1
|
Bibo-Verdugo B, Salvesen G. Evolution of Caspases and the Invention of Pyroptosis. Int J Mol Sci 2024; 25:5270. [PMID: 38791309 PMCID: PMC11121540 DOI: 10.3390/ijms25105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur 4720, La Paz 23080, Mexico;
| | - Guy Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Safdar M, Zaheer S, Khailany RA, Parvez S, Naveed M, Bhuiyan P, Ozaslan M, Moatasam R, Al-Attar MS, Khan MA, Junejo Y. The Relevance of SNPs at 3'UTR Region of CASP7 and miR-371b-5p Associated Diseases: A Computational Analysis. Cell Biochem Biophys 2020; 78:541-557. [PMID: 32951155 DOI: 10.1007/s12013-020-00941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The process of genetically programmed cell death, or apoptosis, plays a crucialrolein cellular homeostasis and gene expression. Disruption of apoptosis may lead to aberrant immune responses, cancer, and neurodegenerative diseases. Single nucleotide polymorphisms (SNPs) present in various microRNA (miRNA) genes and targets being an alteration of miRNA activity resulting in human diseases. Evidence reported that SNPs increase/decrease the effectiveness of the interaction between miRNAs and their target genes associated with diseases. The primary purpose of this study is not only to identify miRSNPs on the CASP7 gene (caspase-7) and SNPs in miRNA genes targeting 3'UTR but also to evaluate the effect of thesegene variations in apoptosis and their associated diseases. We detected 120 miRNAs binding sites and 27 different SNPs in binding sites of miRNA in 3'UTR of the CASP7 gene by ten different online softwares. Interestingly, miR-371b-5p's binding site on CASP7 has an SNP (rs576198588, G/T) on CASP7 3'UTR, and its genomic sequence has an SNP (rs751339395, G/T) at the same nucleotide with rs576198588. Similarly, two other SNPs (rs774879764, C/G rs750389063, C/T) were identified at the first position binding site of miR-371b-5p. Here, miRSNP (rs576198588) at CASP7 3'UTR and SNP (rs751339395) at miR-371b-5p genomic sequence cross-matches at the same site of binding region. Besides, miR-371b-5p targets many apoptosis-related genes (HIP1, TRIAP1, GSKIP, NIN, DAP, CAAP1, XIAP, TMBIM1, TMBIM4, TNFRSF10A, RAD21, AKT1, BAG1, BAG4) even though it had no apoptosis correlated interaction demonstrated formerly. It assures that CASP7 could have a significant consequence on apoptosis through different pathways. Henceforth, this study was representing and signifying an influential connotation among miR-371b-5p and apoptosis via computational exploration and recommended to have better insight.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Sana Zaheer
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 60000, Pakistan
| | - Rozhgar A Khailany
- Department of Biology, College of Science, Salahaddin University-Erbil, 44001, Erbil, Iraq
- Department of Biology, Faculty of Education, Tishk International University, 44001, Erbil, Iraq
| | - Sadaf Parvez
- Department of Biology, Virtual University of Pakistan, Lahore, 54000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Piplu Bhuiyan
- School of Basic Life Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 20029, PR China
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey
| | - Rebaz Moatasam
- Department of Medical Microbiology, Koya University, Koya-Erbil, Iraq
| | - Mustafa S Al-Attar
- Department of Environmental Science, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| |
Collapse
|
3
|
Guyenet SJ, Mookerjee SS, Lin A, Custer SK, Chen SF, Sopher BL, La Spada AR, Ellerby LM. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet 2015; 24:3908-17. [PMID: 25859008 DOI: 10.1093/hmg/ddv121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/12/2022] Open
Abstract
The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.
Collapse
Affiliation(s)
| | | | - Amy Lin
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Sylvia F Chen
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Albert R La Spada
- Department of Medicine (Medical Genetics) and Department of Cellular and Molecular Medicine, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, Department of Neurosciences, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA, Department of Pediatrics, Division of Biological Sciences, Institute for Genomic Medicine, and the Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA and Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, CA 94945, USA,
| |
Collapse
|
4
|
McStay GP, Green DR. Measuring apoptosis: caspase inhibitors and activity assays. Cold Spring Harb Protoc 2014; 2014:799-806. [PMID: 25086023 DOI: 10.1101/pdb.top070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caspases are proteases that initiate and execute apoptotic cell death. These caspase-dependent events are caused by cleavage of specific substrates that propagate the proapoptotic signal. A number of techniques have been developed to follow caspase activity in vitro and from apoptotic cellular extracts. Many of these techniques use molecules that are based on optimal peptide motifs for each caspase and on our understanding of caspase cleavage events that occur during apoptosis. Although these approaches are useful, there are several drawbacks associated with them. The optimal peptide motifs are not unique recognition sites for each caspase, so techniques that use them may yield information about more than one caspase. Furthermore, caspase cleavage does not take into account the different caspase activation mechanisms. Recently, probes having greater specificity for individual caspases have been developed and are being used successfully. This introduction provides background on the various caspases and introduces a set of complementary techniques to examine the activity, substrate specificity, and activation status of caspases from in vitro or cell culture experiments.
Collapse
Affiliation(s)
- Gavin P McStay
- Department of Life Sciences, New York Institute of Technology, Old Westbury, New York 11568
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
5
|
Abstract
One of the most valuable tools that have been developed for the study of apoptosis is the availability of recombinant active caspases. The determination of caspase substrate preference, the design of sensitive substrates and potent inhibitors, the resolution of caspase structures, the elucidation of their activation mechanisms, and the identification of their substrates were made possible by the availability of sufficient amounts of enzymatically pure caspases. The current chapter describes at length the expression, purification, and basic enzymatic characterization of apoptotic caspases.
Collapse
Affiliation(s)
- Dave Boucher
- Institute of Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia
| | | | | |
Collapse
|
6
|
Ying Z, Li A, Lu Z, Wu C, Yin H, Yuan M, Pang Y. The Spodoptera frugiperda effector caspase Sf-caspase-1 becomes unstable following its activation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:195-210. [PMID: 23740663 DOI: 10.1002/arch.21106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sf-caspase-1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf-caspase-1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase-3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf-caspase-1: the pro-Sf-caspase-1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin-proteasome system. During the activation, the Sf-caspase-1 produces an intermediate form and then undergoes proteolytic processing to form active Sf-caspase-1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf-caspase-1 was unstable.
Collapse
Affiliation(s)
- Zhongfu Ying
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Kang HJ, Lee YM, Bae KH, Kim SJ, Chung SJ. Structural asymmetry of procaspase-7 bound to a specific inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1514-21. [PMID: 23897474 DOI: 10.1107/s0907444913010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/14/2013] [Indexed: 02/26/2023]
Abstract
Caspase-7 is expressed as a proenzyme and is activated by initiator caspases upon the transmission of cell-death signals. Despite extensive structural and biochemical analyses, many questions regarding the mechanism of caspase-7 activation remain unanswered. Caspase-7 is auto-activated during overexpression in Escherichia coli, even in the absence of initiator caspases, indicating that procaspase-7 has intrinsic catalytic activity. When variants of procaspase-7 with altered L2 loops were prepared, a variant with six inserted amino acids showed meaningful catalytic activity which was inhibited by Ac-DEVD-CHO. The kinetic constants of the procaspase-7 variant were determined and its three-dimensional structure was solved with and without bound inhibitor. The homodimeric procaspase-7 bound to the inhibitor revealed an asymmetry. One monomer formed a complete active site bound to the inhibitor in collaboration with the L2 loop from the other monomer, whereas the other monomer had an incomplete active site despite the bound inhibitor. Consequently, the two L2 loops in homodimeric procaspase-7 served as inherent L2 and L2' loops forming one complete active site. These data represent the first three-dimensional structure of a procaspase-7 variant bound to a specific inhibitor, Ac-DEVD-CHO, and provide insight into the folding mechanism during caspase-7 activation and the basal activity level of procaspase-7.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Department of Chemistry, College of Natural Science, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation. Proc Natl Acad Sci U S A 2013; 110:8477-82. [PMID: 23650375 DOI: 10.1073/pnas.1306759110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Procaspase-3 (P3) and procaspase-7 (P7) are activated through proteolytic maturation to form caspase-3 (C3) and caspase-7 (C7), respectively, which serve overlapping but nonredundant roles as the executioners of apoptosis in humans. However, it is unclear if differences in P3 and P7 maturation mechanisms underlie their unique biological functions, as the structure of P3 remains unknown. Here, we report structures of P3 in a catalytically inactive conformation, structures of P3 and P7 bound to covalent peptide inhibitors that reveal the active conformation of the zymogens, and the structure of a partially matured C7:P7 heterodimer. Along with a biochemical analysis, we show that P3 is catalytically inactive and matures through a symmetric all-or-nothing process. In contrast, P7 contains latent catalytic activity and matures through an asymmetric and tiered mechanism, suggesting a lower threshold for activation. Finally, we use our structures to design a selection strategy for conformation specific antibody fragments that stimulate procaspase activity, showing that executioner procaspase conformational equilibrium can be rationally modulated. Our studies provide a structural framework that may help to explain the unique roles of these important proapoptotic enzymes, and suggest general strategies for the discovery of proenzyme activators.
Collapse
|
9
|
Datta D, McClendon CL, Jacobson MP, Wells JA. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3. J Biol Chem 2013; 288:9971-9981. [PMID: 23386603 DOI: 10.1074/jbc.m112.426460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are intracellular cysteine-class proteases with aspartate specificity that is critical for driving processes as diverse as the innate immune response and apoptosis, exemplified by caspase-1 and caspase-3, respectively. Interestingly, caspase-1 cleaves far fewer cellular substrates than caspase-3 and also shows strong positive cooperativity between the two active sites of the homodimer, unlike caspase-3. Biophysical and kinetic studies here present a molecular basis for this difference. Analytical ultracentrifugation experiments show that mature caspase-1 exists predominantly as a monomer under physiological concentrations that undergoes dimerization in the presence of substrate; specifically, substrate binding shifts the KD for dimerization by 20-fold. We have created a hemi-active site-labeled dimer of caspase-1, where one site is blocked with the covalent active site inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. This hemi-labeled enzyme is about 9-fold more active than the apo-dimer of caspase-1. These studies suggest that substrate not only drives dimerization but also, once bound to one site in the dimer, promotes an active conformation in the other monomer. Steady-state kinetic analysis and modeling independently support this model, where binding of one substrate molecule not only increases substrate binding in preformed dimers but also drives the formation of heterodimers. Thus, the cooperativity in caspase-1 is driven both by substrate-induced dimerization as well as substrate-induced activation. Substrate-induced dimerization and activation seen in caspase-1 and not in caspase-3 may reflect their biological roles. Whereas caspase-1 cleaves a dramatically smaller number of cellular substrates that need to be concentrated near inflammasomes, caspase-3 is a constitutively active dimer that cleaves many more substrates located diffusely throughout the cell.
Collapse
Affiliation(s)
- Debajyoti Datta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Christopher L McClendon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143.
| |
Collapse
|
10
|
Silke J, Meier P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008730. [PMID: 23378585 DOI: 10.1101/cshperspect.a008730] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Misregulated innate immune signaling and cell death form the basis of much human disease pathogenesis. Inhibitor of apoptosis (IAP) protein family members are frequently overexpressed in cancer and contribute to tumor cell survival, chemo-resistance, disease progression, and poor prognosis. Although best known for their ability to regulate caspases, IAPs also influence ubiquitin (Ub)-dependent pathways that modulate innate immune signaling via activation of nuclear factor κB (NF-κB). Recent research into IAP biology has unearthed unexpected roles for this group of proteins. In addition, the advances in our understanding of the molecular mechanisms that IAPs use to regulate cell death and innate immune responses have provided new insights into disease states and suggested novel intervention strategies. Here we review the functions assigned to those IAP proteins that act at the intersection of cell death regulation and inflammatory signaling.
Collapse
Affiliation(s)
- John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.
| | | |
Collapse
|
11
|
Zorn JA, Wolan DW, Agard NJ, Wells JA. Fibrils colocalize caspase-3 with procaspase-3 to foster maturation. J Biol Chem 2012; 287:33781-95. [PMID: 22872644 DOI: 10.1074/jbc.m112.386128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1-40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >10(7)-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.
Collapse
Affiliation(s)
- Julie A Zorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
12
|
Edgington LE, van Raam BJ, Verdoes M, Wierschem C, Salvesen GS, Bogyo M. An optimized activity-based probe for the study of caspase-6 activation. ACTA ACUST UNITED AC 2012; 19:340-52. [PMID: 22444589 DOI: 10.1016/j.chembiol.2011.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/19/2011] [Accepted: 12/20/2011] [Indexed: 10/28/2022]
Abstract
Although significant efforts have been made to understand the mechanisms of caspase activation during apoptosis, many questions remain regarding how and when executioner caspases get activated. We describe the design and synthesis of an activity-based probe that labels caspase-3/-6/-7, allowing direct monitoring of all executioner caspases simultaneously. This probe has enhanced in vivo properties and reduced cross-reactivity compared to our previously reported probe, AB50. Using this probe, we find that caspase-6 undergoes a conformational change and can bind substrates even in the absence of cleavage of the proenzyme. We also demonstrate that caspase-6 activation does not require active caspase-3/-7, suggesting that it may autoactivate or be cleaved by other proteases. Together, our results suggest that caspase-6 activation proceeds through a unique mechanism that may be important for its diverse biological functions.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
13
|
Boucher D, Blais V, Denault JB. Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 2012; 109:5669-74. [PMID: 22451931 PMCID: PMC3326497 DOI: 10.1073/pnas.1200934109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During apoptosis, hundreds of proteins are cleaved by caspases, most of them by the executioner caspase-3. However, caspase-7, which shares the same substrate primary sequence preference as caspase-3, is better at cleaving poly(ADP ribose) polymerase 1 (PARP) and Hsp90 cochaperone p23, despite a lower intrinsic activity. Here, we identified key lysine residues (K(38)KKK) within the N-terminal domain of caspase-7 as critical elements for the efficient proteolysis of these two substrates. Caspase-7's N-terminal domain binds PARP and improves its cleavage by a chimeric caspase-3 by ∼30-fold. Cellular expression of caspase-7 lacking the critical lysine residues resulted in less-efficient PARP and p23 cleavage compared with cells expressing the wild-type peptidase. We further showed, using a series of caspase chimeras, the positioning of p23 on the enzyme providing us with a mechanistic insight into the binding of the exosite. In summary, we have uncovered a role for the N-terminal domain (NTD) and the N-terminal peptide of caspase-7 in promoting key substrate proteolysis.
Collapse
Affiliation(s)
- Dave Boucher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Véronique Blais
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Jean-Bernard Denault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
14
|
Abstract
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.
Collapse
Affiliation(s)
| | | | - Marcin DRAG
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, POLAND
| | - Jean-Bernard DENAULT
- Corresponding author: Jean-Bernard Denault, Université de Sherbrooke, Faculty of medicine and health sciences, Pharmacology department, 3001, 12th Avenue North, Sherbrooke QC, J1H 5N4, CANADA, Phone: +1-819-820-6868 x12789, Fax: +1-819-564-5400,
| |
Collapse
|
15
|
Nakatsumi H, Yonehara S. Identification of functional regions defining different activity in caspase-3 and caspase-7 within cells. J Biol Chem 2010; 285:25418-25. [PMID: 20566630 DOI: 10.1074/jbc.m110.126573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are central to apoptosis, and the principal executioner caspases, caspase-3 and -7, were reported to be similar in activity, primary structure, and three-dimensional structure. Here, we identified different activity in caspase-3 and -7 within cells and examined the relationship between their structure and function using human cells expressing almost equal amounts of exogenous caspase-3, caspase-7, and/or chimeric constructs after down-regulation of endogenous caspase-3 and -7 expression. Caspase-3 (produced in human cells) showed much stronger cleaving activity than caspase-7 against a low molecular weight substrate in vitro dependent on four specific amino acid regions. Within cells, however, an additional three regions were required for caspase-3 to exert much stronger protease activity than caspase-7 against cellular substrates. Three of the former four regions and the latter three regions were shown to form two different three-dimensional structures that were located at the interface of the homodimer of procaspase-7 on opposite sides. In addition, procaspase-3 and -7 revealed specific homodimer-forming activity within cells dependent on five amino acid regions, which were included in the regions critical to the cleaving activity within cells. Thus, human caspase-3 and -7 exhibit differences in protease activity, specific homodimer-forming activity, and three-dimensional structural features, all of which are closely interrelated.
Collapse
Affiliation(s)
- Hirokazu Nakatsumi
- Laboratory of Molecular and Cellular Biology, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
16
|
Pratt MR, Sekedat MD, Chiang KP, Muir TW. Direct measurement of cathepsin B activity in the cytosol of apoptotic cells by an activity-based probe. ACTA ACUST UNITED AC 2010; 16:1001-12. [PMID: 19778728 DOI: 10.1016/j.chembiol.2009.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/26/2009] [Accepted: 07/23/2009] [Indexed: 12/22/2022]
Abstract
Cells control their own death through a program termed apoptosis, which is indispensable for development and homeostasis in all metazoans. Lysosomal cysteine proteases are not normally thought of as participating in apoptosis; however, recent reports have shown that the cathepsin proteases can be released from the lysosome during apoptosis, where they can participate in cell death. We report here the development of an activity-based probe that, under optimized conditions, reports on cathepsin B activity only in apoptotic cells by reading out the release of cathepsin B from the lysosomes. Biochemical characterization of apoptosis in cells from cathepsin B null mice shows delayed and suboptimal activation of caspases. Our data further supports a role for cathepsin B in the cytosol as a positive regulator of a cell death feed-forward loop and provides a chemical tool for future investigations.
Collapse
Affiliation(s)
- Matthew R Pratt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
17
|
Hardy JA, Wells JA. Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. J Biol Chem 2009; 284:26063-9. [PMID: 19581639 DOI: 10.1074/jbc.m109.001826] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compounds induced: (i) breaking of an interaction between Tyr-223 and Arg-187 in the allosteric site, which prevents proper ordering of the catalytic cysteine; (ii) pinning the L2' loop over the allosteric site, which blocks critical interactions for proper ordering of the substrate-binding groove; and (iii) a hinge-like rotation at Gly-188 positioned after the catalytic Cys-186 and Arg-187. Here we report a systematic mutational analysis of these regions to dissect their functional importance to mediate the allosteric transition induced by these compounds. Mutating the hinge Gly-188 to the restrictive proline causes a massive approximately 6000-fold reduction in catalytic efficiency. Mutations in the Arg-187-Tyr-223 couple have a far less dramatic effect (3-20-fold reductions). Interestingly, although the allosteric couple mutants still allow binding and allosteric inhibition, they partially relieve the mutual exclusivity of binding between inhibitors at the active and allosteric sites. These data highlight a small set of residues critical for mediating the transition from active to inactive zymogen-like states.
Collapse
Affiliation(s)
- Jeanne A Hardy
- Sunesis Pharmaceuticals, South San Francisco, California 94080, USA
| | | |
Collapse
|
18
|
Witkowski WA, Hardy JA. L2' loop is critical for caspase-7 active site formation. Protein Sci 2009; 18:1459-68. [PMID: 19530232 PMCID: PMC2775214 DOI: 10.1002/pro.151] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/06/2009] [Accepted: 04/13/2009] [Indexed: 01/06/2023]
Abstract
The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2') from the other half of the dimer to bind substrate. In an inactive form, the two L2' loops form a cross-dimer hydrogen-bond network over the dimer interface. Although the L2' loop has been implicated as playing a central role in the formation of the active-site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2' loop to catalytic function and enzyme stability. In wild-type and all mutants, active-site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand-free conformation, but is as stable as wild type when bound to substrate, indicating that caspase-7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2' loop are shown to be essential for substrate-binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side-chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate-binding are sufficiently strong to induce the active conformation. Thus, although the L2' loop makes no direct contacts with substrate, it is essential for buttressing the substrate-binding groove and is central to native catalytic efficiency.
Collapse
Affiliation(s)
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts AmherstAmherst, Massachusetts 01003
| |
Collapse
|
19
|
Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem 2009; 284:21777-21781. [PMID: 19473994 DOI: 10.1074/jbc.r800084200] [Citation(s) in RCA: 529] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are intracellular proteases that propagate programmed cell death, proliferation, and inflammation. Activation of caspases occurs by a conserved mechanism subject to strict cellular regulation. Once activated by a specific stimulus, caspases execute limited proteolysis of downstream substrates to trigger a cascade of events that culminates in the desired biological response. Much has been learned of the mechanisms that govern the activation and regulation of caspases, and this minireview provides an update of these areas. We also delineate substantial gaps in knowledge of caspase function, which can be approached by techniques and experimental paradigms that are currently undergoing development.
Collapse
Affiliation(s)
- Cristina Pop
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Guy S Salvesen
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037
| |
Collapse
|
20
|
Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P. Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 2008; 32:540-53. [PMID: 19026784 PMCID: PMC2713662 DOI: 10.1016/j.molcel.2008.09.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/14/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase's proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1's E3 activity or drICE's ubiquitin-acceptor lysines, abrogates DIAP1's ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an "inactive" conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 "activation" and nondegradative polyubiquitylation.
Collapse
Affiliation(s)
- Mark Ditzel
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Meike Broemer
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Clare Bolduc
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Tom V. Lee
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Kristoffer T.G. Rigbolt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Richard Elliott
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Marketa Zvelebil
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andreas Bergmann
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| |
Collapse
|
21
|
Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Núñez G. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 2008; 7:2350-63. [PMID: 18667412 DOI: 10.1074/mcp.m800132-mcp200] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aspartate-specific cysteine protease caspase-1 is activated by the inflammasomes and is responsible for the proteolytic maturation of the cytokines IL-1 beta and IL-18 during infection and inflammation. To discover new caspase-1 substrates, we made use of a proteome-wide gel-free differential peptide sorting methodology that allows unambiguous localization of the processing site in addition to identification of the substrate. Of the 1022 proteins that were identified, 20 were found to be specifically cleaved after Asp in the setup incubated with recombinant caspase-1. Interestingly, caspase-7 emerged as one of the identified caspase-1 substrates. Moreover half of the other identified cleavage events occurred at sites closely resembling the consensus caspase-7 recognition sequence DEVD, suggesting caspase-1-mediated activation of endogenous caspase-7 in this setup. Consistently recombinant caspase-1 cleaved caspase-7 at the canonical activation sites Asp(23) and Asp(198), and recombinant caspase-7 processed a subset of the identified substrates. In vivo, caspase-7 activation was observed in conditions known to induce activation of caspase-1, including Salmonella infection and microbial stimuli combined with ATP. Interestingly Salmonella- and lipopolysaccharide + ATP-induced activation of caspase-7 was abolished in macrophages deficient in caspase-1, the pattern recognition receptors Ipaf and Cryopyrin, and the inflammasome adaptor ASC, demonstrating an upstream role for the caspase-1 inflammasomes in caspase-7 activation in vivo. In contrast, caspase-1 and the inflammasomes were not required for caspase-3 activation. In conclusion, we identified 20 new substrates activated downstream of caspase-1 and validated caspase-1-mediated caspase-7 activation in vitro and in knock-out macrophages. These results demonstrate for the first time the existence of a nucleotide binding and oligomerization domain-like receptor/caspase-1/caspase-7 cascade and the existence of distinct activation mechanisms for caspase-3 and -7 in response to microbial stimuli and bacterial infection.
Collapse
Affiliation(s)
- Mohamed Lamkanfi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pop C, Salvesen GS, Scott FL. Caspase assays: identifying caspase activity and substrates in vitro and in vivo. Methods Enzymol 2008; 446:351-67. [PMID: 18603133 DOI: 10.1016/s0076-6879(08)01621-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The measurement of general caspase activity and the quantification of purified recombinant caspases in vitro can be accomplished with relative ease. But the determination of which caspases are active in a cellular context is much more challenging. This is because commercially available small molecule substrates and inhibitors do not display sufficient specificity to dissect the complex interplay of caspase pathways. Here we describe procedures that can be used to validate which caspases are active in cell culture models and determine which caspases are responsible for specific cleavage events. We also recommend methods for working with recombinant initiator caspases in vitro and suggest ways to accurately assess the cleavage efficiency of natural caspase substrates.
Collapse
Affiliation(s)
- Cristina Pop
- Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, La Jolla, California, USA
| | | | | |
Collapse
|
23
|
Abstract
Caspases are central to the execution of apoptosis. Their proteolytic activity is responsible for the demise of cells in many physiological and pathological states. Great advances in understanding caspases have been made using recombinant caspase expression and enzymatic characterization. Assays to measure caspase activity in apoptotic cell extracts and the development of a reconstituted cell-free assay were also critical in establishing the hierarchy in the caspase activation cascade and comprehend how caspase-9 is activated by the apoptosome. More recently, new tools such as activity-based probes allowed us to detect caspase activation in their working environment providing readout of the system with minimal interference. This chapter describes some of the methods used by our group to study the activation mechanisms of caspases and their activity.
Collapse
|
24
|
Karki P, Dahal GR, Park IS. Both dimerization and interdomain processing are essential for caspase-4 activation. Biochem Biophys Res Commun 2007; 356:1056-61. [PMID: 17400183 DOI: 10.1016/j.bbrc.2007.03.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/19/2007] [Indexed: 11/17/2022]
Abstract
A subgroup of caspase family of inflammatory caspases (-1, -4, -5, -11, and -12) play important role during cytokine maturation and inflammation but their regulation is not well understood as much as the initiator and effector caspases. Here, the biochemical mechanism of caspase-4 activation is elucidated. With citrate, a well-known kosmotrope to enhance the monomer-dimer transition, caspase-4 was activated approximately 40 times that was comparable with that of caspase-9 ( approximately 75-fold increments). The activation reaction was mainly bimolecular (n=1.67+/-0.04) for monomeric caspase-4. In addition, the interdomain cleavage was also responsible to activate caspase-4 more than 100-fold, again comparable with that of effector caspases where the proteolytic processing is considered as the sole activation mechanism. Thus, caspase-4 shows a novel activation mechanism of the synergism between dimerization and proteolysis that sharply differs from the established activation mechanism of dimerization for initiators and interdomain cleavage for effector caspases.
Collapse
Affiliation(s)
- Pratap Karki
- Research Center for Proteineous Materials (RCPM) and Department of Bio-Materials Engineering, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | |
Collapse
|
25
|
Abstract
Recent work on the initial switches that trigger cell death has revealed surprising inventions of nature that ensure the ordered suicide of a cell that has been selected for demise. Particularly intriguing is how a signal--the release of cytochrome c from the mitochondria--is translated into the activation of the death cascade, which leads to a point of no return. Now there is new understanding of how this crucial process is delicately handled by a cytosolic signalling platform known as the apoptosome. The formation of the apoptosome and the activation of its effector, caspase-9, reveals a sophisticated mechanism that might be more common than was initially thought.
Collapse
Affiliation(s)
- Stefan J Riedl
- Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
26
|
Stegh AH, Kim H, Bachoo RM, Forloney KL, Zhang J, Schulze H, Park K, Hannon GJ, Yuan J, Louis DN, DePinho RA, Chin L. Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev 2007; 21:98-111. [PMID: 17210792 PMCID: PMC1759904 DOI: 10.1101/gad.1480007] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glioblastoma (GBM) is an astrocytic brain tumor characterized by an aggressive clinical course and intense resistance to all therapeutic modalities. Here, we report the identification and functional characterization of Bcl2L12 (Bcl2-like-12) that is robustly expressed in nearly all human primary GBMs examined. Enforced Bcl2L12 expression confers marked apoptosis resistance in primary cortical astrocytes, and, conversely, its RNA interference (RNAi)-mediated knockdown sensitizes human glioma cell lines toward apoptosis in vitro and impairs tumor growth with increased intratumoral apoptosis in vivo. Mechanistically, Bcl2L12 expression does not affect cytochrome c release or apoptosome-driven caspase-9 activation, but instead inhibits post-mitochondrial apoptosis signaling at the level of effector caspase activation. One of Bcl2L12's mechanisms of action stems from its ability to interact with and neutralize caspase-7. Notably, while enforced Bcl2L12 expression inhibits apoptosis, it also engenders a pronecrotic state, which mirrors the cellular phenotype elicited by genetic or pharmacologic inhibition of post-mitochondrial apoptosis molecules. Thus, Bcl2L12 contributes to the classical tumor biological features of GBM such as intense apoptosis resistance and florid necrosis, and may provide a target for enhanced therapeutic responsiveness of this lethal cancer.
Collapse
Affiliation(s)
- Alexander H. Stegh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Hyunggee Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Robert M. Bachoo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Center for Neuro-Oncology and Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Kristin L. Forloney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jean Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Harald Schulze
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Kevin Park
- Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David N. Louis
- Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ronald A. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Medicine and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- E-MAIL ; FAX (617) 632-6069
| | - Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Center for Applied Cancer Science and the Belfer Foundation Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Corresponding authors.E-MAIL ; FAX (617) 582-8169
| |
Collapse
|
27
|
Berger AB, Sexton KB, Bogyo M. Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 2006; 16:961-3. [PMID: 17117159 DOI: 10.1038/sj.cr.7310112] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Eckhart L, Kittel C, Ballaun C, Tschachler E. Caspase-15 is autoprocessed at two sites that contain an aspartate residue in the P1' position. Biochem Biophys Res Commun 2006; 350:955-9. [PMID: 17045244 DOI: 10.1016/j.bbrc.2006.09.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 09/26/2006] [Indexed: 11/25/2022]
Abstract
Our recent characterization of porcine caspase-15 suggested that the amino terminus of the small catalytic subunit is formed by proteolytic processing between the consecutive aspartate residues D277 and D278. Since a charged residue (D278) is highly unusual in the P1' position of a caspase cleavage site, we further characterized the mechanism of caspase-15 autoproteolysis. Amino acid sequence alignments showed that D277 and D278 as well as another pair of aspartates, D270 and D271, were evolutionarily conserved among species of the mammalian clade Laurasiatheria. Site-directed mutations of these four residues and analysis of recombinant proteins showed that D270 was crucial for autoproteolysis whereas the three other aspartates were dispensable for separation of the catalytic subunits. Mutation of D270 prevented catalytic activation and abolished subsequent processing at D277. Together with previous reports, our results show that caspase-15, unlike all other caspases, efficiently cleaves sites with an aspartate in the P1' position.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
29
|
|
30
|
Berger AB, Witte MD, Denault JB, Sadaghiani AM, Sexton KMB, Salvesen GS, Bogyo M. Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes. Mol Cell 2006; 23:509-21. [PMID: 16916639 DOI: 10.1016/j.molcel.2006.06.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/05/2006] [Accepted: 06/13/2006] [Indexed: 12/28/2022]
Abstract
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.
Collapse
Affiliation(s)
- Alicia B Berger
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|