1
|
Sureshkumar S, Chhabra A, Guo YL, Balasubramanian S. Simple sequence repeats and their expansions: role in plant development, environmental response and adaptation. THE NEW PHYTOLOGIST 2025. [PMID: 40325839 DOI: 10.1111/nph.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 05/07/2025]
Abstract
Repetitive DNA is a feature of all organisms, ranging from archaea and plants to humans. DNA repeats can be seen both in coding and in noncoding regions of the genome. Due to the recurring nature of the sequences, simple DNA repeats tend to be more prone to errors during replication and repair, resulting in variability in their unit length. This feature of simple sequence repeats led to their use as molecular markers for mapping traits in diverse organisms. Advances in genomics, and the ever-reducing costs of genome sequencing have empowered us to assess the functional impacts of DNA repeats. The variability in repeat lengths can cause phenotypic differences depending on where they are present in the genome. Variability in the repeat length in coding regions of genes results in poly amino acid stretches that appear to interfere with protein function, including the perturbation of protein-protein interactions with diverse phenotypic impacts. These are often common allelic variations that can significantly impact evolutionary dynamics. In extreme situations, repeats can undergo massive expansions and appear as outliers. Repeat expansions underlie several genetic defects in plants to diseases in humans. This review systematically analyses tandem DNA repeats in plants, their role in development and environmental response and adaptation in plants. We identify and synthesise emerging themes, differentiate repeat length variability and repeat expansions, and argue that many repeat-associated phenotypes in plants are yet to be discovered. We emphasise the underexplored nature and immense potential of this area of research, particularly in plants, and suggest ways in which this can be achieved and how it might contribute to evolution and agricultural productivity.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Aaryan Chhabra
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Ya-Long Guo
- State Key Laboratory of Plant Diversity and Speciality Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
2
|
Ouyang JPT, Shukla S, Bensalah M, Parker R. DM1 repeat-expanded RNAs confer RNA toxicity as individual nuclear-retained RNAs. Cell Rep 2025; 44:115582. [PMID: 40238630 DOI: 10.1016/j.celrep.2025.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Repeat expansions of short nucleotide sequences underlie over 40 neuromuscular diseases, including myotonic dystrophy type 1 (DM1). The DM1 CUG repeat RNA is thought to accumulate in RNA nuclear foci that sequester RNA-binding proteins, including muscleblind-like splicing regulator 1 (MBNL1). To understand the composition and formation of such nuclear foci, we employed quantitative imaging in a patient-derived myotube model. We find that most "foci" are comprised of single RNAs and that these single RNA species contribute to the sequestration of MBNL1 protein. Rare foci can contain upwards of 25 distinct RNA species, but these foci form from transcriptional bursting and dissociate with time. Last, we find that multimeric CUG repeat RNA foci are dependent upon MBNL proteins. Altogether, these observations argue that the persistence of nuclear-retained CUG RNAs, independent of higher-order RNA assemblies, titrates MBNL1 and contributes to disease progression.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Mona Bensalah
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Todorow V, Hintze S, Schoser B, Meinke P. Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies. Biomedicines 2025; 13:606. [PMID: 40149583 PMCID: PMC11940573 DOI: 10.3390/biomedicines13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies-DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery-Dreifuss muscular dystrophy (EDMD)-to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers.
Collapse
Affiliation(s)
- Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
4
|
Wan L, Zhang C, Liu Y, Zhang J, He L, Zhang Y, Chen G, Guo P, Han D. Small CAG Repeat RNA Forms a Duplex Structure with Sticky Ends That Promote RNA Condensation. J Am Chem Soc 2025; 147:3813-3822. [PMID: 39807887 DOI: 10.1021/jacs.4c16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Biomolecular condensation lays the foundation of forming biologically important membraneless organelles, but abnormal condensation processes are often associated with human diseases. Ribonucleic acid (RNA) plays a critical role in the formation of biomolecular condensates by mediating the phase transition through its interactions with proteins and other RNAs. However, the physicochemical principles governing RNA phase transitions, especially for short RNAs, remain inadequately understood. Here, we report that small CAG repeat (sCAG) RNAs composed of six to seven CAG repeats, which are pathogenic factors in Huntington's disease, undergo phase transition in vitro and in cells. Leveraging solution nuclear magnetic resonance spectroscopy and advanced coarse-grained molecular dynamic simulations, we reveal that sCAG RNAs form duplex structures with 3'-sticky ends, where the GC stickers initiate intermolecular crosslinking and promote the formation of RNA condensates. Furthermore, we demonstrate that sCAG RNAs can form cellular condensates within nuclear speckles. Our work suggests that the RNA phase transition can be promoted by specific structural motifs, reducing the reliance on sequence length and multivalence. This opens avenues for exploring new functions of RNA in biomolecular condensates and designing novel biomaterials based on RNA condensation.
Collapse
Affiliation(s)
- Liqi Wan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | | - Yu Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiacheng Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lei He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | | | - Pei Guo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
5
|
Wozna‐Wysocka M, Jazurek‐Ciesiolka M, Przybyl L, Wronka D, Misiorek JO, Suszynska‐Zajczyk J, Figura G, Ciesiolka A, Sobieszczanska P, Zeller A, Niemira M, Switonski PM, Fiszer A. Insights into RNA-mediated pathology in new mouse models of Huntington's disease. FASEB J 2024; 38:e70182. [PMID: 39604147 PMCID: PMC11602643 DOI: 10.1096/fj.202401465r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative polyglutamine (polyQ) disease resulting from the expansion of CAG repeats located in the ORF of the huntingtin gene (HTT). The extent to which mutant mRNA-driven disruptions contribute to HD pathogenesis, particularly in comparison to the dominant mechanisms related to the gain-of-function effects of the mutant polyQ protein, is still debatable. To evaluate this contribution in vivo, we generated two mouse models through a knock-in strategy at the Rosa26 locus. These models expressed distinct variants of human mutant HTT cDNA fragment: a translated variant (HD/100Q model, serving as a reference) and a nontranslated variant (HD/100CAG model). The cohorts of animals were subjected to a broad spectrum of molecular, behavioral, and cognitive analysis for 21 months. Behavioral testing revealed alterations in both models, with the HD/100Q model exhibiting late disease phenotype. The rotarod, static rod, and open-field tests showed some motor deficits in HD/100CAG and HD/100Q model mice during the light phase, while ActiMot indicated hyperkinesis during the dark phase. Both models also exhibited certain gene deregulations in the striatum that are related to disrupted pathways and phenotype alterations observed in HD. In conclusion, we provide in vivo evidence for a minor contributory role of mutant RNA in HD pathogenesis. The separated effects resulting from the presence of mutant RNA in the HD/100CAG model led to less severe but, to some extent, similar types of impairments as in the HD/100Q model. Increased anxiety was one of the most substantial effects caused by mutant HTT RNA.
Collapse
Affiliation(s)
| | | | - Lukasz Przybyl
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Dorota Wronka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | | | | | - Grzegorz Figura
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Adam Ciesiolka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Gene Expression, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | | | - Anna Zeller
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | - Magdalena Niemira
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | | | - Agnieszka Fiszer
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| |
Collapse
|
6
|
Kudriavskii VV, Goncharov AO, Eremeev AV, Ruchko ES, Veselovsky VA, Klimina KM, Bogomazova AN, Lagarkova MA, Moshkovskii SA, Kliuchnikova AA. RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1474-1489. [PMID: 39245456 DOI: 10.1134/s0006297924080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.
Collapse
Affiliation(s)
- Viacheslav V Kudriavskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Anton O Goncharov
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Evgenii S Ruchko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergei A Moshkovskii
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Max Planck Institute for Interdisciplinary Research, Göttingen, 37077, Germany.
| | - Anna A Kliuchnikova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| |
Collapse
|
7
|
Mina A, Pavletic S, Aplan PD. The evolution of preclinical models for myelodysplastic neoplasms. Leukemia 2024; 38:683-691. [PMID: 38396286 PMCID: PMC10997513 DOI: 10.1038/s41375-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Myelodysplastic Neoplasms (MDS) are a group of clonal disorders characterized by ineffective hematopoiesis and morphologic dysplasia. Clinical manifestations of MDS vary widely and are dictated in large part by a range of genetic aberrations. The lack of robust in vitro models for MDS has limited the ability to conduct high throughput drug screens, which in turn has hampered the development of novel therapies for MDS. There are very few well-characterized MDS cell lines, and the available cell lines expand poorly in vitro. Conventional xenograft mouse models can provide an in vivo vessel to provide growth of cancer cells, but human MDS cells engraft poorly. Three-dimensional (3D) scaffold models that form human "ossicles" represent a promising new approach and can reproduce the intricate communication between hematopoietic stem and progenitor cells and their environment. Genetically engineered mice utilize specific mutations and may not represent the entire array of human MDS; however, genetically engineered mice provided in vivo proof of principle for novel agents such as luspatercept, demonstrating the clinical utility of this approach. This review offers an overview of available preclinical MDS models and potential approaches to accelerate accurate clinical translation.
Collapse
Affiliation(s)
- Alain Mina
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Steven Pavletic
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Aplan
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference. Cell Death Dis 2022; 13:1078. [PMID: 36585400 PMCID: PMC9803637 DOI: 10.1038/s41419-022-05494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.
Collapse
|
10
|
Peng SI, Leong LI, Sun JKL, Chen ZS, Chow HM, Chan HYE. A peptide inhibitor that rescues polyglutamine-induced synaptic defects and cell death through suppressing RNA and protein toxicities. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:102-115. [PMID: 35795484 PMCID: PMC9240964 DOI: 10.1016/j.omtn.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyglutamine (polyQ) diseases, including spinocerebellar ataxias and Huntington's disease, are progressive neurodegenerative disorders caused by CAG triplet-repeat expansion in the coding regions of disease-associated genes. In this study, we found that neurotoxic small CAG (sCAG) RNA species, microscopic Ataxin-2 CAG RNA foci, and protein aggregates exist as independent entities in cells. Synaptic defects and neurite outgrowth abnormalities were observed in mutant Ataxin-2-expressing mouse primary cortical neurons. We examined the suppression effects of the CAG RNA-binding peptide beta-structured inhibitor for neurodegenerative diseases (BIND) in mutant Ataxin-2-expressing mouse primary cortical neurons and found that both impaired synaptic phenotypes and neurite outgrowth defects were rescued. We further demonstrated that BIND rescued cell death through inhibiting sCAG RNA production, Ataxin-2 CAG RNA foci formation, and mutant Ataxin-2 protein translation. Interestingly, when the expanded CAG repeats in the mutant Ataxin-2 transcript was interrupted with the alternative glutamine codon CAA, BIND's inhibitory effect on mutant protein aggregation was lost. We previously demonstrated that BIND interacts physically and directly with expanded CAG RNA sequences. Our data provide evidence that the BIND peptide associates with transcribed mutant CAG RNA to inhibit the formation of toxic species, including sCAG RNA, RNA foci, and polyQ protein translation and aggregation.
Collapse
Affiliation(s)
- Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Lok I. Leong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
11
|
Braun M, Shoshani S, Tabach Y. Transcriptome changes in DM1 patients’ tissues are governed by the RNA interference pathway. Front Mol Biosci 2022; 9:955753. [PMID: 36060259 PMCID: PMC9437208 DOI: 10.3389/fmolb.2022.955753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by pathogenic expansions of CTG repeats. The expanded repeats are transcribed to long RNA and induce cellular toxicity. Recent studies suggest that the CUG repeats are processed by the RNA interference (RNAi) pathway to generate small interfering repeated RNA (siRNA). However, the effects of the CTG repeat-derived siRNAs remain unclear. We hypothesize that the RNAi machinery in DM1 patients generates distinct gene expression patterns that determine the disease phenotype in the individual patient. The abundance of genes with complementary repeats that are targeted by siRNAs in each tissue determines the way that the tissue is affected in DM1. We integrated and analyzed published transcriptome data from muscle, heart, and brain biopsies of DM1 patients, and revealed shared, characteristic changes that correlated with disease phenotype. These signatures are overrepresented by genes and transcription factors bearing endogenous CTG/CAG repeats and are governed by aberrant activity of the RNAi machinery, miRNAs, and a specific gain-of-function of the CTG repeats. Computational analysis of the DM1 transcriptome enhances our understanding of the complex pathophysiology of the disease and may reveal a path for cure.
Collapse
|
12
|
Baud A, Derbis M, Tutak K, Sobczak K. Partners in crime: Proteins implicated in
RNA
repeat expansion diseases. WIRES RNA 2022; 13:e1709. [PMID: 35229468 PMCID: PMC9539487 DOI: 10.1002/wrna.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Baud
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Magdalena Derbis
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Katarzyna Tutak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
13
|
Braun M, Shoshani S, Teixeira J, Mellul Shtern A, Miller M, Granot Z, Fischer SE, Garcia SMA, Tabach Y. Asymmetric inheritance of RNA toxicity in C. elegans expressing CTG repeats. iScience 2022; 25:104246. [PMID: 35494247 PMCID: PMC9051633 DOI: 10.1016/j.isci.2022.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases and cause RNA toxicity and multisystemic symptoms that worsen with age. Through an unclear mechanism, RNA toxicity can trigger severe disease manifestation in infants if the repeats are inherited from their mother. Here we use Caenorhabditis elegans bearing expanded CUG repeats to show that this asymmetric intergenerational inheritance of toxicity contributes to disease pathogenesis. In addition, we show that this mechanism is dependent on small RNA pathways with maternal repeat-derived small RNAs causing transcriptomic changes in the offspring, reduced motility, and shortened lifespan. We rescued the toxicity phenotypes in the offspring by perturbing the RNAi machinery in the affected hermaphrodites. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring, causing disease phenotypes through intergenerational epigenetic inheritance. Maternal origin of expanded CUG repeats induces RNA toxicity in Caenorhabditis elegans offspring Offspring of affected hermaphrodites show molecular and phenotypic disease phenotypes The RNAi machinery is directly related to the maternal inheritance of RNA toxicity Altering the RNAi machinery in affected hermaphrodites rescues toxicity in offspring
Collapse
Affiliation(s)
- Maya Braun
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shachar Shoshani
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
| | - Anna Mellul Shtern
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sylvia E.J. Fischer
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana M.D. A. Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
- Corresponding author
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author
| |
Collapse
|
14
|
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 2022; 23:286-301. [PMID: 34815573 PMCID: PMC8969093 DOI: 10.1038/s41580-021-00430-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/02/2023]
Abstract
Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.
Collapse
Affiliation(s)
- Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Sun Hur
- Harvard Medical School & Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Aurintricarboxylic Acid Decreases RNA Toxicity in a C. elegans Model of Repeat Expansions. Toxins (Basel) 2021; 13:toxins13120910. [PMID: 34941747 PMCID: PMC8706575 DOI: 10.3390/toxins13120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Pathologic expansions of DNA nucleotide tandem repeats may generate toxic RNA that triggers disease phenotypes. RNA toxicity is the hallmark of multiple expansion repeat disorders, including myotonic dystrophy type 1 (DM1). To date, there are no available disease-modifying therapies for DM1. Our aim was to use drug repositioning to ameliorate the phenotype of affected individuals in a nematode model of DM1. As the RNA interference pathway plays a key role in mediating RNA toxicity, we investigated the effect of aurintricarboxylic acid. We demonstrated that by perturbing the RNA interference machinery using aurintricarboxylic acid, we could annihilate the RNA toxicity and ameliorate the phenotype. As our approach targets a universal disease mechanism, it is potentially relevant for more expansion repeat disorders.
Collapse
|
17
|
Todorow V, Hintze S, Kerr ARW, Hehr A, Schoser B, Meinke P. Transcriptome Analysis in a Primary Human Muscle Cell Differentiation Model for Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:8607. [PMID: 34445314 PMCID: PMC8395314 DOI: 10.3390/ijms22168607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by CTG-repeat expansions leading to a complex pathology with a multisystemic phenotype that primarily affects the muscles and brain. Despite a multitude of information, especially on the alternative splicing of several genes involved in the pathology, information about additional factors contributing to the disease development is still lacking. We performed RNAseq and gene expression analyses on proliferating primary human myoblasts and differentiated myotubes. GO-term analysis indicates that in myoblasts and myotubes, different molecular pathologies are involved in the development of the muscular phenotype. Gene set enrichment for splicing reveals the likelihood of whole, differentiation stage specific, splicing complexes that are misregulated in DM1. These data add complexity to the alternative splicing phenotype and we predict that it will be of high importance for therapeutic interventions to target not only mature muscle, but also satellite cells.
Collapse
Affiliation(s)
- Vanessa Todorow
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Alastair R W Kerr
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Andreas Hehr
- Centre for Human Genetics, 93047 Regensburg, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
18
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
19
|
Huntingtin and Its Role in Mechanisms of RNA-Mediated Toxicity. Toxins (Basel) 2021; 13:toxins13070487. [PMID: 34357961 PMCID: PMC8310054 DOI: 10.3390/toxins13070487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is caused by a CAG-repeat expansion mutation in the Huntingtin (HTT) gene. It is characterized by progressive psychiatric and neurological symptoms in combination with a progressive movement disorder. Despite the ubiquitous expression of HTT, pathological changes occur quite selectively in the central nervous system. Since the discovery of HD more than 150 years ago, a lot of research on molecular mechanisms contributing to neurotoxicity has remained the focal point. While traditionally, the protein encoded by the HTT gene remained the cynosure for researchers and was extensively reviewed elsewhere, several studies in the last few years clearly indicated the contribution of the mutant RNA transcript to cellular dysfunction as well. In this review, we outline recent studies on RNA-mediated molecular mechanisms that are linked to cellular dysfunction in HD models. These mechanisms include mis-splicing, aberrant translation, deregulation of the miRNA machinery, deregulated RNA transport and abnormal regulation of mitochondrial RNA. Furthermore, we summarize recent therapeutical approaches targeting the mutant HTT transcript. While currently available treatments are of a palliative nature only and do not halt the disease progression, recent clinical studies provide hope that these novel RNA-targeting strategies will lead to better therapeutic approaches.
Collapse
|
20
|
Luo QJ, Zhang J, Li P, Wang Q, Zhang Y, Roy-Chaudhuri B, Xu J, Kay MA, Zhang QC. RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat Commun 2021; 12:3397. [PMID: 34099665 PMCID: PMC8184798 DOI: 10.1038/s41467-021-23607-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2021] [Indexed: 01/27/2023] Open
Abstract
It is known that an RNA's structure determines its biological function, yet current RNA structure probing methods only capture partial structure information. The ability to measure intact (i.e., full length) RNA structures will facilitate investigations of the functions and regulation mechanisms of small RNAs and identify short fragments of functional sites. Here, we present icSHAPE-MaP, an approach combining in vivo selective 2'-hydroxyl acylation and mutational profiling to probe intact RNA structures. We further showcase the RNA structural landscape of substrates bound by human Dicer based on the combination of RNA immunoprecipitation pull-down and icSHAPE-MaP small RNA structural profiling. We discover distinct structural categories of Dicer substrates in correlation to both their binding affinity and cleavage efficiency. And by tertiary structural modeling constrained by icSHAPE-MaP RNA structural data, we find the spatial distance measuring as an influential parameter for Dicer cleavage-site selection.
Collapse
Affiliation(s)
- Qing-Jun Luo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jinsong Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Pan Li
- Ministry of Education Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qing Wang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Freenome Holdings Inc., South San Francisco, CA, USA
| | - Biswajoy Roy-Chaudhuri
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Impossible Foods Inc., Redwood City, CA, USA
| | - Jianpeng Xu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Qiangfeng Cliff Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
21
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
22
|
Peng S, Guo P, Lin X, An Y, Sze KH, Lau MHY, Chen ZS, Wang Q, Li W, Sun JKL, Ma SY, Chan TF, Lau KF, Ngo JCK, Kwan KM, Wong CH, Lam SL, Zimmerman SC, Tuccinardi T, Zuo Z, Au-Yeung HY, Chow HM, Chan HYE. CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022940118. [PMID: 33947817 PMCID: PMC8126783 DOI: 10.1073/pnas.2022940118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.
Collapse
Affiliation(s)
- Shaohong Peng
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Matthew Ho Yan Lau
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sum Yi Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China;
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, Fernández-Costa JM, Ramón-Azcón J. Bioengineered in vitro3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication 2021; 13. [PMID: 33836519 DOI: 10.1088/1758-5090/abf6ae] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models andin vitrotwo-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the firstin vitro3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.
Collapse
Affiliation(s)
- Xiomara Fernández-Garibay
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - María A Ortega
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Estefanía Cerro-Herreros
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), c/Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), c/Martí i Franquès 1-11, E08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, E28029 Madrid, Spain
| | - Rubén Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain.,Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Juan M Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 10-12, E08028 Barcelona, Spain.,Institució Catalana de Reserca I Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| |
Collapse
|
24
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
25
|
Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol 2021; 141:565-584. [PMID: 33547932 DOI: 10.1007/s00401-021-02272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.
Collapse
|
26
|
Johnson SJ, Cooper TA. Overlapping mechanisms of lncRNA and expanded microsatellite RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1634. [PMID: 33191580 PMCID: PMC7880542 DOI: 10.1002/wrna.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
RNA has major regulatory roles in a wide range of biological processes and a surge of RNA research has led to the classification of numerous functional RNA species. One example is long noncoding RNAs (lncRNAs) that are structurally complex transcripts >200 nucleotides (nt) in length and lacking a canonical open reading frame (ORF). Despite a general lack of sequence conservation and low expression levels, many lncRNAs have been shown to have functionality in diverse biological processes as well as in mechanisms of disease. In parallel with the growing understanding of lncRNA functions, there is a growing subset of microsatellite expansion disorders in which the primary mechanism of pathogenesis is an RNA gain of function arising from RNA transcripts from the mutant allele. Microsatellite expansion disorders are caused by an expansion of short (3-10 nt) repeats located within coding genes. Expanded repeat-containing RNA mediates toxicity through multiple mechanisms, the details of which remain only partially understood. The purpose of this review is to highlight the links between functional mechanisms of lncRNAs and the potential pathogenic mechanisms of expanded microsatellite RNA. These shared mechanisms include protein sequestration, peptide translation, micro-RNA (miRNA) processing, and miRNA sequestration. Recognizing the parallels between the normal functions of lncRNAs and the negative impact of expanded microsatellite RNA on biological processes can provide reciprocal understanding to the roles of both RNA species. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Sara J Johnson
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas A Cooper
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Zhang N, Bewick B, Xia G, Furling D, Ashizawa T. A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. Front Genet 2020; 11:594576. [PMID: 33362853 PMCID: PMC7758406 DOI: 10.3389/fgene.2020.594576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Brittani Bewick
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangbin Xia
- Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Denis Furling
- Institut National de la Sante et de la Recherche Medicale (INSERM), Centre de Recherche en Myologie (CRM), Association Institut de Myologie, Sorbonne Université, Paris, France
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
28
|
Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc 2020; 96:716-730. [PMID: 33269537 DOI: 10.1111/brv.12674] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most prevalent form of muscular dystrophy in adults and yet there are currently no treatment options. Although this disease causes multisystemic symptoms, it is mainly characterised by myopathy or diseased muscles, which includes muscle weakness, atrophy, and myotonia, severely affecting the lives of patients worldwide. On a molecular level, DM1 is caused by an expansion of CTG repeats in the 3' untranslated region (3'UTR) of the DM1 Protein Kinase (DMPK) gene which become pathogenic when transcribed into RNA forming ribonuclear foci comprised of auto complementary CUG hairpin structures that can bind proteins. This leads to the sequestration of the muscleblind-like (MBNL) family of proteins, depleting them, and the abnormal stabilisation of CUGBP Elav-like family member 1 (CELF1), enhancing it. Traditionally, DM1 research has focused on this RNA toxicity and how it alters MBNL and CELF1 functions as key splicing regulators. However, other proteins are affected by the toxic DMPK RNA and there is strong evidence that supports various signalling cascades playing an important role in DM1 pathogenesis. Specifically, the impairment of protein kinase B (AKT) signalling in DM1 increases autophagy, apoptosis, and ubiquitin-proteasome activity, which may also be affected in DM1 by AMP-activated protein kinase (AMPK) downregulation. AKT also regulates CELF1 directly, by affecting its subcellular localisation, and indirectly as it inhibits glycogen synthase kinase 3 beta (GSK3β), which stabilises the repressive form of CELF1 in DM1. Another kinase that contributes to CELF1 mis-regulation, in this case by hyperphosphorylation, is protein kinase C (PKC). Additionally, it has been demonstrated that fibroblast growth factor-inducible 14 (Fn14) is induced in DM1 and is associated with downstream signalling through the nuclear factor κB (NFκB) pathways, associating inflammation with this disease. Furthermore, MBNL1 and CELF1 play a role in cytoplasmic processes involved in DM1 myopathy, altering proteostasis and sarcomere structure. Finally, there are many other elements that could contribute to the muscular phenotype in DM1 such as alterations to satellite cells, non-coding RNA metabolism, calcium dysregulation, and repeat-associated non-ATG (RAN) translation. This review aims to organise the currently dispersed knowledge on the different pathways affected in DM1 and discusses the unexplored connections that could potentially help in providing new therapeutic targets in DM1 research.
Collapse
Affiliation(s)
- Lauren L Ozimski
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain.,Arthex Biotech, Catedrático Escardino, 9, Paterna, Valencia, 46980, Spain
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| |
Collapse
|
29
|
Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. Int J Mol Sci 2020; 21:ijms21197223. [PMID: 33007856 PMCID: PMC7583940 DOI: 10.3390/ijms21197223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson's disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.
Collapse
|
30
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Lanni S, Pearson CE. Molecular genetics of congenital myotonic dystrophy. Neurobiol Dis 2019; 132:104533. [PMID: 31326502 DOI: 10.1016/j.nbd.2019.104533] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease showing strong genetic anticipation, and is caused by the expansion of a CTG repeat tract in the 3'-UTR of the DMPK gene. Congenital Myotonic Dystrophy (CDM1) represents the most severe form of the disease, with prenatal onset, symptoms distinct from adult onset DM1, and a high rate of perinatal mortality. CDM1 is usually associated with very large CTG expansions, but this correlation is not absolute and cannot explain the distinct clinical features and the strong bias for maternal transmission. This review focuses upon the molecular and epigenetic factors that modulate disease severity and might be responsible for CDM1. Changes in the epigenetic status of the DM1 locus and in gene expression have recently been observed. Increasing evidence supports a role of a CTCF binding motif as a cis-element, upstream of the DMPK CTG tract, whereby CpG methylation of this site regulates the interaction of the insulator protein CTCF as a modulating trans-factor responsible for the inheritance and expression of CDM1.
Collapse
Affiliation(s)
- Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada; University of Toronto, Program of Molecular Genetics, Canada.
| |
Collapse
|
32
|
Nahalka J. The role of the protein-RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76:2043-2058. [PMID: 30980111 PMCID: PMC11105320 DOI: 10.1007/s00018-019-03096-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous RNAs that pair and bind to sites on mRNAs to direct post-transcriptional repression. However, there is a possibility that microRNAs directly influence protein structure and activity, and this influence can be termed post-translational riboregulation. This conceptual review explores the literature on neurodegenerative disorders. Research on the association between neurodegeneration and RNA-repeat toxicity provides data that support a protein-RNA recognition code. For example, this code explains why hnRNP H and SFPQ proteins, which are involved in amyotrophic lateral sclerosis, are sequestered by the (GGGGCC)n repeat sequence. Similarly, it explains why MNBL proteins and (CTG)n repeats in RNA, which are involved in myotonic dystrophy, are sequestered into RNA foci. Using this code, proteins involved in diseases can be identified. A simple protein BLAST search of the human genome for amino acid repeats that correspond to the nucleotide repeats reveals new proteins among already known proteins that are involved in diseases. For example, the (CAG)n repeat sequence, when transcribed into possible peptide sequences, leads to the identification of PTCD3, Rem2, MESP2, SYPL2, WDR33, COL23A1, and others. After confirming this approach on RNA repeats, in the next step, the code was used in the opposite manner. Proteins that are involved in diseases were compared with microRNAs involved in those diseases. For example, a reasonable correspondence of microRNA 9 and 107 with amyloid-β-peptide (Aβ42) was identified. In the last step, a miRBase search for micro-nucleotides, obtained by transcription of a prion amino acid sequence, revealed new microRNAs and microRNAs that have previously been identified as involved in prion diseases. This concept provides a useful key for designing RNA or peptide probes.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovak Republic.
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, 94976, Nitra, Slovak Republic.
| |
Collapse
|
33
|
Guo WT, Wang Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 2019; 76:1697-1711. [PMID: 30694346 PMCID: PMC11105204 DOI: 10.1007/s00018-019-03020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Biologic function of the majority of microRNAs (miRNAs) is still unknown. Uncovering the function of miRNAs is hurdled by redundancy among different miRNAs. The deletion of Dgcr8 leads to the deficiency in producing all canonical miRNAs, therefore, overcoming the redundancy issue. Dgcr8 knockout strategy has been instrumental in understanding the function of miRNAs in a variety of cells in vitro and in vivo. In this review, we will first give a brief introduction about miRNAs, miRNA biogenesis pathway and the role of Dgcr8 in miRNA biogenesis. We will then summarize studies performed with Dgcr8 knockout cell models with a focus on embryonic stem cells. After that, we will summarize results from various in vivo Dgcr8 knockout models. Given significant phenotypic differences in various tissues between Dgcr8 and Dicer knockout, we will also briefly review current progresses on understanding miRNA-independent functions of miRNA biogenesis factors. Finally, we will discuss the potential use of a new strategy to stably express miRNAs in Dgcr8 knockout cells. In future, Dgcr8 knockout approaches coupled with innovations in miRNA rescue strategy may provide further insights into miRNA functions in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
34
|
Qawasmi L, Braun M, Guberman I, Cohen E, Naddaf L, Mellul A, Matilainen O, Roitenberg N, Share D, Stupp D, Chahine H, Cohen E, Garcia SM, Tabach Y. Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. J Mol Biol 2019; 431:1711-1728. [DOI: 10.1016/j.jmb.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022]
|
35
|
Abstract
Left-handed Z-DNA/Z-RNA is bound with high affinity by the Zα domain protein family that includes ADAR (a double-stranded RNA editing enzyme), ZBP1 and viral orthologs regulating innate immunity. Loss-of-function mutations in ADAR p150 allow persistent activation of the interferon system by Alu dsRNAs and are causal for Aicardi-Goutières Syndrome. Heterodimers of ADAR and DICER1 regulate the switch from RNA- to protein-centric immunity. Loss of DICER1 function produces age-related macular degeneration, a different type of Alu-mediated disease. The overlap of Z-forming sites with those for the signal recognition particle likely limits invasion of primate genomes by Alu retrotransposons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42, 8th Street, Unit 3412, Charlestown, MA 02129 USA
| |
Collapse
|
36
|
Neueder A. RNA-Mediated Disease Mechanisms in Neurodegenerative Disorders. J Mol Biol 2018; 431:1780-1791. [PMID: 30597161 DOI: 10.1016/j.jmb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
RNA is accurately entangled in virtually all pathways that maintain cellular homeostasis. To name but a few, RNA is the "messenger" between DNA encoded information and the resulting proteins. Furthermore, RNAs regulate diverse processes by forming DNA::RNA or RNA::RNA interactions. Finally, RNA itself can be the scaffold for ribonucleoprotein complexes, for example, ribosomes or cellular bodies. Consequently, disruption of any of these processes can lead to disease. This review describes known and emerging RNA-based disease mechanisms like interference with regular splicing, the anomalous appearance of RNA-protein complexes and uncommon RNA species, as well as non-canonical translation. Due to the complexity and entanglement of the above-mentioned pathways, only few drugs are available that target RNA-based disease mechanisms. However, advances in our understanding how RNA is involved in and modulates cellular homeostasis might pave the way to novel treatments.
Collapse
Affiliation(s)
- Andreas Neueder
- Experimental Neurology, Department of Neurology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
37
|
Murmann AE, Yu J, Opal P, Peter ME. Trinucleotide Repeat Expansion Diseases, RNAi, and Cancer. Trends Cancer 2018; 4:684-700. [PMID: 30292352 DOI: 10.1016/j.trecan.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023]
Abstract
Many neurodegenerative diseases are caused by unstable trinucleotide repeat (TNR) expansions located in disease-associated genes. siRNAs based on CAG repeat expansions effectively kill cancer cell lines in vitro through RNAi. They also cause significant reduction in tumor growth in a human ovarian cancer mouse model with no toxicity to the treated mice. This suggests that cancer cells are particularly sensitive to CAG TNR-derived siRNAs, and explains a reported inverse correlation between the length of CAG TNRs and reduced global cancer incidences in some CAG TNR diseases. This review discusses both mutant proteins and mutant RNAs as a cause of TNR diseases, with a focus on RNAi and its role in contributing to disease pathology and in suppressing cancer.
Collapse
Affiliation(s)
- Andrea E Murmann
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jindan Yu
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Eimer H, Sureshkumar S, Singh Yadav A, Kraupner-Taylor C, Bandaranayake C, Seleznev A, Thomason T, Fletcher SJ, Gordon SF, Carroll BJ, Balasubramanian S. RNA-Dependent Epigenetic Silencing Directs Transcriptional Downregulation Caused by Intronic Repeat Expansions. Cell 2018; 174:1095-1105.e11. [PMID: 30057112 DOI: 10.1016/j.cell.2018.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.
Collapse
Affiliation(s)
- Hannes Eimer
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | | | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Tamblyn Thomason
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Stephen J Fletcher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD 4072, Australia
| | | |
Collapse
|
39
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
40
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
41
|
Cappella M, Perfetti A, Cardinali B, Garcia-Manteiga JM, Carrara M, Provenzano C, Fuschi P, Cardani R, Renna LV, Meola G, Falcone G, Martelli F. High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2. Cell Death Dis 2018; 9:729. [PMID: 29955039 PMCID: PMC6023919 DOI: 10.1038/s41419-018-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2.
Collapse
Affiliation(s)
- Marisa Cappella
- Institute of Cell Biology and Neurobiology, National Research Council-Monterotondo, Rome, Italy
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council-Monterotondo, Rome, Italy
| | | | - Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Claudia Provenzano
- Institute of Cell Biology and Neurobiology, National Research Council-Monterotondo, Rome, Italy
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council-Monterotondo, Rome, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
42
|
Cerro-Herreros E, Sabater-Arcis M, Fernandez-Costa JM, Moreno N, Perez-Alonso M, Llamusi B, Artero R. miR-23b and miR-218 silencing increase Muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nat Commun 2018; 9:2482. [PMID: 29946070 PMCID: PMC6018771 DOI: 10.1038/s41467-018-04892-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Functional depletion of the alternative splicing factors Muscleblind-like (MBNL 1 and 2) is at the basis of the neuromuscular disease myotonic dystrophy type 1 (DM1). We previously showed the efficacy of miRNA downregulation in Drosophila DM1 model. Here, we screen for miRNAs that regulate MBNL1 and MBNL2 in HeLa cells. We thus identify miR-23b and miR-218, and confirm that they downregulate MBNL proteins in this cell line. Antagonists of miR-23b and miR-218 miRNAs enhance MBNL protein levels and rescue pathogenic missplicing events in DM1 myoblasts. Systemic delivery of these "antagomiRs" similarly boost MBNL expression and improve DM1-like phenotypes, including splicing alterations, histopathology, and myotonia in the HSALR DM1 model mice. These mammalian data provide evidence for therapeutic blocking of the miRNAs that control Muscleblind-like protein expression in myotonic dystrophy.
Collapse
Affiliation(s)
- Estefania Cerro-Herreros
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain
| | - Maria Sabater-Arcis
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain
| | - Juan M Fernandez-Costa
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain
| | - Nerea Moreno
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain
| | - Manuel Perez-Alonso
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain
| | - Beatriz Llamusi
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain. .,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain. .,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.
| | - Ruben Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain. .,Translational Genomics Group, Incliva Health Research Institute, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain. .,Joint Unit Incliva-CIPF, Dr. Moliner 50, E46100, Burjassot, Valencia, Spain.
| |
Collapse
|
43
|
Thadke SA, Perera JDR, Hridya VM, Bhatt K, Shaikh AY, Hsieh WC, Chen M, Gayathri C, Gil RR, Rule GS, Mukherjee A, Thornton CA, Ly DH. Design of Bivalent Nucleic Acid Ligands for Recognition of RNA-Repeated Expansion Associated with Huntington's Disease. Biochemistry 2018; 57:2094-2108. [PMID: 29562132 PMCID: PMC6091552 DOI: 10.1021/acs.biochem.8b00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shivaji A. Thadke
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - J. Dinithi R. Perera
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - V. M. Hridya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Kirti Bhatt
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Ashif Y. Shaikh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Che Hsieh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mengshen Chen
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chakicherla Gayathri
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S. Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Charles A. Thornton
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Danith H. Ly
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
44
|
Zhang Q, Chen ZS, An Y, Liu H, Hou Y, Li W, Lau KF, Koon AC, Ngo JCK, Chan HYE. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA (NEW YORK, N.Y.) 2018; 24:486-498. [PMID: 29295891 PMCID: PMC5855950 DOI: 10.1261/rna.062703.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Yonghui Hou
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
45
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
46
|
Murmann AE, Gao QQ, Putzbach WE, Patel M, Bartom ET, Law CY, Bridgeman B, Chen S, McMahon KM, Thaxton CS, Peter ME. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep 2018; 19:embr.201745336. [PMID: 29440125 DOI: 10.15252/embr.201745336] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents.
Collapse
Affiliation(s)
- Andrea E Murmann
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Quan Q Gao
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - William E Putzbach
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Monal Patel
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Calvin Y Law
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Bryan Bridgeman
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Siquan Chen
- Cellular Screening Center, Institute for Genomics & Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kaylin M McMahon
- Department of Urology, Northwestern University, Chicago, IL, USA.,Simpson Querrey Institute (SQI) for BioNanotechnology, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA.,Simpson Querrey Institute (SQI) for BioNanotechnology, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.,International Institute for Nanotechnology, Evanston, IL, USA
| | - Marcus E Peter
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA .,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA
| |
Collapse
|
47
|
Martí E. RNA toxicity induced by expanded CAG repeats in Huntington's disease. Brain Pathol 2018; 26:779-786. [PMID: 27529325 DOI: 10.1111/bpa.12427] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) belongs to the group of inherited polyglutamine (PolyQ) diseases caused by an expanded CAG repeat in the coding region of the Huntingtin (HTT) gene that results in an elongated polyQ stretch. Abnormal function and aggregation of the mutant protein has been typically delineated as the main molecular cause underlying disease development. However, the most recent advances have revealed novel pathogenic pathways directly dependent on an RNA toxic gain-of-function. Expanded CAG repeats within exon 1 of the HTT mRNA induce toxicity through mechanisms involving, at least in part, gene expression perturbations. This has important implications not only for basic and translational research in HD, but also for other types of diseases carrying the expanded CAG in other genes, which likely share pathogenic aspects. Here I will review the evidence and mechanisms underlying RNA toxicity in CAG repeat expansions, with particular focus on HD. These comprise abnormal subcellular localization of the transcripts containing the expanded CAG repeats; sequestration of several types of proteins by the expanded CAG repeat which results in defects of alternative splicing events and gene expression; and aberrant biogenesis and detrimental activity of small CAG repeated RNAs (sCAG) that produce altered gene silencing. Although these altered pathways have been detected in HD models, their contribution to disease development and progress requires further study.
Collapse
Affiliation(s)
- Eulàlia Martí
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, 08003, Spain.,Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
48
|
Nakamori M, Hamanaka K, Thomas JD, Wang ET, Hayashi YK, Takahashi MP, Swanson MS, Nishino I, Mochizuki H. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Rep 2017; 21:1240-1252. [PMID: 29091763 PMCID: PMC5689469 DOI: 10.1016/j.celrep.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/02/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM), a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6) myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Kohei Hamanaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo 160-0022, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Ozdogan H, Gur Dedeoglu B, Oztemur Islakoglu Y, Aydos A, Kose S, Atalay A, Yegin ZA, Avcu F, Uckan Cetinkaya D, Ilhan O. DICER1 gene and miRNA dysregulation in mesenchymal stem cells of patients with myelodysplastic syndrome and acute myeloblastic leukemia. Leuk Res 2017; 63:62-71. [PMID: 29102598 DOI: 10.1016/j.leukres.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Multipotent mesenchymal stem cells (MSC) are key components of the bone marrow (BM) microenvironment. The contribution of this microenvironment to the pathophysiology of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is not well defined. A recent study in mice demonstrated that DICER1 gene deletion in osteoprogenitor cells from the BM microenvironment suppressed osteogenic differentiation and induced MDS and AML-like haematological findings. The present study evaluated the expression profiles of microRNAs (miRNAs) and DICER1 gene in BM-derived MSC of patients with AML (n=12), MDS (n=10) and healthy controls (HC) (n=8).miRNA expression profiles were analyzed by microarray and confirmations were performed using quantitative real-time PCR (qRT-PCR). Patient MSC displayed impaired proliferative and differentiation potential compared to HC. DICER1 gene expression was lower in MSC from MDS and AML patients than HC and some differentially expressed miRNAs indicated the potential involvement of DICER1 in the pathogenesis of MDS and AML. qRT-PCR confirmation revealed down-regulated miRNAs (hsa-miR-30d-5p, hsa-miR-222-3p and hsa-miR-30a-3p in MDS; hsa-miR-1275, hsa-miR-4725-5p and hsa-miR-143-3p in AML) and over-expressed miRNAs (hsa-miR-4462 in MDS; hsa-miR-134-5p and hsa-miR-874-3p in AML) in MDS and AML. Thus, our findings validate the results of the aforementioned animal study and demonstrate downregulation of DICER1 gene and abnormal miRNA profile in MDS and AML, which may have implications for understanding MDS and AML pathogenesis and contribute to developing targeted treatment strategies.
Collapse
Affiliation(s)
- Hakan Ozdogan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | | | - Alp Aydos
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Sevil Kose
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Zeynep Arzu Yegin
- Department of Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ferit Avcu
- Department of Hematology, Memorial Hospital, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey
| | - Osman Ilhan
- Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
50
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|