1
|
Tehrani SSH, Kogan A, Mikulski P, Jansen LET. Remembering foods and foes: emerging principles of transcriptional memory. Cell Death Differ 2025; 32:16-26. [PMID: 37563261 PMCID: PMC11748651 DOI: 10.1038/s41418-023-01200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Transcriptional memory is characterized by a primed cellular state, induced by an external stimulus that results in an altered expression of primed genes upon re-exposure to the inducing signal. Intriguingly, the primed state is heritably maintained across somatic cell divisions even after the initial stimulus and target gene transcription cease. This phenomenon is widely observed across various organisms and appears to enable cells to retain a memory of external signals, thereby adapting to environmental changes. Signals range from nutrient supplies (food) to a variety of stress signals, including exposure to pathogens (foes), leading to long-term memory such as in the case of trained immunity in plants and mammals. Here, we review these priming phenomena and our current understanding of transcriptional memory. We consider different mechanistic models for how memory can work and discuss existing evidence for potential carriers of memory. Key molecular signatures include: the poising of RNA polymerase II machinery, maintenance of histone marks, as well as alterations in nuclear positioning and long-range chromatin interactions. Finally, we discuss the potential adaptive roles of transcriptional memory in the organismal response to its environment from nutrient sensing to trained immunity.
Collapse
Affiliation(s)
- Sahar S H Tehrani
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Anna Kogan
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Pawel Mikulski
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| |
Collapse
|
2
|
Chen SF, Chao TC, Kim HJ, Tang HC, Khadka S, Li T, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator complex modulated by its dissociable Kinase module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601608. [PMID: 39005267 PMCID: PMC11244988 DOI: 10.1101/2024.07.01.601608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.
Collapse
|
3
|
Yuan C, Hu Y, Liu Q, Xu J, Zhou W, Yu H, Shen L, Qin C. MED8 regulates floral transition in Arabidopsis by interacting with FPA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1234-1247. [PMID: 37565662 DOI: 10.1111/tpj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Success in plant reproduction is highly dependent on the correct timing of the floral transition, which is tightly regulated by the flowering pathways. In the model plant Arabidopsis thaliana, the central flowering repressor FLOWERING LOCUS C (FLC) is precisely regulated by multiple flowering time regulators in the vernalization pathway and autonomous pathway, including FPA. Here we report that Arabidopsis MEDIATOR SUBUNIT 8 (MED8) promotes floral transition in Arabidopsis by recruiting FPA to the FLC locus to repress FLC expression. Loss of MED8 function leads to a significant late-flowering phenotype due to increased FLC expression. We further show that MED8 directly interacts with FPA in the nucleus and recruits FPA to the FLC locus. Moreover, MED8 is indispensable for FPA's function in controlling flowering time and regulating FLC expression. Our study thus reveals a flowering mechanism by which the Mediator subunit MED8 represses FLC expression by facilitating the binding of FPA to the FLC locus to ensure appropriate timing of flowering for reproductive success.
Collapse
Affiliation(s)
- Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yikai Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
4
|
Zhou Z, Liu J, Zhang J, Yan H, Yi T, Shim WB. Characterization of Fusarium verticillioides Med1 LxxLL Motif Involved in Fumonisin Biosynthesis. Toxins (Basel) 2023; 15:652. [PMID: 37999515 PMCID: PMC10675092 DOI: 10.3390/toxins15110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Med1 transcriptional coactivator is a crucial component of the Mediator middle complex, which regulates the expression of specific genes involved in cell development, differentiation, reproduction, and homeostasis. The Med1 LxxLL motif, a five-amino-acid peptide sequence, is essential for Med1-mediated gene expression. Our previous study revealed that the disruption of the Med1 subunit leads to a significant increase in fumonisin B1 (FB1) production in the maize pathogen Fusarium verticillioides. However, our understanding of how Med1 regulates FB1 biosynthesis in F. verticillioides, particularly through the Med1 LxxLL motifs, remains limited. To characterize the role of LxxLL motifs, we generated a series of Med1 LxxLL deletion and amino acid substitution mutants. These mutants exhibited impaired mycelial growth and conidia germination while demonstrating enhanced conidia production and virulence. Similar to the Med1 deletion mutant, Med1 LxxLL motif mutants also exhibited increased FB1 biosynthesis in F. verticillioides. Proteomic profiling revealed that the Med1 LxxLL motif regulated the biosynthesis of several key substances that affected FB1 production, including starch and carotenoid. Subsequent studies demonstrated that the production of amylopectin, which is strongly linked to FB1 biosynthesis, was significantly increased in Med1 LxxLL motif mutants. In addition, the disruption of carotenoid metabolic genes decreased carotenoid content, thus stimulating FB1 biosynthesis in F. verticillioides. Taken together, our results provide valuable insights into how the Med1 LxxLL motif regulates FB1 biosynthesis in the mycotoxigenic fungus F. verticillioides.
Collapse
Affiliation(s)
- Zehua Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
8
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|
9
|
Zhou Z, Yan H, Kim MS, Shim WB. Distinct Function of Mediator Subunits in Fungal Development, Stress Response, and Secondary Metabolism in Maize Pathogen Fusarium verticillioides. PHYTOPATHOLOGY 2022; 112:1730-1738. [PMID: 35271780 DOI: 10.1094/phyto-12-21-0495-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mediator is a nucleus-localized, multisubunit protein complex highly conserved across eukaryotes. It interacts with RNA polymerase II transcription machinery as well as various transcription factors to regulate gene expression. However, systematic characterization of the Mediator complex has not been performed in filamentous fungi. In our study, the goal was to investigate key biological functions of Mediator subunits in a mycotoxigenic plant pathogen Fusarium verticillioides. Although there is some level of divergence in the constituent subunits, the overall structure was conserved between Saccharomyces cerevisiae and F. verticillioides. We generated 11 Mediator subunit deletion mutants and characterized vegetative growth, conidia formation, environmental stress response, carbon and fatty acid use, virulence, and fumonisin B1 (FB1) biosynthesis. Each Mediator subunit deletion mutant showed deficiencies in at least three of the phenotypes tested, suggesting that each subunit has different principal functions in F. verticillioides development, metabolism, and virulence. The deletion of FvMed1 led to increased FB1 production, and we confirmed that FvMed1 is transported from the nucleus to the cytoplasm under fumonisin-producing conditions. Taken together, our study characterized various important functional roles for Mediator subunits in F. verticillioides and suggests that select subunits can perform unique cytoplasmic functions independent of the core Mediator in fungal nucleus.
Collapse
Affiliation(s)
- Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Hunan Agricultural University, College of Plant Protection & Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests, Furong District, Changsha, Hunan 410128, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, U.S.A
| | - Man S Kim
- Clinical Research Institute, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
10
|
Morse RH. Function and dynamics of the Mediator complex: novel insights and new frontiers. Transcription 2022; 13:39-52. [PMID: 35708525 PMCID: PMC9467533 DOI: 10.1080/21541264.2022.2085502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Mediator complex was discovered in the early 1990s as a biochemically fractionated factor from yeast extracts that was necessary for activator-stimulated transcriptional activation to be observed in in vitro transcription assays. The structure of this large, multi-protein complex is now understood in great detail, and novel genetic approaches have provided rich insights into its dynamics during transcriptional activation and the mechanism by which it facilitates activated transcription. Here I review recent findings and unanswered questions regarding Mediator dynamics, the roles of individual subunits, and differences between its function in yeast and metazoan cells.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States
| |
Collapse
|
11
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
12
|
Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. A high-resolution protein architecture of the budding yeast genome. Nature 2021; 592:309-314. [PMID: 33692541 PMCID: PMC8035251 DOI: 10.1038/s41586-021-03314-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
The genome-wide architecture of chromatin-associated proteins that maintains chromosome integrity and gene regulation is not well defined. Here we use chromatin immunoprecipitation, exonuclease digestion and DNA sequencing (ChIP-exo/seq)1,2 to define this architecture in Saccharomyces cerevisiae. We identify 21 meta-assemblages consisting of roughly 400 different proteins that are related to DNA replication, centromeres, subtelomeres, transposons and transcription by RNA polymerase (Pol) I, II and III. Replication proteins engulf a nucleosome, centromeres lack a nucleosome, and repressive proteins encompass three nucleosomes at subtelomeric X-elements. We find that most promoters associated with Pol II evolved to lack a regulatory region, having only a core promoter. These constitutive promoters comprise a short nucleosome-free region (NFR) adjacent to a +1 nucleosome, which together bind the transcription-initiation factor TFIID to form a preinitiation complex. Positioned insulators protect core promoters from upstream events. A small fraction of promoters evolved an architecture for inducibility, whereby sequence-specific transcription factors (ssTFs) create a nucleosome-depleted region (NDR) that is distinct from an NFR. We describe structural interactions among ssTFs, their cognate cofactors and the genome. These interactions include the nucleosomal and transcriptional regulators RPD3-L, SAGA, NuA4, Tup1, Mediator and SWI-SNF. Surprisingly, we do not detect interactions between ssTFs and TFIID, suggesting that such interactions do not stably occur. Our model for gene induction involves ssTFs, cofactors and general factors such as TBP and TFIIB, but not TFIID. By contrast, constitutive transcription involves TFIID but not ssTFs engaged with their cofactors. From this, we define a highly integrated network of gene regulation by ssTFs.
Collapse
Affiliation(s)
- Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Prashant K Kuntala
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Naomi Yamada
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Guray Kuzu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Kylie Bocklund
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Nina P Farrell
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joshua D Mairose
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ann V Basting
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Katelyn S Mistretta
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - David J Rocco
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Emily S Perkinson
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gretta D Kellogg
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Osman S, Mohammad E, Lidschreiber M, Stuetzer A, Bazsó FL, Maier KC, Urlaub H, Cramer P. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II. J Biol Chem 2021; 296:100734. [PMID: 33933450 PMCID: PMC8191332 DOI: 10.1016/j.jbc.2021.100734] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The Cdk8 kinase module (CKM) is a dissociable part of the coactivator complex mediator, which regulates gene transcription by RNA polymerase II. The CKM has both negative and positive functions in gene transcription that remain poorly understood at the mechanistic level. In order to reconstitute the role of the CKM in transcription initiation, we prepared recombinant CKM from the yeast Saccharomyces cerevisiae. We showed that CKM bound to the core mediator (cMed) complex, sterically inhibiting cMed from binding to the polymerase II preinitiation complex (PIC) in vitro. We further showed that the Cdk8 kinase activity of the CKM weakened CKM-cMed interaction, thereby facilitating dissociation of the CKM and enabling mediator to bind the PIC in order to stimulate transcription initiation. Finally, we report that the kinase activity of Cdk8 is required for gene activation during the stressful condition of heat shock in vivo but not under steady-state growth conditions. Based on these results, we propose a model in which the CKM negatively regulates mediator function at upstream-activating sequences by preventing mediator binding to the PIC at the gene promoter. However, during gene activation in response to stress, the Cdk8 kinase activity of the CKM may release mediator and allow its binding to the PIC, thereby accounting for the positive function of CKM. This may impart improved adaptability to stress by allowing a rapid transcriptional response to environmental changes, and we speculate that a similar mechanism in metazoans may allow the precise timing of developmental transcription programs.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eusra Mohammad
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexandra Stuetzer
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Fanni Laura Bazsó
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
14
|
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, Garcia BA, Boyer TG, Tsai KL. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. SCIENCE ADVANCES 2021; 7:eabd4484. [PMID: 33523904 PMCID: PMC7810384 DOI: 10.1126/sciadv.abd4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
The Cdk8 kinase module (CKM) in Mediator, comprising Med13, Med12, CycC, and Cdk8, regulates RNA polymerase II transcription through kinase-dependent and -independent functions. Numerous pathogenic mutations causative for neurodevelopmental disorders and cancer congregate in CKM subunits. However, the structure of the intact CKM and the mechanism by which Cdk8 is non-canonically activated and functionally affected by oncogenic CKM alterations are poorly understood. Here, we report a cryo-electron microscopy structure of Saccharomyces cerevisiae CKM that redefines prior CKM structural models and explains the mechanism of Med12-dependent Cdk8 activation. Med12 interacts extensively with CycC and activates Cdk8 by stabilizing its activation (T-)loop through conserved Med12 residues recurrently mutated in human tumors. Unexpectedly, Med13 has a characteristic Argonaute-like bi-lobal architecture. These findings not only provide a structural basis for understanding CKM function and pathological dysfunction, but also further impute a previously unknown regulatory mechanism of Mediator in transcriptional modulation through its Med13 Argonaute-like features.
Collapse
Affiliation(s)
- Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guojie Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chia-En Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
15
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
16
|
Gene Transcription as a Limiting Factor in Protein Production and Cell Growth. G3-GENES GENOMES GENETICS 2020; 10:3229-3242. [PMID: 32694199 PMCID: PMC7466996 DOI: 10.1534/g3.120.401303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell growth is driven by the synthesis of proteins, genes, and other cellular components. Defining processes that limit biosynthesis rates is fundamental for understanding the determinants of cell physiology. Here, we analyze the consequences of engineering cells to express extremely high levels of mCherry proteins, as a tool to define limiting processes that fail to adapt upon increasing biosynthetic demands. Protein-burdened cells were transcriptionally and phenotypically similar to mutants of the Mediator, a transcription coactivator complex. However, our binding data suggest that the Mediator was not depleted from endogenous promoters. Burdened cells showed an overall increase in the abundance of the majority of endogenous transcripts, except for highly expressed genes. Our results, supported by mathematical modeling, suggest that wild-type cells transcribe highly expressed genes at the maximal possible rate, as defined by the transcription machinery’s physical properties. We discuss the possible cellular benefit of maximal transcription rates to allow a coordinated optimization of cell size and cell growth.
Collapse
|
17
|
Postlmayr A, Dumeau CE, Wutz A. Cdk8 is required for establishment of H3K27me3 and gene repression by Xist and mouse development. Development 2020; 147:dev175141. [PMID: 32439758 PMCID: PMC7295591 DOI: 10.1242/dev.175141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/14/2020] [Indexed: 10/30/2022]
Abstract
We previously identified the cyclin dependent kinase Cdk8 as a putative silencing factor for Xist To investigate its role in X inactivation, we engineered a Cdk8 mutation in mouse embryonic stem cells (ESCs) carrying an inducible system for studying Xist function. We found that Xist repressed X-linked genes at half of the expression level in Cdk8 mutant cells, whereas they were almost completely silenced in the controls. Lack of Cdk8 impaired Ezh2 recruitment and the establishment of histone H3 lysine 27 tri-methylation but not PRC1 recruitment by Xist Transgenic expression of wild-type but not catalytically inactive Cdk8 restored efficient gene repression and PRC2 recruitment. Mutation of the paralogous kinase Cdk19 did not affect Xist function, and combined mutations of Cdk8 and Cdk19 resembled the Cdk8 mutation. In mice, a Cdk8 mutation caused post-implantation lethality. We observed that homozygous Cdk8 mutant female embryos showed a greater developmental delay than males on day 10.5. Together with the inefficient repression of X-linked genes in differentiating Cdk8 mutant female ESCs, these data show a requirement for Cdk8 in the initiation of X inactivation.
Collapse
Affiliation(s)
- Andreas Postlmayr
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Charles Etienne Dumeau
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Anton Wutz
- D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, HPL E12, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| |
Collapse
|
18
|
Menzl I, Witalisz-Siepracka A, Sexl V. CDK8-Novel Therapeutic Opportunities. Pharmaceuticals (Basel) 2019; 12:E92. [PMID: 31248103 PMCID: PMC6630639 DOI: 10.3390/ph12020092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Improvements in cancer therapy frequently stem from the development of new small-molecule inhibitors, paralleled by the identification of biomarkers that can predict the treatment response. Recent evidence supports the idea that cyclin-dependent kinase 8 (CDK8) may represent a potential drug target for breast and prostate cancer, although no CDK8 inhibitors have entered the clinics. As the available inhibitors have been recently reviewed, we focus on the biological functions of CDK8 and provide an overview of the complexity of CDK8-dependent signaling throughout evolution and CDK8-dependent effects that may open novel treatment avenues.
Collapse
Affiliation(s)
- Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
19
|
Abstract
The Mediator-associated kinases CDK8 and CDK19 function in the context of three additional proteins: CCNC and MED12, which activate CDK8/CDK19 kinase function, and MED13, which enables their association with the Mediator complex. The Mediator kinases affect RNA polymerase II (pol II) transcription indirectly, through phosphorylation of transcription factors and by controlling Mediator structure and function. In this review, we discuss cellular roles of the Mediator kinases and mechanisms that enable their biological functions. We focus on sequence-specific, DNA-binding transcription factors and other Mediator kinase substrates, and how CDK8 or CDK19 may enable metabolic and transcriptional reprogramming through enhancers and chromatin looping. We also summarize Mediator kinase inhibitors and their therapeutic potential. Throughout, we note conserved and divergent functions between yeast and mammalian CDK8, and highlight many aspects of kinase module function that remain enigmatic, ranging from potential roles in pol II promoter-proximal pausing to liquid-liquid phase separation.
Collapse
Affiliation(s)
- Charli B Fant
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| | - Dylan J Taatjes
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| |
Collapse
|
20
|
Jaeger PA, Ornelas L, McElfresh C, Wong LR, Hampton RY, Ideker T. Systematic Gene-to-Phenotype Arrays: A High-Throughput Technique for Molecular Phenotyping. Mol Cell 2018; 69:321-333.e3. [PMID: 29351850 PMCID: PMC5777277 DOI: 10.1016/j.molcel.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
We have developed a highly parallel strategy, systematic gene-to-phenotype arrays (SGPAs), to comprehensively map the genetic landscape driving molecular phenotypes of interest. By this approach, a complete yeast genetic mutant array is crossed with fluorescent reporters and imaged on membranes at high density and contrast. Importantly, SGPA enables quantification of phenotypes that are not readily detectable in ordinary genetic analysis of cell fitness. We benchmark SGPA by examining two fundamental biological phenotypes: first, we explore glucose repression, in which SGPA identifies a requirement for the Mediator complex and a role for the CDK8/kinase module in regulating transcription. Second, we examine selective protein quality control, in which SGPA identifies most known quality control factors along with U34 tRNA modification, which acts independently of proteasomal degradation to limit misfolded protein production. Integration of SGPA with other fluorescent readouts will enable genetic dissection of a wide range of biological pathways and conditions.
Collapse
Affiliation(s)
- Philipp A Jaeger
- Biocipher(x), Inc., San Diego, CA 92121, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Lilia Ornelas
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron McElfresh
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lily R Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Li X, Pei Y, Sun Y, Liu N, Wang P, Liu D, Ge X, Li F, Hou Y. A Cotton Cyclin-Dependent Kinase E Confers Resistance to Verticillium dahliae Mediated by Jasmonate-Responsive Pathway. FRONTIERS IN PLANT SCIENCE 2018; 9:642. [PMID: 29881391 PMCID: PMC5976743 DOI: 10.3389/fpls.2018.00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Many subunits of the Mediator transcriptional co-activator complex are multifunctional proteins that regulate plant immunity in Arabidopsis. Cotton cyclin-dependent kinase E (GhCDKE), which is a subunit of the cotton (Gossypium hirsutum) Mediator complex, has been annotated, but the biological functions of this gene associated with regulating disease resistance have not been characterized. Here, we cloned GhCDKE from cotton and confirmed that GhCDKE belonged to the E-type CDK family in the phylogenetic tree, and, as in other eukaryotes, we found that GhCDKE interacted with C-type cyclin (GhCycC) by yeast two-hybrid and luciferase complementation imaging assays. Expression of GhCDKE in cotton was induced by Verticillium dahliae infection and MeJA treatment, and silencing of GhCDKE expression in cotton led to enhanced susceptibility to V. dahliae, while overexpression of GhCDKE in Arabidopsis thaliana enhanced resistance to this pathogen. Transgenic expression assay demonstrated that the transcriptional activity of GhPDF1.2pro:LUC in GhCDKE-silenced cotton was dramatically inhibited. In addition, the expression of jasmonic acid (JA)-regulated pathogen-responsive genes was dramatically upregulated in GhCDKE-overexpressed plants after inoculation with V. dahliae, and the roots of GhCDKE-overexpressed A. thaliana were more susceptible to JA treatment. These results indicated that GhCDKE regulates resistance against V. dahliae and that this resistance is mediated by JA response pathway.
Collapse
Affiliation(s)
- Xiancai Li
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Di Liu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| |
Collapse
|
22
|
Abstract
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Collapse
Affiliation(s)
- Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, Commissariat à l'énergie Atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), University Paris Sud, University Paris Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Chereji RV, Bharatula V, Elfving N, Blomberg J, Larsson M, Morozov AV, Broach JR, Björklund S. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly. Nucleic Acids Res 2017; 45:8806-8821. [PMID: 28575439 PMCID: PMC5587782 DOI: 10.1093/nar/gkx491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/23/2017] [Indexed: 01/24/2023] Open
Abstract
Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization.
Collapse
Affiliation(s)
- Razvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nils Elfving
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Miriam Larsson
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA.,Center for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
24
|
Eychenne T, Werner M, Soutourina J. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly. Transcription 2017; 8:328-342. [PMID: 28841352 DOI: 10.1080/21541264.2017.1329000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.
Collapse
Affiliation(s)
- Thomas Eychenne
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France.,b Institut Pasteur, (Epi)genomics of Animal Development Unit , Development and Stem Cell Biology Department, CNRS UMR3778 , Paris , France
| | - Michel Werner
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| | - Julie Soutourina
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| |
Collapse
|
25
|
Hall DD, Ponce JM, Chen B, Spitler KM, Alexia A, Oudit GY, Song LS, Grueter CE. Ectopic expression of Cdk8 induces eccentric hypertrophy and heart failure. JCI Insight 2017; 2:92476. [PMID: 28768905 DOI: 10.1172/jci.insight.92476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Widespread changes in cardiac gene expression occur during heart failure, yet the mechanisms responsible for coordinating these changes remain poorly understood. The Mediator complex represents a nodal point for modulating transcription by bridging chromatin-bound transcription factors with RNA polymerase II activity; it is reversibly regulated by its cyclin-dependent kinase 8 (Cdk8) kinase submodule. Here, we identified increased Cdk8 protein expression in human failing heart explants and determined the consequence of this increase in cardiac-specific Cdk8-expressing mice. Transgenic Cdk8 overexpression resulted in progressive dilated cardiomyopathy, heart failure, and premature lethality. Prior to functional decline, left ventricular cardiomyocytes were dramatically elongated, with disorganized transverse tubules and dysfunctional calcium handling. RNA sequencing results showed that myofilament gene isoforms not typically expressed in adult cardiomyocytes were enriched, while oxidative phosphorylation and fatty acid biosynthesis genes were downregulated. Interestingly, candidate upstream transcription factor expression levels and MAPK signaling pathways thought to determine cardiomyocyte size remained relatively unaffected, suggesting that Cdk8 functions within a novel growth regulatory pathway. Our findings show that manipulating cardiac gene expression through increased Cdk8 levels is detrimental to the heart by establishing a transcriptional program that induces pathological remodeling and eccentric hypertrophy culminating in heart failure.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Jessica M Ponce
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Biyi Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Kathryn M Spitler
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Adrianne Alexia
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Chad E Grueter
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Uthe H, Vanselow JT, Schlosser A. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae. Sci Rep 2017; 7:43584. [PMID: 28240253 PMCID: PMC5327418 DOI: 10.1038/srep43584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.
Collapse
Affiliation(s)
- Henriette Uthe
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| |
Collapse
|
27
|
Abstract
Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.
Collapse
Affiliation(s)
- Sebastian Grünberg
- a Basic Sciences Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | | |
Collapse
|
28
|
Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae. Genetics 2016; 204:1433-1445. [PMID: 27770033 DOI: 10.1534/genetics.116.194134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Gcn4 is expressed during amino acid starvation, and its abundance is controlled by ubiquitin-mediated proteolysis. Cdk8, a kinase component of the RNA polymerase II Mediator complex, phosphorylates Gcn4, which triggers its ubiquitination/proteolysis, and is thought to link Gcn4 degradation with transcription of target genes. In addition to phosphorylation and ubiquitination, we previously showed that Gcn4 becomes sumoylated in a DNA-binding dependent manner, while a nonsumoylatable form of Gcn4 showed increased chromatin occupancy, but only if Cdk8 was present. To further investigate how the association of Gcn4 with chromatin is regulated, here we examine determinants for Gcn4 sumoylation, and how its post-translational modifications are coordinated. Remarkably, artificially targeting Gcn4 that lacks its DNA binding domain to a heterologous DNA site restores sumoylation at its natural modification sites, indicating that DNA binding is sufficient for the modification to occur in vivo Indeed, we find that neither transcription of target genes nor phosphorylation are required for Gcn4 sumoylation, but blocking its sumoylation alters its phosphorylation and ubiquitination patterns, placing Gcn4 sumoylation upstream of these Cdk8-mediated modifications. Strongly supporting a role for sumoylation in limiting its association with chromatin, a hyper-sumoylated form of Gcn4 shows dramatically reduced DNA occupancy and expression of target genes. Importantly, we find that Cdk8 is at least partly responsible for clearing hyper-sumoylated Gcn4 from DNA, further implicating sumoylation as a stimulus for Cdk8-mediated phosphorylation and degradation. These results support a novel function for SUMO in marking the DNA-bound form of a transcription factor, which triggers downstream processes that limit its association with chromatin, thus preventing uncontrolled expression of target genes.
Collapse
|
29
|
Grünberg S, Henikoff S, Hahn S, Zentner GE. Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J 2016; 35:2435-2446. [PMID: 27797823 DOI: 10.15252/embj.201695020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Mediator is a conserved, essential transcriptional coactivator complex, but its in vivo functions have remained unclear due to conflicting data regarding its genome-wide binding pattern obtained by genome-wide ChIP Here, we used ChEC-seq, a method orthogonal to ChIP, to generate a high-resolution map of Mediator binding to the yeast genome. We find that Mediator associates with upstream activating sequences (UASs) rather than the core promoter or gene body under all conditions tested. Mediator occupancy is surprisingly correlated with transcription levels at only a small fraction of genes. Using the same approach to map TFIID, we find that TFIID is associated with both TFIID- and SAGA-dependent genes and that TFIID and Mediator occupancy is cooperative. Our results clarify Mediator recruitment and binding to the genome, showing that Mediator binding to UASs is widespread, partially uncoupled from transcription, and mediated in part by TFIID.
Collapse
Affiliation(s)
- Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Hahn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
30
|
Jeronimo C, Langelier MF, Bataille AR, Pascal JM, Pugh BF, Robert F. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo. Mol Cell 2016; 64:455-466. [PMID: 27773677 DOI: 10.1016/j.molcel.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - John M Pascal
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
31
|
Petrenko N, Jin Y, Wong KH, Struhl K. Mediator Undergoes a Compositional Change during Transcriptional Activation. Mol Cell 2016; 64:443-454. [PMID: 27773675 DOI: 10.1016/j.molcel.2016.09.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
Abstract
Mediator is a transcriptional co-activator recruited to enhancers by DNA-binding activators, and it also interacts with RNA polymerase (Pol) II as part of the preinitiation complex (PIC). We demonstrate that a single Mediator complex associates with the enhancer and core promoter in vivo, indicating that it can physically bridge these transcriptional elements. However, the Mediator kinase module associates strongly with the enhancer, but not with the core promoter, and it dissociates from the enhancer upon depletion of the TFIIH kinase. Severing the kinase module from Mediator by removing the connecting subunit Med13 does not affect Mediator association at the core promoter but increases occupancy at enhancers. Thus, Mediator undergoes a compositional change in which the kinase module, recruited via Mediator to the enhancer, dissociates from Mediator to permit association with Pol II and the PIC. As such, Mediator acts as a dynamic bridge between the enhancer and core promoter.
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Jin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Koon Ho Wong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor. Mol Cell Biol 2016; 36:1943-60. [PMID: 27185874 DOI: 10.1128/mcb.00005-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains.
Collapse
|
33
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
34
|
Eyboulet F, Wydau-Dematteis S, Eychenne T, Alibert O, Neil H, Boschiero C, Nevers MC, Volland H, Cornu D, Redeker V, Werner M, Soutourina J. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo. Nucleic Acids Res 2015; 43:9214-31. [PMID: 26240385 PMCID: PMC4627066 DOI: 10.1093/nar/gkv782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022] Open
Abstract
Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | - Sandra Wydau-Dematteis
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | - Thomas Eychenne
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | | | - Helen Neil
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | - Claire Boschiero
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | - Marie-Claire Nevers
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, F-91191 Gif sur Yvette cedex, France
| | - Hervé Volland
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, F-91191 Gif sur Yvette cedex, France
| | - David Cornu
- CNRS, Centre de Recherche de Gif, SICaPS, F-91198 Gif-sur-Yvette cedex, France
| | - Virginie Redeker
- CNRS, Centre de Recherche de Gif, SICaPS, F-91198 Gif-sur-Yvette cedex, France
| | - Michel Werner
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| | - Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, CNRS, Université Paris Sud, F-91191 Gif-sur-Yvette cedex, France
| |
Collapse
|
35
|
An in vivo requirement for the mediator subunit med14 in the maintenance of stem cell populations. Stem Cell Reports 2015; 4:670-84. [PMID: 25772472 PMCID: PMC4400641 DOI: 10.1016/j.stemcr.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022] Open
Abstract
The Mediator complex has recently been shown to be a key player in the maintenance of embryonic and induced pluripotent stem cells. However, the in vivo consequences of loss of many Mediator subunits are unknown. We identified med14 as the gene affected in the zebrafish logelei (log) mutant, which displayed a morphological arrest by 2 days of development. Surprisingly, microarray analysis showed that transcription was not broadly affected in log mutants. Indeed, log cells transplanted into a wild-type environment were able to survive into adulthood. In planarians, RNAi knockdown demonstrated a requirement for med14 and many other Mediator components in adult stem cell maintenance and regeneration. Multiple stem/progenitor cell populations were observed to be reduced or absent in zebrafish med14 mutant embryos. Taken together, our results show a critical, evolutionarily conserved, in vivo function for Med14 (and Mediator) in stem cell maintenance, distinct from a general role in transcription. med14 mutant zebrafish embryos do not have global defects in transcription Mediator components are required in planaria for adult stem cell maintenance Zebrafish med14 mutant embryos have an apparent defect in stem cell maintenance Mediator has a specialized in vivo function in stem cell lineages
Collapse
|
36
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 657] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
37
|
Fungal mediator tail subunits contain classical transcriptional activation domains. Mol Cell Biol 2015; 35:1363-75. [PMID: 25645928 DOI: 10.1128/mcb.01508-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their incorporation into Mediator but do not possess the ability to activate transcription when fused to a DNA binding domain. This suggests that Mediator fusion proteins actually are functioning in a manner similar to that of a classical DNA-bound activator rather than just recruiting Mediator. Our finding that deletion of the activation domains of S. cerevisiae Med2 and Med3, as well as C. dubliniensis Tlo1 (a Med2 ortholog), impairs the induction of certain genes shows these domains function at native promoters. Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen.
Collapse
|
38
|
Huang Y, Yao X, Wang G. 'Mediator-ing' messenger RNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:257-69. [PMID: 25515410 DOI: 10.1002/wrna.1273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/29/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022]
Abstract
Pre-messenger RNA (mRNA) processing, generally including capping, mRNA splicing, and cleavage-polyadenylation, is physically and functionally associated with transcription. The reciprocal coupling between transcription and mRNA processing ensures the efficient and regulated gene expression and editing. Multiple transcription factors/cofactors and mRNA processing factors are involved in the coupling process. This review focuses on several classic examples and recent advances that enlarge our understanding of how the transcriptional factors or cofactors, especially the Mediator complex, contribute to the RNA Pol II elongation, mRNA splicing, and polyadenylation.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
39
|
A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 2014; 10:e1004770. [PMID: 25375174 PMCID: PMC4222720 DOI: 10.1371/journal.pgen.1004770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
Collapse
|
40
|
Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast. Mol Cell Biol 2014; 35:331-42. [PMID: 25368384 DOI: 10.1128/mcb.00991-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that in Saccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised in med17 temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complex in vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences.
Collapse
|
41
|
Haran J, Boyle H, Hokamp K, Yeomans T, Liu Z, Church M, Fleming AB, Anderson MZ, Berman J, Myers LC, Sullivan DJ, Moran GP. Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. PLoS Genet 2014; 10:e1004658. [PMID: 25356803 PMCID: PMC4214616 DOI: 10.1371/journal.pgen.1004658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
The TLO genes are a family of telomere-associated ORFs in the fungal pathogens Candida albicans and C. dubliniensis that encode a subunit of the Mediator complex with homology to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two (CdTLO1 and CdTLO2). In this study we used C. dubliniensis as a model to investigate the role of TLO genes in regulating virulence and also to determine whether TLO paralogs have evolved to regulate distinct functions. A C. dubliniensis tlo1Δ/tlo2Δ mutant is unable to form true hyphae, has longer doubling times in galactose broth, is more susceptible to oxidative stress and forms increased levels of biofilm. Transcript profiling of the tlo1Δ/tlo2Δ mutant revealed increased expression of starvation responses in rich medium and retarded expression of hypha-induced transcripts in serum. ChIP studies indicated that Tlo1 binds to many ORFs including genes that exhibit high and low expression levels under the conditions analyzed. The altered expression of these genes in the tlo1Δ/tlo2Δ null mutant indicates roles for Tlo proteins in transcriptional activation and repression. Complementation of the tlo1Δ/tlo2Δ mutant with TLO1, but not TLO2, restored wild-type filamentous growth, whereas only TLO2 fully suppressed biofilm growth. Complementation with TLO1 also had a greater effect on doubling times in galactose broth. The different abilities of TLO1 and TLO2 to restore wild-type functions was supported by transcript profiling studies that showed that only TLO1 restored expression of hypha-specific genes (UME6, SOD5) and galactose utilisation genes (GAL1 and GAL10), whereas TLO2 restored repression of starvation-induced gene transcription. Thus, Tlo/Med2 paralogs encoding Mediator subunits regulate different virulence properties in Candida spp. and their expansion may account for the increased adaptability of C. albicans relative to other Candida species.
Collapse
Affiliation(s)
- John Haran
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Hannah Boyle
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Tim Yeomans
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Michael Church
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Alastair B. Fleming
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Matthew Z. Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Derek J. Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| |
Collapse
|
42
|
Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. THE PLANT CELL 2014; 26:4149-70. [PMID: 25281690 PMCID: PMC4247566 DOI: 10.1105/tpc.114.128611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea.
Collapse
Affiliation(s)
- Yingfang Zhu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
43
|
Jeronimo C, Robert F. Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 2014; 21:449-55. [PMID: 24704787 PMCID: PMC3997488 DOI: 10.1038/nsmb.2810] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/11/2014] [Indexed: 12/23/2022]
Abstract
Mediator is an essential, broadly used eukaryotic transcriptional coactivator. How and what Mediator communicates from activators to RNA polymerase II (RNAPII) remains an open question. Here we performed genome-wide location profiling of Saccharomyces cerevisiae Mediator subunits. Mediator is not found at core promoters but rather occupies the upstream activating sequence, upstream of the pre-initiation complex. In the absence of Kin28 (CDK7) kinase activity or in cells in which the RNAPII C-terminal domain is mutated to replace Ser5 with alanine, however, Mediator accumulates at core promoters together with RNAPII. We propose that Mediator is released quickly from promoters after phosphorylation of Ser5 by Kin28 (CDK7), which also allows for RNAPII to escape from the promoter.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- 1] Institut de recherches cliniques de Montréal, Montréal, Québec, Canada. [2] Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
44
|
Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, Francis L, Tzouros M, Krijgsveld J, Holstege FCP, Conlan RS. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci U S A 2014; 111:2500-5. [PMID: 24550274 PMCID: PMC3932902 DOI: 10.1073/pnas.1307525111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Nurul Hamidi
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Ricardo Del Sol
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Thomas Nancy
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Chao Li
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
- Suzhou School of Nano-Science and Nano-Engineering, X’ian Jaotong University, Suzhou Industrial Park 215123, People’s Republic of China
| | - Lewis Francis
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Manuel Tzouros
- Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; and
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - R. Steven Conlan
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|
45
|
Maxwell CS, Kruesi WS, Core LJ, Kurhanewicz N, Waters CT, Lewarch CL, Antoshechkin I, Lis JT, Meyer BJ, Baugh LR. Pol II docking and pausing at growth and stress genes in C. elegans. Cell Rep 2014; 6:455-66. [PMID: 24485661 PMCID: PMC4026043 DOI: 10.1016/j.celrep.2014.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, "docked" Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.
Collapse
Affiliation(s)
- Colin S Maxwell
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - William S Kruesi
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Nicole Kurhanewicz
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caitlin L Lewarch
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - L Ryan Baugh
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
46
|
Eyboulet F, Cibot C, Eychenne T, Neil H, Alibert O, Werner M, Soutourina J. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment. Genes Dev 2014; 27:2549-62. [PMID: 24298055 PMCID: PMC3861669 DOI: 10.1101/gad.225813.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Mediator complex is crucial for eukaryotic transcription. In this study, Eyboulet et al. define a previously unsuspected role for Mediator in connecting transcription with DNA repair. The authors identify a functional interaction between the Mediator subunit Med17 and the DNA repair 3′ endonuclease Rad2/XPG. Rad2 occupancy of RNA Pol II-transcribed genes is transcription-dependent. Moreover, med17 mutants defective in Mediator–Rad2 interaction are UV-sensitive. Thus, Mediator functions in DNA repair by facilitating Rad2/XPG recruitment to transcribed genes. Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3′ endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.
Collapse
Affiliation(s)
- Fanny Eyboulet
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Kato H, Kira S, Kawamukai M. The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PLoS One 2013; 8:e80572. [PMID: 24224056 PMCID: PMC3818258 DOI: 10.1371/journal.pone.0080572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into glucose, thereby utilizing maltose as a carbon source. Whether other maltases contribute to efficient utilization of maltose and how Agl1 expression is regulated in response to switching of carbon sources are unknown. In this study, we show that three other possible maltases and the maltose transporter Sut1 are not required for efficient utilization of maltose. Transcription of agl1 was induced when the carbon source was changed from glucose to maltose. This was dependent on Atf1 and Pcr1, which are highly conserved transcription factors that regulate stress-responsive genes in various stress conditions. Atf1 and Pcr1 generally bind the TGACGT motif as a heterodimer. The agl1 gene lacks the exact motif, but has many degenerate TGACGT motifs in its promoter and coding region. When the carbon source was switched from glucose to maltose, Atf1 and Pcr1 associated with the promoters and coding regions of agl1, fbp1, and gpx1, indicating that the Atf1-Pcr1 heteromer binds a variety of regions in its target genes to induce their transcription. In addition, the association of Mediator with these genes was dependent on Atf1 and Pcr1. These data indicate that Atf1 and Pcr1 induce the transcription of agl1, which allows efficient utilization of extracellular maltose.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Shintaro Kira
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- * E-mail:
| |
Collapse
|
48
|
Nemet J, Jelicic B, Rubelj I, Sopta M. The two faces of Cdk8, a positive/negative regulator of transcription. Biochimie 2013; 97:22-7. [PMID: 24139904 DOI: 10.1016/j.biochi.2013.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Three cyclin dependent kinases, Cdk7, Cdk8 and Cdk9 are intimately connected with the processes of RNA polymerase II dependent transcription initiation and elongation in eukaryotic cells. Each of these kinases is part of a larger multisubunit complex, TFIIH, Mediator and p-TEFb respectively. Of the three kinases, Cdk8 is the most complex given that it has been associated with both positive and negative effects on transcription via mechanisms that include regulation of transcription factor turnover, regulation of CTD phosphorylation and regulation of activator or repressor function. Furthermore, Cdk8 has emerged as a key regulator of multiple transcriptional programs linked to nutrient/growth factor sensing and differentiation control. As such Cdk8 represents a potentially interesting therapeutic drug target. In this review we summarize the current state of knowledge on Cdk8 function both in yeast and higher eukaryotes as well as discussing the effects of Cdk8 null mutations at the organismal level.
Collapse
Affiliation(s)
- Josipa Nemet
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Branka Jelicic
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Mary Sopta
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| |
Collapse
|
49
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
50
|
Carlsten JOP, Zhu X, Gustafsson CM. The multitalented Mediator complex. Trends Biochem Sci 2013; 38:531-7. [PMID: 24074826 DOI: 10.1016/j.tibs.2013.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription.
Collapse
Affiliation(s)
- Jonas O P Carlsten
- University of Gothenburg, Institute of Biomedicine, PO Box 440, 40530 Gothenburg, Sweden
| | | | | |
Collapse
|