiguity (ram) mutations promote the open (off) to closed (on) transition and thereby increase miscoding. Nucleic Acids Res 2019; 47:1557-1563. [PMID: 30476222 PMCID: PMC6379664 DOI: 10.1093/nar/gky1178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Decoding is thought to be governed by a conformational transition in the ribosome—open (off) to closed (on)—that occurs upon codon–anticodon pairing in the A site. Ribosomal ambiguity (ram) mutations increase miscoding and map to disparate regions, consistent with a role for ribosome dynamics in decoding, yet precisely how these mutations act has been unclear. Here, we solved crystal structures of 70S ribosomes harboring 16S ram mutations G299A and G347U in the absence A-site tRNA (A-tRNA) and in the presence of a near-cognate anticodon stem-loop (ASL). In the absence of an A-tRNA, each of the mutant ribosomes exhibits a partially closed (on) state. In the 70S-G347U structure, the 30S shoulder is rotated inward and intersubunit bridge B8 is disrupted. In the 70S-G299A structure, the 30S shoulder is rotated inward and decoding nucleotide G530 flips into the anti conformation. Both of these mutant ribosomes adopt the fully closed (on) conformation in the presence of near-cognate A-tRNA, just as they do with cognate A-tRNA. Thus, these ram mutations act by promoting the open (off) to closed (on) transition, albeit in somewhat distinct ways. This work reveals the functional importance of 30S shoulder rotation for productive aminoacylated-tRNA incorporation.
Collapse
Affiliation(s)
- Eric D Hoffer
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tatsuya Maehigashi
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Correspondence may also be addressed to Kurt Fredrick. Tel: +1 614 292 6679; Fax: +1 614 292 8120;
| | - Christine M Dunham
- Department of Biochemistry and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- To whom correspondence should be addressed. Tel: +1 404 712 1756; Fax: +1 404 727 2738; E-mail:
| |
Collapse
|
29
|
Fislage M, Zhang J, Brown ZP, Mandava CS, Sanyal S, Ehrenberg M, Frank J. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Res 2019; 46:5861-5874. [PMID: 29733411 PMCID: PMC6009598 DOI: 10.1093/nar/gky346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of the monitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.
Collapse
Affiliation(s)
- Marcus Fislage
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jingji Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Zuben Patrick Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Zhang J, Pavlov MY, Ehrenberg M. Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions. Nucleic Acids Res 2019; 46:1362-1374. [PMID: 29267976 PMCID: PMC5814885 DOI: 10.1093/nar/gkx1256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/13/2017] [Indexed: 01/24/2023] Open
Abstract
We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.
Collapse
Affiliation(s)
- Jingji Zhang
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, Uppsala 75124, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, Uppsala 75124, Sweden
| |
Collapse
|
31
|
Bornelöv S, Selmi T, Flad S, Dietmann S, Frye M. Codon usage optimization in pluripotent embryonic stem cells. Genome Biol 2019; 20:119. [PMID: 31174582 PMCID: PMC6555954 DOI: 10.1186/s13059-019-1726-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The uneven use of synonymous codons in the transcriptome regulates the efficiency and fidelity of protein translation rates. Yet, the importance of this codon bias in regulating cell state-specific expression programmes is currently debated. Here, we ask whether different codon usage controls gene expression programmes in self-renewing and differentiating embryonic stem cells. RESULTS Using ribosome and transcriptome profiling, we identify distinct codon signatures during human embryonic stem cell differentiation. We find that cell state-specific codon bias is determined by the guanine-cytosine (GC) content of differentially expressed genes. By measuring the codon frequencies at the ribosome active sites interacting with transfer RNAs (tRNA), we further discover that self-renewing cells optimize translation of codons that depend on the inosine tRNA modification in the anticodon wobble position. Accordingly, inosine levels are highest in human pluripotent embryonic stem cells. This effect is conserved in mice and is independent of the differentiation stimulus. CONCLUSIONS We show that GC content influences cell state-specific mRNA levels, and we reveal how translational mechanisms based on tRNA modifications change codon usage in embryonic stem cells.
Collapse
Affiliation(s)
- Susanne Bornelöv
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Tommaso Selmi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Sophia Flad
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Lind C, Esguerra M, Jespers W, Satpati P, Gutierrez-de-Terán H, Åqvist J. Free energy calculations of RNA interactions. Methods 2019; 162-163:85-95. [DOI: 10.1016/j.ymeth.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
|
33
|
Pavlov MY, Ehrenberg M. Substrate-Induced Formation of Ribosomal Decoding Center for Accurate and Rapid Genetic Code Translation. Annu Rev Biophys 2019; 47:525-548. [PMID: 29792818 DOI: 10.1146/annurev-biophys-060414-034148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate translation of genetic information is crucial for synthesis of functional proteins in all organisms. We use recent experimental data to discuss how induced fit affects accuracy of initial codon selection on the ribosome by aminoacyl transfer RNA in ternary complex ( T3) with elongation factor Tu (EF-Tu) and guanosine-5'-triphosphate (GTP). We define actual accuracy ([Formula: see text]) of a particular protein synthesis system as its current accuracy and the effective selectivity ([Formula: see text]) as [Formula: see text] in the limit of zero ribosomal binding affinity for T3. Intrinsic selectivity ([Formula: see text]), defined as the upper thermodynamic limit of [Formula: see text], is determined by the free energy difference between near-cognate and cognate T3 in the pre-GTP hydrolysis state on the ribosome. [Formula: see text] is much larger than [Formula: see text], suggesting the possibility of a considerable increase in [Formula: see text] and [Formula: see text] at negligible kinetic cost. Induced fit increases [Formula: see text] and [Formula: see text] without affecting [Formula: see text], and aminoglycoside antibiotics reduce [Formula: see text] and [Formula: see text] at unaltered [Formula: see text].
Collapse
Affiliation(s)
- Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden;
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden;
| |
Collapse
|
34
|
Yang J, Hong J, Luo L, Liu K, Meng C, Ji ZL, Lin D. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:139-149. [PMID: 30615070 DOI: 10.1093/abbs/gmy164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Jing Hong
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ling Luo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ke Liu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Zhi-liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- High-Field NMR Center, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Zimmerman SM, Kon Y, Hauke AC, Ruiz BY, Fields S, Phizicky EM. Conditional accumulation of toxic tRNAs to cause amino acid misincorporation. Nucleic Acids Res 2018; 46:7831-7843. [PMID: 30007351 PMCID: PMC6125640 DOI: 10.1093/nar/gky623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/16/2022] Open
Abstract
To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.
Collapse
Affiliation(s)
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
36
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
37
|
tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nat Chem Biol 2018; 14:618-626. [PMID: 29769736 PMCID: PMC6124642 DOI: 10.1038/s41589-018-0063-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
Our ability to directly relate results from test tube biochemical experiments to the kinetics in living cells is very limited. Here we present experimental and analytical tools to directly study the kinetics of fast biochemical reactions in live cells. Dye-labeled molecules are electroporated into bacterial cells and tracked using super-resolved single-molecule microscopy. Trajectories are analyzed by machine-learning algorithms to directly monitor transitions between bound and free states. In particular, we measure the dwell-time of tRNAs on ribosomes, and hence achieve direct measurements of translation rates inside living cells at codon resolution. We find elongation rates with tRNAPhe in perfect agreement with previous indirect estimates, and that once fMet-tRNAfMet has bound to the 30S ribosomal subunit, initiation of translation is surprisingly fast and does not limit the overall rate of protein synthesis. The experimental and analytical tools for direct kinetics measurements in live cells have applications far beyond bacterial protein synthesis.
Collapse
|
38
|
Schmitt MA, Biddle W, Fisk JD. Mapping the Plasticity of the Escherichia coli Genetic Code with Orthogonal Pair-Directed Sense Codon Reassignment. Biochemistry 2018; 57:2762-2774. [PMID: 29668270 DOI: 10.1021/acs.biochem.8b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in Escherichia coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8 to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.
Collapse
Affiliation(s)
- Margaret A Schmitt
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Wil Biddle
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - John D Fisk
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
39
|
Pavlov MY, Liljas A, Ehrenberg M. A recent intermezzo at the Ribosome Club. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0185. [PMID: 28138071 PMCID: PMC5311929 DOI: 10.1098/rstb.2016.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/01/2022] Open
Abstract
Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg2+ ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, Uppsala 75124, Sweden
| | - Anders Liljas
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 22100 Lund, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, Uppsala 75124, Sweden
| |
Collapse
|
40
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
41
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
42
|
Yang H, Noel JK, Whitford PC. Anisotropic Fluctuations in the Ribosome Determine tRNA Kinetics. J Phys Chem B 2017; 121:10593-10601. [PMID: 28910101 DOI: 10.1021/acs.jpcb.7b06828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosome is a large ribonucleoprotein complex that is responsible for the production of proteins in all organisms. Accommodation is the process by which an incoming aminoacyl-tRNA (aa-tRNA) molecule binds the ribosomal A site, and its kinetics has been implicated in the accuracy of tRNA selection. In addition to rearrangements in the aa-tRNA molecule, the L11 stalk can undergo large-scale anisotropic motions during translation. To explore the potential impact of this protruding region on the rate of aa-tRNA accommodation, we used molecular dynamics simulations with a simplified model to evaluate the free energy as a function of aa-tRNA position. Specifically, these calculations describe the transition between A/T and elbow-accommodated (EA) configurations (∼20 Å displacement). We find that the free-energy barrier associated with elbow accommodation is proportional to the degree of mobility exhibited by the L11 stalk. That is, when L11 is more rigid, the free-energy barrier height is decreased. This effect arises from the ability of L11 to confine, and thereby destabilize, the A/T ensemble. In addition, when elongation factor Tu (EF-Tu) is present, the A/T ensemble is further destabilized in an L11-dependent manner. These results provide a framework that suggests how next-generation experiments may precisely control the dynamics of the ribosome.
Collapse
Affiliation(s)
- Huan Yang
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jeffrey K Noel
- Max Delbrück Center for Molecular Medicine , Berlin, Germany.,Fritz Haber Institute of the Max Planck Society , Berlin, Germany
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
43
|
Liu Y, Sharp JS, Do DHT, Kahn RA, Schwalbe H, Buhr F, Prestegard JH. Mistakes in translation: Reflections on mechanism. PLoS One 2017; 12:e0180566. [PMID: 28662217 PMCID: PMC5491249 DOI: 10.1371/journal.pone.0180566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/16/2017] [Indexed: 01/25/2023] Open
Abstract
Mistakes in translation of messenger RNA into protein are clearly a detriment to the recombinant production of pure proteins for biophysical study or the biopharmaceutical market. However, they may also provide insight into mechanistic details of the translation process. Mistakes often involve the substitution of an amino acid having an abundant codon for one having a rare codon, differing by substitution of a G base by an A base, as in the case of substitution of a lysine (AAA) for arginine (AGA). In these cases one expects the substitution frequency to depend on the relative abundances of the respective tRNAs, and thus, one might expect frequencies to be similar for all sites having the same rare codon. Here we demonstrate that, for the ADP-ribosylation factor from yeast expressed in E. coli, lysine for arginine substitutions frequencies are not the same at the 9 sites containing a rare arginine codon; mis-incorporation frequencies instead vary from less than 1 to 16%. We suggest that the context in which the codons occur (clustering of rare sites) may be responsible for the variation. The method employed to determine the frequency of mis-incorporation involves a novel mass spectrometric analysis of the products from the parallel expression of wild type and codon-optimized genes in 15N and 14N enriched media, respectively. The high sensitivity and low material requirements of the method make this a promising technology for the collection of data relevant to other mis-incorporations. The additional data could be of value in refining models for the ribosomal translation elongation process.
Collapse
Affiliation(s)
- Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
| | - Duc H-T. Do
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, United States of America
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Florian Buhr
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 2017; 546:113-117. [PMID: 28538735 PMCID: PMC5657493 DOI: 10.1038/nature22397] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/ultrastructure
- Codon/chemistry
- Codon/genetics
- Codon/ultrastructure
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/ultrastructure
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/ultrastructure
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Models, Molecular
- Peptide Elongation Factor Tu/metabolism
- Peptide Elongation Factor Tu/ultrastructure
- Protein Biosynthesis
- Protein Domains
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/ultrastructure
- Ribosome Subunits/chemistry
- Ribosome Subunits/metabolism
- Ribosome Subunits/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Anna B. Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrei A. Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology. University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| |
Collapse
|
45
|
Ranjan N, Rodnina MV. Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome. J Am Chem Soc 2017; 139:5857-5864. [PMID: 28368583 DOI: 10.1021/jacs.7b00727] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
46
|
Abstract
When given an option to choose among a set of alternatives and only one selection is right, one might stop and reflect over which one is best. However, the ribosome has no time to stop and make such reflections, proteins need to be produced and very fast. Eukaryotic translation initiation is an example of such a conundrum. Here, scanning for the correct codon match must be fast, efficient and accurate. We highlight our recent computational findings, which show how the initiation machinery manages to recognize one specific codon among many possible challengers, by fine-tuning the energetic landscape of base-pairing with the aid of the initiation factors eIF1 and eIF1A. Using a recent 3-dimensional structure of the eukaryotic initiation complex we have performed simulations of codon recognition in atomic detail. These calculations provide an in-depth energetic and structural view of how discrimination against near-cognate codons is achieved by the initiation complex.
Collapse
Affiliation(s)
- Christoffer Lind
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Mauricio Esguerra
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Johan Åqvist
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
47
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
48
|
Two proofreading steps amplify the accuracy of genetic code translation. Proc Natl Acad Sci U S A 2016; 113:13744-13749. [PMID: 27837019 DOI: 10.1073/pnas.1610917113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.
Collapse
|
49
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
50
|
Zhang J, Ieong KW, Mellenius H, Ehrenberg M. Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. RNA (NEW YORK, N.Y.) 2016; 22:896-904. [PMID: 27090284 PMCID: PMC4878615 DOI: 10.1261/rna.055632.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The ribosome uses initial and proofreading selection of aminoacyl-tRNAs for accurate protein synthesis. Anomalously high initial misreading in vitro of near-cognate codons by tRNA(His) and tRNA(Glu) suggested potential error hotspots in protein synthesis, but in vivo data suggested their partial neutralization. To clarify the role of proofreading in this error reduction, we varied the Mg(2+) ion concentration to calibrate the total accuracy of our cell-free system to that in the living Escherichia coli cell. We found the total accuracy of tRNA selection in our system to vary by five orders of magnitude depending on tRNA identity, type of mismatch, and mismatched codon position. Proofreading and initial selection were positively correlated at high, but uncorrelated at low initial selection, suggesting hyperactivated proofreading as a means to neutralize potentially disastrous initial selection errors.
Collapse
Affiliation(s)
- Jingji Zhang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Ka-Weng Ieong
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Harriet Mellenius
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| |
Collapse
|