1
|
Feugere L, Silva De Freitas C, Bates A, Storey KB, Beltran-Alvarez P, Wollenberg Valero KC. Social context prevents heat hormetic effects against mutagens during fish development. FEBS Lett 2025. [PMID: 40265659 DOI: 10.1002/1873-3468.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Since stress can be transmitted to congeners via social metabolites, it is paramount to understand how the social context of abiotic stress influences aquatic organisms' responses to global changes. Here, we integrated the transcriptomic and phenotypic responses of zebrafish embryos to a UV damage/repair assay following scenarios of heat stress, its social context and their combination. Heat stress preceding UV exposure had a hormetic effect through the cellular stress response and DNA repair, rescuing and/or protecting embryos from UV damage. However, experiencing heat stress within a social context negated this molecular hormetic effect and lowered larval fitness. We discuss the molecular basis of interindividual chemical transmission within animal groups as another layer of complexity to organisms' responses to environmental stressors.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull, UK
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
- School of Biology and Environmental Science, University College Dublin, Ireland
- Conway Institute, University College Dublin, Ireland
| |
Collapse
|
2
|
Srivastava A, Idriss H, Das G, Abedrabbo S, Shamsir MS, Homouz D. Deciphering the structural consequences of R83 and R152 methylation on DNA polymerase β using molecular modeling. PLoS One 2025; 20:e0318614. [PMID: 40073046 PMCID: PMC11902276 DOI: 10.1371/journal.pone.0318614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/18/2025] [Indexed: 03/14/2025] Open
Abstract
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity. Although these studies have shown that methylation improves DNA binding, the underlying mechanism of enhancement of polymerase activity in terms of structure and dynamics remains poorly understood. To address this gap, we modeled the methylated enzyme/DNA complex and conducted a microsecond-long simulation in the presence of Mg ions. Our results revealed significant structural changes induced by methylating both R83 and R152 sites in the enzyme. Specifically, these changes caused the DNA fragment to move closer to the C- and N-subdomains, forming additional hydrogen bonds. Furthermore, the cross-correlation map demonstrated that methylation enhanced long-range correlations within the domains/subdomains of DNA polymerase β, along with an increase in the linear mutual information value between the domains/subdomains and DNA fragments. The graph connectivity network also illustrated that methylation modulates the information pathway and identifies residues exhibiting long-distance coupling with the methylated sites. Our results provide an atomic-level understanding of the structural transition induced by methylation, shedding light on the mechanisms underlying the methylation-induced enhancement of activity in DNA polymerase β.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haitham Idriss
- School of Public Health, Imperial College of Science, Technology and Medicine, London, UK
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine
- Faculty of Health Sciences, Global University, Beirut, Lebanon
| | - Gobind Das
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sufian Abedrabbo
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohd Sahir Shamsir
- Department of Bioscience, Faculty of Science, Bioinformatics Research Group, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
3
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 PMCID: PMC11973959 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
4
|
Peng J, Ni B, Li D, Cheng B, Yang R. Overview of the PRMT6 modulators in cancer treatment: Current progress and emerged opportunity. Eur J Med Chem 2024; 279:116857. [PMID: 39276585 DOI: 10.1016/j.ejmech.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Protein Arginine Methyltransferase 6 (PRMT6) is a Type I PRMT enzyme that plays a role in the epigenetic regulation of gene expression by methylating histone and non-histone proteins. It is also involved in various cellular processes, including alternative splicing, DNA repair, and cell signaling. Furthermore, PRMT6 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, positioning it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT6, along with its association with cancer. Subsequently, we focus on recent progress in the design and development of modulators targeting PRMT6. This includes a comprehensive review of PRMT6 inhibitors (isoform-selective and non-selective), dual-target inhibitors based on PRMT6, PRMT6 covalent inhibitors, and PRMT6-targeting hydrophobic tagging (HyT) degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT6 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Jinjin Peng
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Deping Li
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Renze Yang
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Zhao L, Chen J, Zhang Y, Liu J, Li W, Sun Y, Chen G, Guo Z, Gu L. Loss of DNA Polymerase β Delays Atherosclerosis in ApoE-/- Mice Due to Inhibition of Vascular Smooth Muscle Cell Migration. Int J Mol Sci 2024; 25:11778. [PMID: 39519329 PMCID: PMC11547094 DOI: 10.3390/ijms252111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease characterized by arterial inflammation. One important trigger for AS development is the excessive migration of vascular smooth muscle cells (VSMCs); however, the mechanism underlying this phenomenon remains unclear. Therefore, we investigated the role of DNA polymerase β (Pol β), a crucial enzyme involved in base excision repair, VSMC migration, and subsequent AS development. In this study, we revealed a significant increase in Pol β content within AS plaques in ApoE-/-Pol β+/+ mice. In vitro experiments demonstrated a significant decrease in hCASMC viability and migration ability upon Pol β knockdown, whereas the subsequent recovery of Pol β expression reversed this effect. Moreover, our investigations revealed that Pol β knockdown leads to the inhibition of the POSTN gene transcription by suppressing the YY1/TGF-β1 pathway, resulting in the decreased expression of the protein periostin during VSMC migration. Collectively, our findings provide insights into the role of Pol β in AS development, offering a novel approach for the clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lili Gu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; (L.Z.); (J.C.); (Y.Z.); (J.L.); (W.L.); (Y.S.); (G.C.); (Z.G.)
| |
Collapse
|
6
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
7
|
Hendrickson-Rebizant T, Sudhakar SRN, Rowley MJ, Frankel A, Davie JR, Lakowski TM. Structure, Function, and Activity of Small Molecule and Peptide Inhibitors of Protein Arginine Methyltransferase 1. J Med Chem 2024; 67:15931-15946. [PMID: 39250434 PMCID: PMC11440505 DOI: 10.1021/acs.jmedchem.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Protein arginine N-methyltransferases (PRMT) are a family of S-adenosyl-l-methionine (SAM)-dependent enzymes that transfer methyl-groups to the ω-N of arginyl residues in proteins. PRMTs are involved in regulating gene expression, RNA splicing, and other activities. PRMT1 is responsible for most cellular arginine methylation, and its dysregulation is involved in many cancers. Accordingly, many groups have targeted PRMT1 using small molecules and peptide inhibitors. In this Perspective, we discuss the structure and function of selected peptide and small molecule inhibitors of PRMT1. We examine inhibitors that target the substrate arginyl peptide, SAM, or both binding sites, and the type of inhibition that results. Small molecules, and peptides that are bisubstrate, and/or PRMT transition state mimic inhibitors as well as inhibitors that alkylate PRMTs will be discussed. We define a structure-activity relationship for the aromatic/heteroaromatic N-methylethylenediamine inhibitors of PRMT1 and review current progress of PRMT1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Thordur Hendrickson-Rebizant
- Pharmaceutical
analysis Laboratory, College of Pharmacy, University of Manitoba, 750 McDermot Avenue West, Winnipeg, Manitoba R3E 0T5, Canada
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
| | - Sadhana R. N. Sudhakar
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael J. Rowley
- Faculty
of Pharmaceutical Sciences, The University
of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam Frankel
- Faculty
of Pharmaceutical Sciences, The University
of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - James R. Davie
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M. Lakowski
- Pharmaceutical
analysis Laboratory, College of Pharmacy, University of Manitoba, 750 McDermot Avenue West, Winnipeg, Manitoba R3E 0T5, Canada
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
| |
Collapse
|
8
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
9
|
Yang H, Zhang Q, Zhou S, Hu Z, Tang Q, Li Z, Feng Q, Yu L. Discovery of a first-in-class degrader for the protein arginine methyltransferase 6 (PRMT6). Bioorg Chem 2024; 148:107439. [PMID: 38754310 DOI: 10.1016/j.bioorg.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.
Collapse
Affiliation(s)
- Hongling Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Shuyan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Zuli Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Qing Tang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zulong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China.
| |
Collapse
|
10
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
11
|
Tong C, Chang X, Qu F, Bian J, Wang J, Li Z, Xu X. Overview of the development of protein arginine methyltransferase modulators: Achievements and future directions. Eur J Med Chem 2024; 267:116212. [PMID: 38359536 DOI: 10.1016/j.ejmech.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Protein methylation is a post-translational modification (PTM) that organisms undergo. This process is considered a part of epigenetics research. In recent years, there has been an increasing interest in protein methylation, particularly histone methylation, as research has advanced. Methylation of histones is a dynamic process that is subject to fine control by histone methyltransferases and demethylases. In addition, many non-histone proteins also undergo methylation, and these modifications collectively regulate physiological phenomena, including RNA transcription, translation, signal transduction, DNA damage response, and cell cycle. Protein arginine methylation is a crucial aspect of protein methylation, which plays a significant role in regulating the cell cycle and repairing DNA. It is also linked to various diseases. Therefore, protein arginine methyltransferases (PRMTs) that are involved in this process have gained considerable attention as a potential therapeutic target for treating diseases. Several PRMT inhibitors are in phase I/II clinical trials. This paper aims to introduce the structure, biochemical functions, and bioactivity assays of PRMTs. Additionally, we will review the structure-function of currently popular PRMT inhibitors. Through the analysis of various data on known PRMT inhibitors, we hope to provide valuable assistance for future drug design and development.
Collapse
Affiliation(s)
- Chao Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| |
Collapse
|
12
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
13
|
Schwarz SD, Xu J, Gunasekera K, Schürmann D, Vågbø CB, Ferrari E, Slupphaug G, Hottiger MO, Schär P, Steinacher R. Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation. Nat Commun 2024; 15:184. [PMID: 38167803 PMCID: PMC10762122 DOI: 10.1038/s41467-023-44209-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The intracellular ATP-ribosyltransferases PARP1 and PARP2, contribute to DNA base excision repair (BER) and DNA demethylation and have been implicated in epigenetic programming in early mammalian development. Recently, proteomic analyses identified BER proteins to be covalently poly-ADP-ribosylated by PARPs. The role of this posttranslational modification in the BER process is unknown. Here, we show that PARP1 senses AP-sites and SSBs generated during TET-TDG mediated active DNA demethylation and covalently attaches PAR to each BER protein engaged. Covalent PARylation dissociates BER proteins from DNA, which accelerates the completion of the repair process. Consistently, inhibition of PARylation in mESC resulted both in reduced locus-specific TET-TDG-targeted DNA demethylation, and in reduced general repair of random DNA damage. Our findings establish a critical function of covalent protein PARylation in coordinating molecular processes associated with dynamic DNA methylation.
Collapse
Affiliation(s)
- Simon D Schwarz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jianming Xu
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology and St. Olavs Hospital, Trondheim, Norway
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology and St. Olavs Hospital, Trondheim, Norway
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Roland Steinacher
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Liu R, Yang Z, Yang T, Wang Z, Chen X, Zhu J, Ren A, Shi L, Yu H, Zhao M. PRMT5 regulates the polysaccharide content by controlling the splicing of thaumatin-like protein in Ganoderma lucidum. Microbiol Spectr 2023; 11:e0290623. [PMID: 37882562 PMCID: PMC10715077 DOI: 10.1128/spectrum.02906-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE PRMT5 contributes to secondary metabolite biosynthesis in Ganoderma lucidum. However, the mechanism through which PRMT5 regulates the biosynthesis of secondary metabolites remains unclear. In the current study, PRMT5 silencing led to a significant decrease in the biosynthesis of polysaccharides from G. lucidum through the action of the alternative splicing of TLP. A shorter TLP2 isoform can directly bind to PGI and regulated polysaccharide biosynthesis. These results suggest that PRMT5 enhances PGI activity by regulating TLP binding to PGI. The results of the current study reveal a novel target gene for PRMT5-mediated alternative splicing and provide a reference for the identification of PRMT5 regulatory target genes.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhengyan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanshou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Cao MT, Feng Y, Zheng YG. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. World J Biol Chem 2023; 14:84-98. [PMID: 37901302 PMCID: PMC10600687 DOI: 10.4331/wjbc.v14.i5.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes. AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6. METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites. RESULTS In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation. CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Collapse
Affiliation(s)
- Meng-Tong Cao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - You Feng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
17
|
Chen Q, Hu Q, Chen Y, Shen N, Zhang N, Li A, Li L, Li J. PRMT6 methylation of STAT3 regulates tumor metastasis in breast cancer. Cell Death Dis 2023; 14:655. [PMID: 37813837 PMCID: PMC10562413 DOI: 10.1038/s41419-023-06148-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Overcoming distant metastasis stands as a paramount challenge in enhancing the outcomes of breast cancer treatments. Thus, delving deeper into comprehending the intricate mechanisms underlying breast cancer metastasis becomes imperative, offering potential avenues for pioneering therapeutic approaches. PRMT6, an arginine N-methyltransferase, possesses the ability to methylate both histone and non-histone proteins. It has been reported that methylation of non-histone proteins impacts their cellular localization, stability, and activation, consequently influencing tumor progression. However, the extent to which PRMT6-mediated non-histone protein methylation influences cancer cell metastasis, particularly in the context of breast cancer, remains elusive. In this study, we established that PRMT6 exerted a positive regulatory influence on breast cancer metastasis through both in vivo and in vitro experiments. Mechanistically, we innovatively revealed that PRMT6 asymmetrically di-methylated STAT3 at arginine 729 (STAT3 R729me2a). This modification proved indispensable for STAT3's membrane localization, its interaction with JAK2, STAT3 Y705 phosphorylation, and PRMT6-driven cancer cell metastasis. From a clinical perspective, we unearthed the promising potential of STAT3 R729me2a as a robust prognostic marker for predicting the overall survival time of breast cancer patients. In terms of therapeutic intervention, we demonstrated the significant capability of the PRMT6 inhibitor, EPZ020411, to curtail breast cancer metastasis both in vivo and in vitro. In sum, our study unveils the pivotal biological role of PRMT6-mediated STAT3 R729me2a in breast cancer metastasis and underscores the prospective utility of PRMT6 inhibitors as effective therapeutic strategies against STAT3-driven metastatic breast cancer.
Collapse
Affiliation(s)
- Qianzhi Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Chen
- Department of Hematology, Wuhan No. 1 Hospital, 430022, Wuhan, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anshu Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Junjun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Kaisinger LR, Kentistou KA, Stankovic S, Gardner EJ, Day FR, Zhao Y, Mörseburg A, Carnie CJ, Zagnoli-Vieira G, Puddu F, Jackson SP, O’Rahilly S, Farooqi IS, Dearden L, Pantaleão LC, Ozanne SE, Ong KK, Perry JR. Large-scale exome sequence analysis identifies sex- and age-specific determinants of obesity. CELL GENOMICS 2023; 3:100362. [PMID: 37601970 PMCID: PMC10435378 DOI: 10.1016/j.xgen.2023.100362] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.
Collapse
Affiliation(s)
- Lena R. Kaisinger
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A. Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J. Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Felix R. Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexander Mörseburg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christopher J. Carnie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Guido Zagnoli-Vieira
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fabio Puddu
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Stephen P. Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - I. Sadaf Farooqi
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Laura Dearden
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lucas C. Pantaleão
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Susan E. Ozanne
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ken K. Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R.B. Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
19
|
Yang T, Huang W, Ma T, Yin X, Zhang J, Huo M, Hu T, Gao T, Liu W, Zhang D, Yu H, Teng X, Zhang M, Qin H, Yang Y, Yuan B, Wang Y. The PRMT6/PARP1/CRL4B Complex Regulates the Circadian Clock and Promotes Breast Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202737. [PMID: 36941223 PMCID: PMC10190619 DOI: 10.1002/advs.202202737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Circadian rhythms, as physiological systems with self-regulatory functions in living organisms, are controlled by core clock genes and are involved in tumor development. The protein arginine methyltransferase 6 (PRMT6) serves as an oncogene in a myriad of solid tumors, including breast cancer. Hence, the primary aim of the current study is to investigate the molecular mechanisms by which the PRMT6 complex promotes breast cancer progression. The results show that PRMT6, poly(ADP-ribose) polymerase 1 (PARP1), and the cullin 4 B (CUL4B)-Ring E3 ligase (CRL4B) complex interact to form a transcription-repressive complex that co-occupies the core clock gene PER3 promoter. Moreover, genome-wide analysis of PRMT6/PARP1/CUL4B targets identifies a cohort of genes that is principally involved in circadian rhythms. This transcriptional-repression complex promotes the proliferation and metastasis of breast cancer by interfering with circadian rhythm oscillation. Meanwhile, the PARP1 inhibitor Olaparib enhances clock gene expression, thus, reducing breast carcinogenesis, indicating that PARP1 inhibitors have potential antitumor effects in high-PRMT6 expression breast cancer.
Collapse
Affiliation(s)
- Tianshu Yang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Tianyu Ma
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Jingyao Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Miaomiao Huo
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Ting Hu
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Die Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Min Zhang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Hao Qin
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yunkai Yang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Baowen Yuan
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yan Wang
- Key Laboratory of Cancer and MicrobiomeState Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| |
Collapse
|
20
|
Liu L, Yin S, Gan W. TRAF6 Promotes PRMT5 Activity in a Ubiquitination-Dependent Manner. Cancers (Basel) 2023; 15:2501. [PMID: 37173967 PMCID: PMC10177089 DOI: 10.3390/cancers15092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the primary enzyme generating symmetric dimethylarginine (sDMA) on numerous substrates, through which it regulates many cellular processes, such as transcription and DNA repair. Aberrant expression and activation of PRMT5 is frequently observed in various human cancers and associated with poor prognosis and survival. However, the regulatory mechanisms of PRMT5 remain poorly understood. Here, we report that TRAF6 serves as an upstream E3 ubiquitin ligase to promote PRMT5 ubiquitination and activation. We find that TRAF6 catalyzes K63-linked ubiquitination of PRMT5 and interacts with PRMT5 in a TRAF6-binding-motif-dependent manner. Moreover, we identify six lysine residues located at the N-terminus as the primarily ubiquitinated sites. Disruption of TRAF6-mediated ubiquitination decreases PRMT5 methyltransferase activity towards H4R3 in part by impairing PRMT5 interaction with its co-factor MEP50. As a result, mutating the TRAF6-binding motifs or the six lysine residues significantly suppresses cell proliferation and tumor growth. Lastly, we show that TRAF6 inhibitor enhances cellular sensitivity to PRMT5 inhibitor. Therefore, our study reveals a critical regulatory mechanism of PRMT5 in cancers.
Collapse
Affiliation(s)
| | | | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Prakasam R, Bonadiman A, Andreotti R, Zuccaro E, Dalfovo D, Marchioretti C, Tripathy D, Petris G, Anderson EN, Migazzi A, Tosatto L, Cereseto A, Battaglioli E, Sorarù G, Lim WF, Rinaldi C, Sambataro F, Pourshafie N, Grunseich C, Romanel A, Pandey UB, Contestabile A, Ronzitti G, Basso M, Pennuto M. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat Commun 2023; 14:603. [PMID: 36746939 PMCID: PMC9902531 DOI: 10.1038/s41467-023-36186-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angela Bonadiman
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, UK
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alice Migazzi
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Wooi Fang Lim
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Naemeh Pourshafie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Giuseppe Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
- Genethon, 91000, Evry, France
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Pennuto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
22
|
Zhang Q, Cao J, Zhang Y, Bi Z, Feng Q, Yu L, Li L. Design, synthesis and evaluation of antitumor activity of selective PRMT6 inhibitors. Eur J Med Chem 2023; 247:115032. [PMID: 36566712 DOI: 10.1016/j.ejmech.2022.115032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PRMT6 is a member of the protein arginine methyltransferase family, which is involved in a variety of physiological processes and plays an important role in the occurrence and development of tumors. Due to the high homology of type Ⅰ PRMTs and the two close binding sites of the SAM pocket and the substrate pocket, selective PRMT6 inhibitors have rarely been reported. In this study, a series of (5-phenylpyridin-3-yl)methanamine derivatives were designed and synthesized, which could form hydrogen bonding interactions with the unique Glu49 of PRMT6, thereby improving the selectivity of the compounds for PRMT6. Among them, a25 had the best activity and selectivity, with more than 25-fold selectivity for PRMT1/8 and more than 50-fold selectivity for PRMT3/4/5/7, which was superior to these reported SAM competitive and substrate competitive PRMT6 inhibitors. Importantly, a25 could significantly inhibit the proliferation of various tumor cells and effectively induce apoptosis of cancer cells. Our data clarified that a25 is a promising selective PRMT6 inhibitor for cancer therapy which is worthy of further evaluation.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Jiaying Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Yiqian Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Zhenfei Bi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, PR China
| | - Lu Li
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Laboratory of Clinical Pharmacology, GCP Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
23
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
24
|
Schonfeld M, Villar MT, Artigues A, Weinman SA, Tikhanovich I. Arginine Methylation of Integrin Alpha-4 Prevents Fibrosis Development in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:39-59. [PMID: 36191854 PMCID: PMC9672451 DOI: 10.1016/j.jcmgh.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) comprises a spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. We aimed to study the role of protein arginine methyltransferase 6 (PRMT6), a new regulator of liver function, in ALD progression. METHODS Prmt6-deficient mice and wild-type littermates were fed Western diet with alcohol in the drinking water for 16 weeks. Mice fed standard chow diet or Western diet alone were used as a control. RESULTS We found that PRMT6 expression in the liver is down-regulated in 2 models of ALD and negatively correlates with disease severity in mice and human liver specimens. Prmt6-deficient mice spontaneously developed liver fibrosis after 1 year and more advanced fibrosis after high-fat diet feeding or thioacetamide treatment. In the presence of alcohol Prmt6 deficiency resulted in a dramatic increase in fibrosis development but did not affect lipid accumulation or liver injury. In the liver PRMT6 is primarily expressed in macrophages and endothelial cells. Transient replacement of knockout macrophages with wild-type macrophages in Prmt6 knockout mice reduced profibrotic signaling and prevented fibrosis progression. We found that PRMT6 decreases profibrotic signaling in liver macrophages via methylation of integrin α-4 at R464 residue. Integrin α-4 is predominantly expressed in infiltrating monocyte derived macrophages. Blocking monocyte infiltration into the liver with CCR2 inhibitor reduced fibrosis development in knockout mice and abolished differences between genotypes. CONCLUSIONS Taken together, our data suggest that alcohol-mediated loss of Prmt6 contributes to alcohol-associated fibrosis development through reduced integrin methylation and increased profibrotic signaling in macrophages.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Maria T Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas; Liver Center, University of Kansas Medical Center, Kansas City, Kansas; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
25
|
Brobbey C, Liu L, Yin S, Gan W. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23179780. [PMID: 36077176 PMCID: PMC9456308 DOI: 10.3390/ijms23179780] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
In response to DNA damage, cells have developed a sophisticated signaling pathway, consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair of damaged DNA. During this process, posttranslational modifications (PTMs) are central events that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs) either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities, and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway inhibitors, providing insight into the significance of arginine methylation in the maintenance of genome integrity and cancer therapies.
Collapse
|
26
|
Feltes BC, Menck CFM. Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108436. [PMID: 35952573 DOI: 10.1016/j.mrrev.2022.108436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/29/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023]
Abstract
POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
27
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
28
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
29
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
30
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
31
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
32
|
Yin S, Liu L, Brobbey C, Palanisamy V, Ball LE, Olsen SK, Ostrowski MC, Gan W. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun 2021; 12:3444. [PMID: 34103528 PMCID: PMC8187744 DOI: 10.1038/s41467-021-23833-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
33
|
Hamey JJ, Rakow S, Bouchard C, Senst JM, Kolb P, Bauer UM, Wilkins MR, Hart-Smith G. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. FEBS J 2021; 288:5668-5691. [PMID: 33764612 DOI: 10.1111/febs.15837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses the asymmetric dimethylation of arginines on numerous substrate proteins within the human cell. In particular, PRMT6 methylates histone H3 arginine 2 (H3R2) which affects both gene repression and activation. However, the substrate specificity of PRMT6 has not been comprehensively analysed. Here, we systematically characterise the substrate recognition motif of PRMT6, finding that it has broad specificity and recognises the RG motif. Working with a H3 tail peptide as a template, on which we made 204 amino acid substitutions, we use targeted mass spectrometry to measure their effect on PRMT6 in vitro activity. We first show that PRMT6 methylates R2 and R8 in the H3 peptide, although H3R8 is methylated with lower efficiency and is not an in vivo PRMT6 substrate. We then quantify the effect of 194 of these amino acid substitutions on methylation at both H3R2 and H3R8. In both cases, we find that PRMT6 tolerates essentially any amino acid substitution in the H3 peptide, but that positively charged and bulky residues are preferred near the target arginine. We show that PRMT6 also has preference for glycine, but only in the position immediately following the target arginine. This indicates that PRMT6 recognises the RG motif rather than the RGG motif. We further confirm this preference for the RG motif on another PRMT6 substrate, histone H4R3. This broad specificity and recognition of RG rather than RGG are distinctive among the PRMT family and has implications for the development of drugs to selectively target PRMT6. DATABASES: Panorama Public (https://panoramaweb.org/PRMT6motif.url); ProteomeXchange (PXD016711).
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Johanna M Senst
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Gill AL, Premasiri AS, Vieira FG. Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Front Cell Neurosci 2021; 15:633668. [PMID: 33833668 PMCID: PMC8021787 DOI: 10.3389/fncel.2021.633668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hexanucleotide repeat expansion (G4C2n) mutations in the gene C9ORF72 account for approximately 30% of familial cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as well as approximately 7% of sporadic cases of ALS. G4C2n mutations are known to result in the production of five species of dipeptide repeat proteins (DRPs) through non-canonical translation processes. Arginine-enriched dipeptide repeat proteins, glycine-arginine (polyGR), and proline-arginine (polyPR) have been demonstrated to be cytotoxic and deleterious in multiple experimental systems. Recently, we and others have implicated methylation of polyGR/polyPR arginine residues in disease processes related to G4C2n mutation-mediated neurodegeneration. We previously reported that inhibition of asymmetric dimethylation (ADMe) of arginine residues is protective in cell-based models of polyGR/polyPR cytotoxicity. These results are consistent with the idea that PRMT-mediated arginine methylation in the context of polyGR/polyPR exposure is harmful. However, it remains unclear why. Here we discuss the influence of arginine methylation on diverse cellular processes including liquid-liquid phase separation, chromatin remodeling, transcription, RNA processing, and RNA-binding protein localization, and we consider how methylation of polyGR/polyPR may disrupt processes essential for normal cellular function and survival.
Collapse
Affiliation(s)
- Anna L Gill
- ALS Therapy Development Institute, Cambridge, MA, United States
| | | | | |
Collapse
|
35
|
Price OM, Hevel JM. Toward Understanding Molecular Recognition between PRMTs and their Substrates. Curr Protein Pept Sci 2021; 21:713-724. [PMID: 31976831 DOI: 10.2174/1389203721666200124143145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein arginine methyltransferases (PRMTs) recognize their respective protein targets is not well understood. This review summarizes the progress that has been made over the last decade or more to resolve this significant biochemical question. A multipronged approach involving structural biology, substrate profiling, bioorthogonal chemistry and proteomics is discussed.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
36
|
Cheng D, Gao G, Di Lorenzo A, Jayne S, Hottiger MO, Richard S, Bedford MT. Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. J Biol Chem 2020; 295:17060-17070. [PMID: 33008887 PMCID: PMC7863876 DOI: 10.1074/jbc.ra120.014704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Indexed: 02/03/2023] Open
Abstract
CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.
Collapse
Affiliation(s)
- Donghang Cheng
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Center, University of Leicester, Leicester, United Kingdom; Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Stephane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.
| |
Collapse
|
37
|
Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Biochem J 2020; 478:BCJ20200411. [PMID: 33245113 PMCID: PMC7850898 DOI: 10.1042/bcj20200411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shinji Maegawa
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Yanwen Yang
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Vidya Gopalakrishnan
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, U.S.A
| | - Donghang Cheng
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
38
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
39
|
He L, Hu Z, Sun Y, Zhang M, Zhu H, Jiang L, Zhang Q, Mu D, Zhang J, Gu L, Yang Y, Pan FY, Jia S, Guo Z. PRMT1 is critical to FEN1 expression and drug resistance in lung cancer cells. DNA Repair (Amst) 2020; 95:102953. [PMID: 32861926 DOI: 10.1016/j.dnarep.2020.102953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
The up-regulation of PRMT1 is critical to the cell growth and cancer progression of lung cancer cells. In our research, we found that PRMT1 is important to the DNA repair ability and drug resistance of lung cancer cells. To demonstrate the functions of PRMT1, we identified Flap endonuclease 1 (FEN1) as a post-translationally modified downstream target protein of PRMT1. As a major component of Base Excision Repair pathway, FEN1 plays an important role in DNA replication and DNA damage repair. However, the detailed mechanism of FEN1 up-regulation in lung cancer cells remains unclear. In our study, we identified PRMT1 as a key factor that maintains the high expression levels of FEN1, which is critical to the DNA repair ability and the chemotherapeutic drug resistance of lung cancer cells.
Collapse
Affiliation(s)
- Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuling Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaomiao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongqiao Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Longwei Jiang
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China
| | - Qi Zhang
- Department of Infectious Diseases, Nanjing Liuhe District People's Hospital Affiliated to Yangzhou University, Nanjing, 210012, China
| | - Dan Mu
- Affiliated Drum Tower Hospital, Nanjing University School of Medicine, 210008, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lili Gu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Fei-Yan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Shaochang Jia
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
40
|
Hsu SS, Liang WZ. Ca 2+ signaling as a mechanism of haloperidol-induced cytotoxicity in human astrocytes and assessing the protective role of a Ca 2+ chelator. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2117-2127. [PMID: 32594194 DOI: 10.1007/s00210-020-01929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Haloperidol, a typical antipsychotic medication, has been shown to possess various biological effects in different brain models. However, the impact of haloperidol on Ca2+ signaling in astrocytes is elusive. This study explored the effect of haloperidol on cytosolic free Ca2+ levels ([Ca2+]i) and viability, and established these two connections in Gibco® Human Astrocytes (GHAs) and DI TNC1 rat astrocytes. Haloperidol (5-20 μM) caused [Ca2+]i rises in a concentration-dependent manner in GHAs but not in DI TNC1 cells. Furthermore, removal of extracellular Ca2+ reduced haloperidol's effect by approximately 30% in GHAs. Haloperidol (20-40 μM) evoked concentration-dependent cytotoxicity in GHAs and DI TNC1 cells. However, chelating cytosolic Ca2+ with the Ca2+ chelator BAPTA/AM significantly reversed haloperidol's cytotoxicity only in GHAs. In GHAs, haloperidol-induced Ca2+ entry was inhibited by store-operated Ca2+ modulators (2-APB and SKF96365) and the protein kinase C (PKC) inhibitor GF109203X. This Ca2+ entry induced by haloperidol was confirmed by Mn2+ entry-induced quench of fura-2 fluorescence. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished haloperidol-induced [Ca2+]i rises. Conversely, treatment with haloperidol inhibited 45% of BHQ-evoked [Ca2+]i rises. Moreover, haloperidol-induced Ca2+ release from the endoplasmic reticulum was abolished by inhibition of phospholipase C (PLC) by U73122. Together, in GHAs but not in DI TNC1 cells, haloperidol caused Ca2+-associated cell death, induced Ca2+ entry via PKC-sensitive store-operated Ca2+ channels, and evoked PLC-dependent Ca2+ release from the endoplasmic reticulum. The protective effect of Ca2+ chelating on haloperidol-induced cytotoxicity in human astrocytes was also demonstrated.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Surgery, National Defense Medical Center, Taipei, 11490, Taiwan.,College of Health and Nursing, Meiho University, Pingtung, 91202, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan. .,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
| |
Collapse
|
41
|
Ci S, Xia W, Liang W, Qin L, Zhang Y, Dianov GL, Wang M, Zhao X, Wu C, Alagamuthu KK, Hu Z, He L, Pan F, Guo Z. Src-mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage. FASEB J 2020; 34:10443-10461. [PMID: 32539222 DOI: 10.1096/fj.201902904rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 11/11/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme involved in energy metabolism. Recently, GAPDH has been suggested to have extraglycolytic functions in DNA repair, but the underlying mechanism for the GAPDH response to DNA damage remains unclear. Here, we demonstrate that the tyrosine kinase Src is activated under DNA damage stress and phosphorylates GAPDH at Tyr41. This phosphorylation of GAPDH is essential for its nuclear translocation and DNA repair function. Blocking the nuclear import of GAPDH by suppressing Src signaling or through a GAPDH Tyr41 mutation impairs its response to DNA damage. Nuclear GAPDH is recruited to DNA lesions and associates with DNA polymerase β (Pol β) to function in DNA repair. Nuclear GAPDH promotes Pol β polymerase activity and increases base excision repair (BER) efficiency. Furthermore, GAPDH knockdown dramatically decreases BER efficiency and sensitizes cells to DNA damaging agents. Importantly, the knockdown of GAPDH in colon cancer SW480 cells and xenograft models effectively enhances their sensitivity to the chemotherapeutic drug 5-FU. In summary, our findings provide mechanistic insight into the new function of GAPDH in DNA repair and suggest a potential therapeutic target in chemotherapy.
Collapse
Affiliation(s)
- Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Weichu Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lihong Qin
- Department of Oncology, No. 7 People's Hospital of ChangZhou, Changzhou, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Grigory L Dianov
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Congye Wu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Karthick Kumar Alagamuthu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
43
|
Shen Y, Li F, Szewczyk MM, Halabelian L, Park KS, Chau I, Dong A, Zeng H, Chen H, Meng F, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of a First-in-Class Protein Arginine Methyltransferase 6 (PRMT6) Covalent Inhibitor. J Med Chem 2020; 63:5477-5487. [PMID: 32367723 DOI: 10.1021/acs.jmedchem.0c00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methyltransferase 6 (PRMT6) plays important roles in several biological processes associated with multiple cancers. Well-characterized potent, selective, and cell-active PRMT6 inhibitors are invaluable tools for testing biological and therapeutic hypotheses. Although there are several known reversible PRMT6 inhibitors, covalent PRMT6 inhibitors have not been reported. Based on a cocrystal structure of PRMT6-MS023 (a type I PRMT inhibitor), we discovered the first potent and cell-active irreversible PRMT6 inhibitor, 4 (MS117). The covalent binding mode of compound 4 to PRMT6 was confirmed by mass spectrometry and kinetic studies and by a cocrystal structure. Compound 4 did not covalently modify other closely related PRMTs, potently inhibited PRMT6 in cells, and was selective for PRMT6 over other methyltransferases. We also developed two structurally similar control compounds, 5 (MS167) and 7 (MS168). We provide these valuable chemical tools to the scientific community for further studying PRMT6 physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
44
|
Morettin A, Bourassa J, Mahadevan K, Trinkle-Mulcahy L, Cote J. Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods 2020; 175:44-52. [PMID: 31794835 DOI: 10.1016/j.ymeth.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.
Collapse
Affiliation(s)
- Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Bourassa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kohila Mahadevan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jocelyn Cote
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
45
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
46
|
Srivastava M, Chen Z, Zhang H, Tang M, Wang C, Jung SY, Chen J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep 2019; 25:3869-3883.e4. [PMID: 30590055 PMCID: PMC6364303 DOI: 10.1016/j.celrep.2018.11.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Rakow S, Pullamsetti SS, Bauer UM, Bouchard C. Assaying epigenome functions of PRMTs and their substrates. Methods 2019; 175:53-65. [PMID: 31542509 DOI: 10.1016/j.ymeth.2019.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.
Collapse
Affiliation(s)
- Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Hans-Meerwein-Str. 2, BMFZ, 35043 Marburg, Germany.
| |
Collapse
|
48
|
Gu X, Li H, Chen X, Zhang X, Mei F, Jia M, Xiong C. PEX10, SIRPA-SIRPG, and SOX5 gene polymorphisms are strongly associated with nonobstructive azoospermia susceptibility. J Assist Reprod Genet 2019; 36:759-768. [PMID: 30863997 PMCID: PMC6505017 DOI: 10.1007/s10815-019-01417-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/01/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Male infertility is a multifactorial syndrome encompassing a wide variety of disorders. A previous Chinese genome-wide single-nucleotide polymorphism (SNP) association studies have identified four SNPs (rs12097821 in PRMT6 gene, rs2477686 in PEX10 gene, rs6080550 in SIRPA-SIRPG, and rs10842262 in SOX5 gene) as being significantly associated with risk factors for nonobstructive azoospermia (NOA). However, the results were not fully repeated in later studies, which calls for further investigations. METHODS We here performed a case-control study in a central Chinese population to explore the association between the four SNPs and male infertility, which included 631 infertile men (NOA and oligozoospermia) and 720 healthy fertile men. The genotyping was performed using the polymerase chain reaction-restriction fragment length polymorphism and confirmed by sequencing. RESULTS The results showed that rs12097821 and rs10842262 were strongly associated with the risk of NOA but not total male infertility or oligozoospermia, while rs2477686 and rs6080550 were not associated with the risk of total male infertility, NOA, or oligozoospermia. To improve the statistical strength, a meta-analysis was conducted. The results suggested that rs2477686, rs6080550, and rs10842262 were significantly associated with male infertility, especially with NOA, while rs12097821 was only found to be associated with total male infertility. CONCLUSIONS Collectively, the rs2477686, rs6080550, and rs10842262 may indeed be the genetic risk factors for NOA, which requires further investigation using larger independent sets of samples in different ethnic populations.
Collapse
Affiliation(s)
- Xiuli Gu
- Department of Reproductive Genetics, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| | - Honggang Li
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Xi Chen
- Department of Hospital Infection Control, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Xue Zhang
- Department of Reproductive Genetics, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Fen Mei
- Department of Reproductive Genetics, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Mingzhu Jia
- Department of Reproductive Genetics, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Chengliang Xiong
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
49
|
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9:36705-36718. [PMID: 30613353 PMCID: PMC6291173 DOI: 10.18632/oncotarget.26404] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are known for their ability to catalyze methylation of specific arginine residues in a wide variety of cellular proteins, which are involved in a plethora of processes including signal transduction, transcription, and more recently DNA recombination. All members of the PRMT family can be grouped into three main classes depending on the type of methylation they catalyze. Type I PRMTs induce monomethylation and asymmetric dimethylation, while type II PRMTs catalyze monomethylation and symmetric dimethylation of specific arginine residues. In contrast, type III PRMTs carry out only monomethylation of arginine residues. In this review, we will focus on PRMT5, a type II PRMT essential for viability and normal development, which has been shown to be overexpressed in a wide variety of cancer cell types, owing it to the crucial role it plays in controlling key growth regulatory pathways. Furthermore, the role of PRMT5 in regulating expression and stability of key transcription factors that control normal stem cell function as well as cancer stem cell renewal will be discussed. We will review recent work that shows that through its ability to methylate various cellular proteins, PRMT5 functions as a master epigenetic regulator essential for growth and development, and we will highlight studies that have examined its dysregulation and the effects of its inhibition on cancer cell growth.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
50
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|