1
|
Lancaster CL, Moberg KH, Corbett AH. Post-Transcriptional Regulation of Gene Expression and the Intricate Life of Eukaryotic mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70007. [PMID: 40059537 PMCID: PMC11949413 DOI: 10.1002/wrna.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
In recent years, there has been a growing appreciation for how regulatory events that occur either co- or post-transcriptionally contribute to the control of gene expression. Messenger RNAs (mRNAs) are extensively regulated throughout their metabolism in a precise spatiotemporal manner that requires sophisticated molecular mechanisms for cell-type-specific gene expression, which dictates cell function. Moreover, dysfunction at any of these steps can result in a variety of human diseases, including cancers, muscular atrophies, and neurological diseases. This review summarizes the steps of the central dogma of molecular biology, focusing on the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University Atlanta, Georgia, USA
| | - Kenneth H. Moberg
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chaudhuri A, Paul S, Banerjea M, Das B. Polyadenylated versions of small non-coding RNAs in Saccharomyces cerevisiae are degraded by Rrp6p/Rrp47p independent of the core nuclear exosome. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:155-186. [PMID: 38783922 PMCID: PMC11115967 DOI: 10.15698/mic2024.05.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024]
Abstract
In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3'-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker's yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Present Position: Zentrum fǜr Molekulare, Medizin, Institut fǜr Kardiovaskuläre Regeneration, Haus 25B, Goethe-Universität, Theodor-Stern-Kai 7, Universitätsklinikum, 60590 Frankfurt am Main, Germany
| | - Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata – 700 032, West Bengal, India
| |
Collapse
|
3
|
Normand C, Dez C, Dauban L, Queille S, Danché S, Abderrahmane S, Beckouet F, Gadal O. RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability. RNA Biol 2024; 21:1-16. [PMID: 39049162 PMCID: PMC11275518 DOI: 10.1080/15476286.2024.2381910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.
Collapse
Affiliation(s)
- Christophe Normand
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Dez
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Lise Dauban
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Queille
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Danché
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarra Abderrahmane
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Frederic Beckouet
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Gadal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
4
|
Huntzinger E, Sinteff J, Morlet B, Séraphin B. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res 2023; 51:9279-9293. [PMID: 37602378 PMCID: PMC10516660 DOI: 10.1093/nar/gkad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.
Collapse
Affiliation(s)
- Eric Huntzinger
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jordan Sinteff
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| |
Collapse
|
5
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
7
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
8
|
Tasak M, Phizicky EM. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLoS Genet 2022; 18:e1010215. [PMID: 35901126 PMCID: PMC9362929 DOI: 10.1371/journal.pgen.1010215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.
Collapse
Affiliation(s)
- Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. piRNAs Interact with Cold-Shock Domain-Containing RNA Binding Proteins and Regulate Neuronal Gene Expression During Differentiation. Mol Neurobiol 2022; 59:1285-1300. [PMID: 34982407 DOI: 10.1007/s12035-021-02678-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
piRNAs (PIWI-interacting RNAs) are a class of small non-coding RNAs (ncRNAs) abundantly expressed in germline cells and involved in suppressing the transposon activity. Interestingly, recent studies have found piRNA expression in the central nervous system (CNS), yet the underlying biological significance remains largely unknown. In this study, we investigated the expression and function of piRNAs during the retinoic acid (RA)-mediated neuronal differentiation in NT2 cells, a human embryonal carcinoma cell line. We identified a cohort of differentially expressed piRNAs by microarray. Two piRNAs, DQ582359 and DQ596268, were increasingly upregulated during the RA-induced differentiation and involved in regulating the expression of neuronal markers, MAP2 and TUBB3. Furthermore, these piRNAs were found to associate with cold-shock domain (CSD)-containing RNA binding proteins, DIS3, DIS3L2, and YB-1. Markedly, overexpression of these piRNAs further enhanced the protein levels of MAP2 and TUBB3, potentially by downregulating DIS3, DIS3L2, and YB-1. Hence, our study has identified a novel somatic function of piRNAs in regulating neuronal gene expression. The interaction of piRNA with some CSD-containing proteins can be further explored to enhance neuronal differentiation to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zealyn Shi-Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore.
| |
Collapse
|
10
|
Vos TJ, Kothe U. Synergistic interaction network between the snR30 RNP, Utp23, and ribosomal RNA during ribosome synthesis. RNA Biol 2022; 19:764-773. [PMID: 35648701 PMCID: PMC9176245 DOI: 10.1080/15476286.2022.2078092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
snR30/U17 is a highly conserved H/ACA RNA that is required for maturation of the small ribosomal subunit in eukaryotes. By base-pairing to the expansion segment 6 (ES6) of 18S ribosomal RNA (rRNA), the snR30 H/ACA Ribonucleoprotein (RNP) indirectly facilitates processing of the precursor rRNA (pre-rRNA) together with other proteins such as Utp23 and other RNAs acting as ribosome assembly factors. However, the details of the molecular interaction network of snR30 and its binding partners and how these interactions contribute to pre-rRNA processing remains unknown. Here, we report the in vitro reconstitution of a Saccharomyces cerevisiae snR30 RNP and quantitative characterization of the interactions of snR30, H/ACA proteins, the Utp23 protein and ES6 of the 18S rRNA. The snR30 RNA is bound tightly by both H/ACA proteins and Utp23. We dissected the importance of different 18S rRNA regions for snR30 RNP binding and demonstrated that the snR30 complex is tightly anchored on the pre-rRNA through base-pairing to ES6 whereas other reported rRNA binding sites do not contribute to the affinity of the snR30 RNP. On its own, the ribosome assembly factor Utp23 binds in a tight, but unspecific manner to RNA. However, in complex with the snR30 RNP, Utp23 increases the affinity of the RNP for rRNA revealing synergies between snR30 RNP and Utp23 which are enhancing specificity and affinity for rRNA, respectively. Together, these findings provide mechanistic insights how the snR30 RNP and Utp23 cooperate to interact tightly and specifically with rRNA during the early stages of ribosome biogenesis.
Collapse
Affiliation(s)
- Timothy J. Vos
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
11
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
12
|
Ballou ER, Cook AG, Wallace EWJ. Repeated Evolution of Inactive Pseudonucleases in a Fungal Branch of the Dis3/RNase II Family of Nucleases. Mol Biol Evol 2021; 38:1837-1846. [PMID: 33313834 PMCID: PMC8097288 DOI: 10.1093/molbev/msaa324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RNase II family of 3'-5' exoribonucleases is present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases." The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: What sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the nonnuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, whereas the RNase activity was lost repeatedly in independent lineages.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Das M, Zattas D, Zinder JC, Wasmuth EV, Henri J, Lima CD. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc Natl Acad Sci U S A 2021; 118:e2024846118. [PMID: 33782132 PMCID: PMC8040639 DOI: 10.1073/pnas.2024846118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.
Collapse
Affiliation(s)
- Mom Das
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dimitrios Zattas
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julien Henri
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- HHMI, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
14
|
Lau B, Cheng J, Flemming D, La Venuta G, Berninghausen O, Beckmann R, Hurt E. Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Mol Cell 2020; 81:293-303.e4. [PMID: 33326748 DOI: 10.1016/j.molcel.2020.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Out or decay: fate determination of nuclear RNAs. Essays Biochem 2020; 64:895-905. [DOI: 10.1042/ebc20200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Abstract
In eukaryotes, RNAs newly synthesized by RNA polymerase II (RNAPII) undergo several processing steps prior to transport to the cytoplasm. It has long been known that RNAs with defects in processing or export are removed in the nucleus. Recent studies revealed that RNAs without apparent defects are also subjected to nuclear degradation, indicating that nuclear RNA fate is determined in a more complex and dynamic way than previously thought. Nuclear RNA sorting directly determines the quality and quantity of RNA pools for future translation and thus is of significant importance. In this essay, we will summarize recent studies on this topic, mainly focusing on findings in mammalian system, and discuss about important remaining questions and possible biological relevance for nuclear RNA fate determination.
Collapse
|
16
|
Li J, Hou Y, Gu X, Yue L, Guo L, Li D, Dong X. A newly identified duplex RNA unwinding activity of archaeal RNase J depends on processive exoribonucleolysis coupled steric occlusion by its structural archaeal loops. RNA Biol 2020; 17:1480-1491. [PMID: 32552320 DOI: 10.1080/15476286.2020.1777379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
RNase J is a prokaryotic 5'-3' exo/endoribonuclease that functions in mRNA decay and rRNA maturation. Here, we report a novel duplex unwinding activity of mpy-RNase J, an archaeal RNase J from Methanolobus psychrophilus, which enables it to degrade duplex RNAs with hairpins up to 40 bp when linking a 5' single-stranded overhangs of ≥ 7 nt, corresponding to the RNA channel length. A 6-nt RNA-mpy-RNase J-S247A structure reveals the RNA-interacting residues and a steric barrier at the RNA channel entrance comprising two archaeal loops and two helices. Mutagenesis of the residues key to either exoribonucleolysis or RNA translocation diminished the duplex unwinding activity. Substitution of the residues in the steric barrier yielded stalled degradation intermediates at the duplex RNA regions. Thus, an exoribonucleolysis-driven and steric occlusion-based duplex unwinding mechanism was identified. The duplex unwinding activity confers mpy-RNase J the capability of degrading highly structured RNAs, including the bacterial REP RNA, and archaeal mRNAs, rRNAs, tRNAs, SRPs, RNase P and CD-box RNAs, providing an indicative of the potential key roles of mpy-RNase J in pleiotropic RNA metabolisms. Hydrolysis-coupled duplex unwinding activity was also detected in a bacterial RNase J, which may use a shared but slightly different unwinding mechanism from archaeal RNase Js, indicating that duplex unwinding is a common property of the prokaryotic RNase Js.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Yanjie Hou
- Institute of Biophysics, Chinese Academy of Sciences , Beijing, PR China
| | - Xien Gu
- School of Basic Medical Sciences, Hubei University of Medicine , Shiyan, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China
| | - Defeng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,Colleges of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
17
|
Berg MD, Zhu Y, Genereaux J, Ruiz BY, Rodriguez-Mias RA, Allan T, Bahcheli A, Villén J, Brandl CJ. Modulating Mistranslation Potential of tRNA Ser in Saccharomyces cerevisiae. Genetics 2019; 213:849-863. [PMID: 31484688 PMCID: PMC6827378 DOI: 10.1534/genetics.119.302525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yanrui Zhu
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | | | - Tyler Allan
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander Bahcheli
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
18
|
Fan J, Kuai B, Wang K, Wang L, Wang Y, Wu X, Chi B, Li G, Cheng H. mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res 2019; 46:8404-8416. [PMID: 30032211 PMCID: PMC6144872 DOI: 10.1093/nar/gky650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
A significant fraction of mRNAs are degraded by the nuclear exosome in normal cells. Here, we studied where and when these exosome target mRNAs are sorted away from properly exported ones in the cells. We show that upon exosome inactivation, polyA RNAs are apparently accumulated in nuclear foci that are distinct from nuclear speckles (NSs), and provide several lines of evidence supporting that these polyA RNAs mainly correspond to accumulating exosome target mRNAs. These results suggest that exosomal mRNA degradation mostly occurs outside of NSs. In support of this possibility, targeting exosome target mRNAs to NSs stabilizes them by preventing exosomal degradation. Furthermore, inhibiting mRNA release from NSs does not attenuate exosomal degradation in normal cells, and results in polyA RNA accumulation both inside and outside of NSs in exosome inactivated cells, suggesting that passage through NSs is not required for sorting mRNAs for degradation or export. Indeed, exosome target mRNAs that normally do not enter NSs are exported upon exosome inactivation. Together, our data suggest that exosome target mRNAs are mainly degraded in the nucleoplasm before entering NSs and rapid removal of these mRNAs is important for preventing their nuclear export.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Saramago M, da Costa PJ, Viegas SC, Arraiano CM. The Implication of mRNA Degradation Disorders on Human DISease: Focus on DIS3 and DIS3-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:85-98. [PMID: 31342438 DOI: 10.1007/978-3-030-19966-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA degradation is considered a critical posttranscriptional regulatory checkpoint, maintaining the correct functioning of organisms. When a specific RNA transcript is no longer required in the cell, it is signaled for degradation through a number of highly regulated steps. Ribonucleases (or simply RNases) are key enzymes involved in the control of RNA stability. These enzymes can perform the RNA degradation alone or cooperate with other proteins in RNA degradation complexes. Important findings over the last years have shed light into eukaryotic RNA degradation by members of the RNase II/RNB family of enzymes. DIS3 enzyme belongs to this family and represents one of the catalytic subunits of the multiprotein complex exosome. This RNase has a diverse range of functions, mainly within nuclear RNA metabolism. Humans encode two other DIS3-like enzymes: DIS3L (DIS3L1) and DIS3L2. DIS3L1 also acts in association with the exosome but is strictly cytoplasmic. In contrast, DIS3L2 acts independently of the exosome and shows a distinctive preference for uridylated RNAs. These enzymes have been shown to be involved in important cellular processes, such as mitotic control, and associated with human disorders like cancer. This review shows how the impairment of function of each of these enzymes is implicated in human disease.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J da Costa
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
20
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
22
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
23
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
24
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
25
|
Wells GR, Weichmann F, Sloan KE, Colvin D, Watkins NJ, Schneider C. The ribosome biogenesis factor yUtp23/hUTP23 coordinates key interactions in the yeast and human pre-40S particle and hUTP23 contains an essential PIN domain. Nucleic Acids Res 2017; 45:4796-4809. [PMID: 28082392 PMCID: PMC5416842 DOI: 10.1093/nar/gkw1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022] Open
Abstract
Two proteins with PIN endonuclease domains, yUtp24(Fcf1)/hUTP24 and yUtp23/hUTP23 are essential for early pre-ribosomal (r)RNA cleavages at sites A0, A1/1 and A2/2a in yeast and humans. The yUtp24/hUTP24 PIN endonuclease is proposed to cleave at sites A1/1 and A2/2a, but the enzyme cleaving at site A0 is not known. Yeast yUtp23 contains a degenerate, non-essential PIN domain and functions together with the snR30 snoRNA, while human hUTP23 is associated with U17, the human snR30 counterpart. Using in vivo RNA–protein crosslinking and gel shift experiments, we reveal that yUtp23/hUTP23 makes direct contacts with expansion sequence 6 (ES6) in the 18S rRNA sequence and that yUtp23 interacts with the 3΄ half of the snR30 snoRNA. Protein–protein interaction studies further demonstrated that yeast yUtp23 and human hUTP23 directly interact with the H/ACA snoRNP protein yNhp2/hNHP2, the RNA helicase yRok1/hROK1(DDX52), the ribosome biogenesis factor yRrp7/hRRP7 and yUtp24/hUTP24. yUtp23/hUTP23 could therefore be central to the coordinated integration and release of ES6 binding factors and likely plays a pivotal role in remodeling this pre-rRNA region in both yeast and humans. Finally, studies using RNAi-rescue systems in human cells revealed that intact PIN domain and Zinc finger motifs in human hUTP23 are essential for 18S rRNA maturation.
Collapse
Affiliation(s)
- Graeme R Wells
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Franziska Weichmann
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Katherine E Sloan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Colvin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
26
|
Fan J, Kuai B, Wu G, Wu X, Chi B, Wang L, Wang K, Shi Z, Zhang H, Chen S, He Z, Wang S, Zhou Z, Li G, Cheng H. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J 2017; 36:2870-2886. [PMID: 28801509 DOI: 10.15252/embj.201696139] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022] Open
Abstract
The exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4. Significantly, hMTR4 plays a key role in specifically recruiting the exosome to its targets. Furthermore, we provide several lines of evidence indicating that hMTR4 executes this role by directly competing with the mRNA export adaptor ALYREF for associating with ARS2, a component of the cap-binding complex (CBC), and this competition is critical for determining whether an RNA is degraded or exported to the cytoplasm. Together, our results indicate that the competition between hMTR4 and ALYREF determines exosome recruitment and functions in creating balanced nuclear RNA pools for degradation and export.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Kuai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guifen Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Binkai Chi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Delan-Forino C, Schneider C, Tollervey D. RNA substrate length as an indicator of exosome interactions in vivo. Wellcome Open Res 2017; 2:34. [PMID: 28748221 PMCID: PMC5500899 DOI: 10.12688/wellcomeopenres.10724.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The exosome complex plays key roles in RNA processing and degradation in Eukaryotes and Archaea. Outstanding structural studies identified multiple pathways for RNA substrates into the exosome
in vitro, but identifying the pathway followed by individual RNA species
in vivo remains challenging. Methods: We attempted to address this question using RNase protection.
In vivo RNA-protein crosslinking (CRAC) was applied to the exosome component Rrp44/Dis3, which has both endonuclease and exonuclease activity. During CRAC, the exosome was purified under native conditions and subjected to RNase digestion, prior to protein denaturation and cDNA cloning. The resulting high-throughput sequence reads were stratified by length of the cDNA sequence. This should reflect RNA fragment lengths, and therefore the RNA region that was protected by exosome binding. We anticipated major read lengths of ~30nt and ~10nt, reflecting the “central channel” and “direct access” routes to the Rrp44 exonuclease active site observed
in vitro. Results: Unexpectedly, no clear peak was observed at 30nt, whereas a broad peak was seen around 20nt. The expected ~10nt peak was seen, and showed strong elevation in strains lacking exonuclease activity. Unexpectedly, this peak was suppressed by point mutations in the Rrp44 endonuclease active site. This indicates that the short fragments are degraded by the exonuclease activity of Rrp44, but also suggests that at least some may be generated by endonuclease activity. Conclusions: The absence of 30nt protected fragments may reflect obligatory binding of cofactors at the entrance to the exosome central channel
in vivo. The presence of ~20nt fragments apparently indicates an access route not yet reported from
in vitro studies. Confident mapping of 10nt reads is challenging, but they are clearly derived from a subset of exosome targets. In particular, pre-rRNA species, which are major exosome targets, are strongly disfavored for the generation of short reads.
Collapse
Affiliation(s)
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
28
|
Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, Cherry S. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 2017; 30:1658-70. [PMID: 27474443 PMCID: PMC4973295 DOI: 10.1101/gad.284604.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Here, Molleston et al. find that signals from viral infections repurpose TRAMP complex components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.
Collapse
Affiliation(s)
- Jerome M Molleston
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ryan H Moy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sanjay V Menghani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keiko Rausch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Delan-Forino C, Schneider C, Tollervey D. Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex. PLoS Genet 2017; 13:e1006699. [PMID: 28355211 PMCID: PMC5389853 DOI: 10.1371/journal.pgen.1006699] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/12/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway in vivo. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel in vitro. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished in vivo.
Collapse
Affiliation(s)
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Wells GR, Weichmann F, Colvin D, Sloan KE, Kudla G, Tollervey D, Watkins NJ, Schneider C. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Res 2016; 44:5399-409. [PMID: 27034467 PMCID: PMC4914098 DOI: 10.1093/nar/gkw213] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/18/2016] [Indexed: 11/12/2022] Open
Abstract
During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells.
Collapse
Affiliation(s)
- Graeme R Wells
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Franziska Weichmann
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Colvin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katherine E Sloan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
31
|
Carlsten JO, Zhu X, Dávila López M, Samuelsson T, Gustafsson CM. Loss of the Mediator subunit Med20 affects transcription of tRNA and other non-coding RNA genes in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:339-47. [DOI: 10.1016/j.bbagrm.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
|
32
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
33
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
34
|
Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1. Hum Mutat 2015; 36:1176-87. [PMID: 26310293 DOI: 10.1002/humu.22897] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Marie Shaw
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Catherine L Weiner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Katherine Rose
- Monash Health, Special Medicine Centre, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Vera M Kalscheuer
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin D14195, Germany
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| |
Collapse
|
35
|
The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Sci Rep 2015; 5:13403. [PMID: 26306464 PMCID: PMC4549623 DOI: 10.1038/srep13403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
The exosome is a complex with exoribonuclease activity that regulates RNA surveillance and turnover. The exosome also plays a role in regulating the degradation of precursor mRNAs to maintain the expression of splicing variants. In Neurospora, the silencing of rrp44, which encodes the catalytic subunit of the exosome, changed the expression of a set of spliceosomal snRNA, snRNP genes and SR protein related genes. The knockdown of rrp44 also affected the assembly of the spliceosome. RNA-seq analysis revealed a global change in bulk splicing events. Exosome-mediated splicing may regulate alternative splicing of NCU05290, NCU07421 and the circadian clock gene frequency (frq). The knockdown of rrp44 led to an increased ratio of splicing variants without intron 6 (I-6) and shorter protein isoform small FRQ (s-FRQ) as a consequence. These findings suggest that the exosome controls splicing events by regulating the degradation of precursor mRNAs and the gene expression, assembly and function of the spliceosome.
Collapse
|
36
|
Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules 2015; 5:1515-39. [PMID: 26193331 PMCID: PMC4598762 DOI: 10.3390/biom5031515] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/03/2022] Open
Abstract
DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.
Collapse
Affiliation(s)
- Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Timothy J Chevassut
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| |
Collapse
|
37
|
Abstract
The exosome ribonuclease complex functions in both the limited trimming of the 3'-ends of nuclear substrates during RNA processing events and the complete destruction of nuclear and cytoplasmic RNAs. The two RNases of the eukaryotic exosome, Rrp44 (rRNA-processing protein 44) and Rrp6, are bound at either end of a catalytically inert cylindrical core. RNA substrates are threaded through the internal channel of the core to Rrp44 by RNA helicase components of the nuclear TRAMP complex (Trf4-Air2-Mtr4 polyadenylation complex) or the cytoplasmic Ski (superkiller) complex. Recent studies reveal that Rrp44 can also associate directly with substrates via channel-independent routes. Although the substrates of the exosome are known, it is not clear whether specific substrates are restricted to one or other pathway. Data currently available support the model that processed substrates are targeted directly to the catalytic subunits, whereas at least some substrates that are directed towards discard pathways must be threaded through the exosome core.
Collapse
|
38
|
Weißbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M, Bargou R, Einsele H, Rosenwald A, Knop S, Leich E. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol 2014; 169:57-70. [PMID: 25521164 DOI: 10.1111/bjh.13256] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 01/09/2023]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that presents with a major biological and clinical heterogeneity. We here investigated the spectrum of clonal and subclonal mutations of DIS3, an active part of the exosome complex, that may play a role in the development or progression of MM. The whole coding sequence of DIS3 was subjected to deep sequencing in 81 uniformly-treated MM patients and 12 MM cell lines and the overall occurrence of DIS3 mutations as well as the presence of DIS3 mutations in minor and major subclones were correlated with cytogenetic alterations and clinical parameters. Our study identified DIS3 mutations in 9/81 patients that were associated with 13q14 deletions and IGH translocations on the cytogenetic level. Specifically, we detected seven novel somatic DIS3 single nucleotide variants (SNVs) and defined three hot spot mutations within the RNB domain. Lastly, we found a trend towards a shorter median overall survival for patients with DIS3 mutations, and patients carrying DIS3 mutations in minor subclones of their tumours showed a significantly worse response to therapy compared to patients with DIS3 mutations in the major subclone.
Collapse
Affiliation(s)
- Susann Weißbach
- Institute of Pathology, University of Würzburg, Comprehensive Cancer Center Mainfranken (CCC MF), Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Lin VCH, Kuo PT, Lin YC, Chen Y, Hseu YC, Yang HL, Kao JY, Ho CT, Way TD. Penta-O-galloyl-β-D-glucose suppresses EGF-induced eIF3i expression through inhibition of the PI3K/AKT/mTOR pathway in prostate cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8990-8996. [PMID: 25123845 DOI: 10.1021/jf502447e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Approximately 70% of prostate cancer patients will develop bone metastasis in axial and other regions of the skeleton. Epidermal growth factor (EGF) generated from bone tissue contributes to prostate cancer metastasis. In a previous study, penta-O-galloyl-β-D-glucose (PGG) suppressed androgen-independent prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. This study utilized proteomics to analyze the effects of PGG in EGF-induced prostate cancer bone metastasis. This study showed that PGG suppressed EGF-induced eIF3i expression in PC-3 cells. By transfection of eIF3i shRNA, it was observed that reduced eIF3i expression suppressed the invasion of PC-3 cells in vitro. PGG reduced EGF-induced eIF3i expression through inhibition of the PI3K/AKT/mTOR pathway. Therefore, PGG may be able to be used as a potential new therapeutic drug for prostate cancer bone metastasis.
Collapse
|
41
|
Leung E, Schneider C, Yan F, Mohi-El-Din H, Kudla G, Tuck A, Wlotzka W, Doronina VA, Bartley R, Watkins NJ, Tollervey D, Brown JD. Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Res 2014; 42:10698-710. [PMID: 25159613 PMCID: PMC4176351 DOI: 10.1093/nar/gku761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4–5 sequence at its 3′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3′ end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.
Collapse
Affiliation(s)
- Eileen Leung
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Fu Yan
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hatem Mohi-El-Din
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Victoria A Doronina
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ralph Bartley
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Watkins
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jeremy D Brown
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
42
|
The genetic architecture of multiple myeloma. Adv Hematol 2014; 2014:864058. [PMID: 24803933 PMCID: PMC3996928 DOI: 10.1155/2014/864058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is a malignant proliferation of monoclonal plasma cells leading to clinical features that include hypercalcaemia, renal dysfunction, anaemia, and bone disease (frequently referred to by the acronym CRAB) which represent evidence of end organ failure. Recent evidence has revealed myeloma to be a highly heterogeneous disease composed of multiple molecularly-defined subtypes each with varying clinicopathological features and disease outcomes. The major division within myeloma is between hyperdiploid and nonhyperdiploid subtypes. In this division, hyperdiploid myeloma is characterised by trisomies of certain odd numbered chromosomes, namely, 3, 5, 7, 9, 11, 15, 19, and 21 whereas nonhyperdiploid myeloma is characterised by translocations of the immunoglobulin heavy chain alleles at chromosome 14q32 with various partner chromosomes, the most important of which being 4, 6, 11, 16, and 20. Hyperdiploid and nonhyperdiploid changes appear to represent early or even initiating mutagenic events that are subsequently followed by secondary aberrations including copy number abnormalities, additional translocations, mutations, and epigenetic modifications which lead to plasma cell immortalisation and disease progression. The following review provides a comprehensive coverage of the genetic and epigenetic events contributing to the initiation and progression of multiple myeloma and where possible these abnormalities have been linked to disease prognosis.
Collapse
|
43
|
Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol 2014; 24:132-40. [PMID: 24525139 DOI: 10.1016/j.sbi.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/24/2022]
Abstract
The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA; Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA.
| |
Collapse
|
44
|
de Groen FL, Krijgsman O, Tijssen M, Vriend LE, Ylstra B, Hooijberg E, Meijer GA, Steenbergen RD, Carvalho B. Gene-dosage dependent overexpression at the 13q amplicon identifiesDIS3as candidate oncogene in colorectal cancer progression. Genes Chromosomes Cancer 2014; 53:339-48. [DOI: 10.1002/gcc.22144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Affiliation(s)
- Florence L.M. de Groen
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Oscar Krijgsman
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Marianne Tijssen
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Lianne E.M. Vriend
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Bauke Ylstra
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Erik Hooijberg
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Gerrit A. Meijer
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Renske D.M. Steenbergen
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| | - Beatriz Carvalho
- Department of Pathology; VU University Medical Center; PO Box 7057, 1007MB Amsterdam The Netherlands
| |
Collapse
|
45
|
|
46
|
Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 2013; 21:95-102. [PMID: 24336220 PMCID: PMC3976988 DOI: 10.1038/nsmb.2736] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/06/2013] [Indexed: 12/25/2022]
Abstract
The eukaryotic exosome is a multi-subunit complex typically composed of a catalytically inactive core and the Rrp44 protein, which contains 3’ to 5’ exo- and endo-ribonuclease activities. RNA substrates have been shown to be recruited through the core to reach Rrp44's exoribonuclease (EXO) site. Using single particle electron microscopy and biochemical analysis, we provide visual evidence that two distinct substrate recruitment pathways exist. In the through-core route, channeling of the single stranded substrates from the core to Rrp44 induces a characteristic conformational change in Rrp44. In the alternative direct-access route, this conformational change does not take place and the RNA substrate is visualized to avoid the core and enter Rrp44's EXO site directly. Our results provide mechanistic explanations for several RNA processing scenarios by the eukaryotic exosome and indicate substrate specific modes of degradation by this complex.
Collapse
Affiliation(s)
- Jun-Jie Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-NBIS, Tsinghua University, Beijing 100084, China
| | - Matthew A Bratkowski
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xueqi Liu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chu-Ya Niu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Joint Graduate Program of Peking-Tsinghua-NBIS, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Ustianenko D, Hrossova D, Potesil D, Chalupnikova K, Hrazdilova K, Pachernik J, Cetkovska K, Uldrijan S, Zdrahal Z, Vanacova S. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1632-8. [PMID: 24141620 PMCID: PMC3884668 DOI: 10.1261/rna.040055.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/27/2013] [Indexed: 05/23/2023]
Abstract
The mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA function and decay has long remained enigmatic. Only recently, 3' uridylation via LIN28A-TUT4/7 has been recognized as an essential component controlling the biogenesis of let-7 miRNAs in stem cells. Although uridylation has been generally implicated in miRNA degradation, the nuclease responsible has remained unknown. Here, we identify the Perlman syndrome-associated protein DIS3L2 as an oligo(U)-binding and processing exoribonuclease that specifically targets uridylated pre-let-7 in vivo. This study establishes DIS3L2 as the missing component of the LIN28-TUT4/7-DIS3L2 pathway required for the repression of let-7 in pluripotent cells.
Collapse
Affiliation(s)
- Dmytro Ustianenko
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Dominika Hrossova
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - David Potesil
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Katerina Chalupnikova
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Kristyna Hrazdilova
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Jiri Pachernik
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Katerina Cetkovska
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
48
|
Reis FP, Barbas A, Klauer-King AA, Tsanova B, Schaeffer D, López-Viñas E, Gómez-Puertas P, van Hoof A, Arraiano CM. Modulating the RNA processing and decay by the exosome: altering Rrp44/Dis3 activity and end-product. PLoS One 2013; 8:e76504. [PMID: 24265673 PMCID: PMC3827031 DOI: 10.1371/journal.pone.0076504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/27/2013] [Indexed: 01/02/2023] Open
Abstract
In eukaryotes, the exosome plays a central role in RNA maturation, turnover, and quality control. In Saccharomyces cerevisiae, the core exosome is composed of nine catalytically inactive subunits constituting a ring structure and the active nuclease Rrp44, also known as Dis3. Rrp44 is a member of the ribonuclease II superfamily of exoribonucleases which include RNase R, Dis3L1 and Dis3L2. In this work we have functionally characterized three residues located in the highly conserved RNB catalytic domain of Rrp44: Y595, Q892 and G895. To address their precise role in Rrp44 activity, we have constructed Rrp44 mutants and compared their activity to the wild-type Rrp44. When we mutated residue Q892 and tested its activity in vitro, the enzyme became slightly more active. We also showed that when we mutated Y595, the final degradation product of Rrp44 changed from 4 to 5 nucleotides. This result confirms that this residue is responsible for the stacking of the RNA substrate in the catalytic cavity, as was predicted from the structure of Rrp44. Furthermore, we also show that a strain with a mutation in this residue has a growth defect and affects RNA processing and degradation. These results lead us to hypothesize that this residue has an important biological role. Molecular dynamics modeling of these Rrp44 mutants and the wild-type enzyme showed changes that extended beyond the mutated residues and helped to explain these results.
Collapse
Affiliation(s)
- Filipa P. Reis
- Instituto de Tecnologia Química e Biológica - ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Barbas
- Instituto de Tecnologia Química e Biológica - ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | - A. A. Klauer-King
- Department of Microbiology and Molecular Genetics, and The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Borislava Tsanova
- Department of Microbiology and Molecular Genetics, and The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Daneen Schaeffer
- Department of Microbiology and Molecular Genetics, and The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Eduardo López-Viñas
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Campus Universidad Autonoma de Madrid, Madrid, Spain
- Biomol-Informatics SL, Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, and The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center-Houston, Houston, Texas, United States of America
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica - ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
49
|
Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, Owczarek EP, Kalisiak K, Dziembowski A. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 2013; 42:1270-90. [PMID: 24150935 PMCID: PMC3902924 DOI: 10.1093/nar/gkt930] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
hDIS3 is a mainly nuclear, catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) active domains. Mutations in hDIS3 have been found in ∼10% of patients with multiple myeloma (MM). Here, we show that these mutations interfere with hDIS3 exonucleolytic activity. Yeast harboring corresponding mutations in DIS3 show growth inhibition and changes in nuclear RNA metabolism typical for exosome dysfunction. Construction of a conditional DIS3 knockout in the chicken DT40 cell line revealed that DIS3 is essential for cell survival, indicating that its function cannot be replaced by other exosome-associated nucleases: hDIS3L and hRRP6. Moreover, HEK293-derived cells, in which depletion of endogenous wild-type hDIS3 was complemented with exogenously expressed MM hDIS3 mutants, proliferate at a slower rate and exhibit aberrant RNA metabolism. Importantly, MM mutations are synthetically lethal with the hDIS3 PIN domain catalytic mutation both in yeast and human cells. Since mutations in PIN domain alone have little effect on cell physiology, our results predict the hDIS3 PIN domain as a potential drug target for MM patients with hDIS3 mutations. It is an interesting example of intramolecular synthetic lethality with putative therapeutic potential in humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland, Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland and International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Morris MR, Astuti D, Maher ER. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:106-13. [PMID: 23613427 DOI: 10.1002/ajmg.c.31358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perlman syndrome is a rare autosomal recessively inherited congenital overgrowth syndrome characterized by polyhydramnios, macrosomia, characteristic facial dysmorphology, renal dysplasia and nephroblastomatosis and multiple congenital anomalies. Perlman syndrome is associated with high neonatal mortality and, survivors have developmental delay and a high risk of Wilms tumor. Recently a Perlman syndrome locus was mapped to chromosome 2q37 and homozygous or compound heterozygous mutations were characterized in DIS3L2. The DIS3L2 gene product has ribonuclease activity and homology to the DIS3 component of the RNA exosome. It has been postulated that the clinical features of Perlman syndrome result from disordered RNA metabolism and, though the precise targets of DIS3L2 have yet to be characterized, in cellular models DIS3L2 knockdown is associated with abnormalities of cell growth and division.
Collapse
|