1
|
Kim GD, Liu G, Qiu D, De Leo MG, Gopaldass N, Hermes J, Timmer J, Saiardi A, Mayer A, Jessen HJ. Pools of Independently Cycling Inositol Phosphates Revealed by Pulse Labeling with 18O-Water. J Am Chem Soc 2025; 147:17626-17641. [PMID: 40372010 DOI: 10.1021/jacs.4c16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Inositol phosphates control many central processes in eukaryotic cells including nutrient availability, growth, and motility. Kinetic resolution of a key modulator of their signaling functions, the turnover of the phosphate groups on the inositol ring, has been hampered by slow uptake, high dilution, and constraining growth conditions in radioactive pulse-labeling approaches. Here, we demonstrate a rapid (seconds to minutes) and nonradioactive labeling strategy of inositol polyphosphates through 18O-water in yeast, human cells, and amoeba, which can be applied in any media. In combination with capillary electrophoresis and mass spectrometry, 18O-water labeling simultaneously dissects the in vivo phosphate group dynamics of a broad spectrum of even rare inositol phosphates. The good temporal resolution allowed us to discover vigorous phosphate group exchanges in some inositol polyphosphates and pyrophosphates, whereas others remain remarkably inert. We propose a model in which the biosynthetic pathway of inositol polyphosphates and pyrophosphates is organized in distinct, kinetically separated pools. While transfer of compounds between those pools is slow, each pool undergoes rapid internal phosphate cycling. This might enable the pools to perform distinct signaling functions while being metabolically connected.
Collapse
Affiliation(s)
- Geun-Don Kim
- Département d'immunobiologie, Université de Lausanne, CH-1066 Epalinges, Switzerland
| | - Guizhen Liu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maria Giovanna De Leo
- Département d'immunobiologie, Université de Lausanne, CH-1066 Epalinges, Switzerland
| | - Navin Gopaldass
- Département d'immunobiologie, Université de Lausanne, CH-1066 Epalinges, Switzerland
| | - Jacques Hermes
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Jens Timmer
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, U.K
| | - Andreas Mayer
- Département d'immunobiologie, Université de Lausanne, CH-1066 Epalinges, Switzerland
| | - Henning Jacob Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Bradley JM, Bunsick M, Ly G, Aquino B, Wang FZ, Holbrook-Smith D, Suginoo S, Bradizza D, Kato N, As'sadiq O, Marsh N, Osada H, Boyer FD, McErlean CSP, Tsuchiya Y, Subramaniam R, Bonetta D, McCourt P, Lumba S. Modulation of fungal phosphate homeostasis by the plant hormone strigolactone. Mol Cell 2024; 84:4031-4047.e11. [PMID: 39357514 DOI: 10.1016/j.molcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Inter-kingdom communication through small molecules is essential to the coexistence of organisms in an ecosystem. In soil communities, the plant root is a nexus of interactions for a remarkable number of fungi and is a source of small-molecule plant hormones that shape fungal compositions. Although hormone signaling pathways are established in plants, how fungi perceive and respond to molecules is unclear because many plant-associated fungi are recalcitrant to experimentation. Here, we develop an approach using the model fungus, Saccharomyces cerevisiae, to elucidate mechanisms of fungal response to plant hormones. Two plant hormones, strigolactone and methyl jasmonate, produce unique transcript profiles in yeast, affecting phosphate and sugar metabolism, respectively. Genetic analysis in combination with structural studies suggests that SLs require the high-affinity transporter Pho84 to modulate phosphate homeostasis. The ability to study small-molecule plant hormones in a tractable genetic system should have utility in understanding fungal-plant interactions.
Collapse
Affiliation(s)
- James M Bradley
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - George Ly
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Bruno Aquino
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Flora Zhiqi Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | | | - Shingo Suginoo
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Dylan Bradizza
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Naoki Kato
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Omar As'sadiq
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Nina Marsh
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | | | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | - Dario Bonetta
- Ontario Tech University, 2000 Simcoe St. N, Oshawa, ON L1G 0C5, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
3
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Li Y, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. PLoS Genet 2024; 20:e1011156. [PMID: 39137212 PMCID: PMC11343460 DOI: 10.1371/journal.pgen.1011156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/23/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling, oxidative stress resistance and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. Initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity eventually resolved, as populations gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while severity of others like membrane stress responses diverged from Pi scarcity fitness. Among preliminary candidate genes for contributors to fitness recovery, those with links to TORC1 were overrepresented. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth, stress resistance and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Yuping Li
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Wan W, Zhang H, Niu L, Zhang M, Xu F, Li A, Pei D, Lin M, Cheng B. TGF-β1 promotes osteogenesis of mesenchymal stem cells via integrin mediated mechanical positive autoregulation. iScience 2024; 27:110262. [PMID: 39021801 PMCID: PMC11253692 DOI: 10.1016/j.isci.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Positive autoregulation (PAR), one type of network motifs, provides a high phenotypic heterogeneity for cells to better adapt to their microenvironments. Typical mechanosensitive proteins can also form PAR, e.g., integrin mediated PAR, but the role of such mechanical PAR in physiological development and pathological process remains elusive. In this study, we found that transforming growth factor β1 (TGF-β1) and integrin levels decrease with tissue softening after the development of paradentium in vivo in rat model of periodontitis (an inflammatory disease with bone defect). Interestingly, TGF-β1 could induce the formation of mechanical PAR involving the integrin-FAK-YAP axis in mesenchymal stem cells (MSCs) by both in vitro experiments and in silico computational model. The computational model predicted a mechanical PAR involving the bimodal distribution of focus adhesions, which enables cells to accurately perceive extracellular mechanical cues. Thus, our analysis of TGF-β1 mediated mechanosensing mechanism on MSCs may help to better understand the molecular process underlying bone regeneration.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi’an 710032 P.R. China
| | - Feng Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004 P.R. China
| | - Min Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| | - Bo Cheng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049 P.R. China
| |
Collapse
|
5
|
Schneider S, Kühlbrandt W, Yildiz Ö. Complementary structures of the yeast phosphate transporter Pho90 provide insights into its transport mechanism. Structure 2024; 32:979-988.e4. [PMID: 38688287 DOI: 10.1016/j.str.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Phosphate homeostasis is essential for all living organisms. Low-affinity phosphate transporters are involved in phosphate import and regulation in a range of eukaryotic organisms. We have determined the structures of the Saccharomyces cerevisiae phosphate importer Pho90 by electron cryomicroscopy in two complementary states at 2.3 and 3.1 Å resolution. The symmetrical, outward-open structure in the presence of phosphate indicates bound substrate ions in the binding pocket. In the absence of phosphate, Pho90 assumes an asymmetric structure with one monomer facing inward and one monomer facing outward, providing insights into the transport mechanism. The Pho90 transport domain binds phosphate ions on one side of the membrane, then flips to the other side where the substrate is released. Together with functional experiments, these complementary structures illustrate the transport mechanism of eukaryotic low-affinity phosphate transporters.
Collapse
Affiliation(s)
- Simon Schneider
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Structural Biology Unit, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577887. [PMID: 38352318 PMCID: PMC10862840 DOI: 10.1101/2024.01.29.577887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
- Current affiliation: Planasa, Valladolid, Spain
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Chabert V, Kim GD, Qiu D, Liu G, Michaillat Mayer L, Jamsheer K M, Jessen HJ, Mayer A. Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP 8 and the SPX domain of Pho81. eLife 2023; 12:RP87956. [PMID: 37728314 PMCID: PMC10511240 DOI: 10.7554/elife.87956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.
Collapse
Affiliation(s)
- Valentin Chabert
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| | - Geun-Don Kim
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| | - Danye Qiu
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Guizhen Liu
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | | | | | - Henning J Jessen
- Institute of Organic Chemistry, Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Andreas Mayer
- Département d'immunobiologie, Université de LausanneEpalingesSwitzerland
| |
Collapse
|
8
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
9
|
Kim GD, Qiu D, Jessen HJ, Mayer A. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 2023; 14:e0010223. [PMID: 37074217 PMCID: PMC10294617 DOI: 10.1128/mbio.00102-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
Cells stabilize intracellular inorganic phosphate (Pi) to compromise between large biosynthetic needs and detrimental bioenergetic effects of Pi. Pi homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of Pi in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize Pi scarcity. Whereas Pi starvation affects numerous metabolic pathways, beginning Pi scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending Pi limitation. Actual Pi starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates Pi-dependent transcription factors. Cells lacking inorganic polyphosphate show Pi starvation features already under Pi-replete conditions, suggesting that vacuolar polyphosphate supplies Pi for metabolism even when Pi is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel Pi to preferred cellular processes. IMPORTANCE Cells must strike a delicate balance between the high demand of inorganic phosphate (Pi) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
10
|
Farofonova V, Andreeva N, Kulakovskaya E, Karginov A, Agaphonov M, Kulakovskaya T. Multiple effects of the PHO91 gene knockout in Ogataea parapolymorpha. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01039-x. [PMID: 36753030 DOI: 10.1007/s12223-023-01039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Pho91 is a vacuolar phosphate transporter that exports phosphate from the vacuolar lumen to the cytosol in yeast cells. In this study, we have demonstrated the pleiotropic effects of the PHO91 gene knockout in the methylotrophic yeast Ogataea parapolymorpha (Hansenula polymorpha, Ogataea angusta). The content of both acid-soluble and acid-insoluble inorganic polyphosphate (polyP) in the ∆pho91 cells was slightly higher compared to the strain with wild-type PHO91, when the cells were cultivated on glucose. The pho91-Δ mutations both in O. parapolymorpha and in Saccharomyces cerevisiae diminished resistance to cadmium and increased resistance to manganese and peroxide stresses. The cells of the mutant strain of O. parapolymorpha were unable to consume methanol due to the lack of methanol oxidase activity. We speculate that these effects are associated with the inability of mutant cells to mobilize phosphate from the vacuolar pool and/or defects in the signaling pathways involving phosphate, polyP, and inositol polyphosphates.
Collapse
Affiliation(s)
- Vasilina Farofonova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russian Federation.,Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russian Federation
| | - Nadeshda Andreeva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russian Federation
| | - Ekaterina Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russian Federation
| | - Azamat Karginov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Michael Agaphonov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russian Federation.
| |
Collapse
|
11
|
Zhang S, Nie Y, Fan X, Wei W, Chen H, Xie X, Tang M. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Front Microbiol 2023; 13:1114089. [PMID: 36741887 PMCID: PMC9895418 DOI: 10.3389/fmicb.2022.1114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Phosphorus (P) is one of the most important nutrient elements for plant growth and development. Under P starvation, arbuscular mycorrhizal (AM) fungi can promote phosphate (Pi) uptake and homeostasis within host plants. However, the underlying mechanisms by which AM fungal symbiont regulates the AM symbiotic Pi acquisition from soil under P starvation are largely unknown. Here, we identify a HLH domain containing transcription factor RiPho4 from Rhizophagus irregularis. Methods To investigate the biological functions of the RiPho4, we combined the subcellular localization and Yeast One-Hybrid (Y1H) experiments in yeasts with gene expression and virus-induced gene silencing approach during AM symbiosis. Results The approach during AM symbiosis. The results indicated that RiPho4 encodes a conserved transcription factor among different fungi and is induced during the in planta phase. The transcription of RiPho4 is significantly up-regulated by P starvation. The subcellular localization analysis revealed that RiPho4 is located in the nuclei of yeast cells during P starvation. Moreover, knock-down of RiPho4 inhibits the arbuscule development and mycorrhizal Pi uptake under low Pi conditions. Importantly, RiPho4 can positively regulate the downstream components of the phosphate (PHO) pathway in R. irregularis. Discussion In summary, these new findings reveal that RiPho4 acts as a transcriptional activator in AM fungus to maintain arbuscule development and regulate Pi uptake and homeostasis in the AM symbiosis during Pi starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianan Xie
- *Correspondence: Xianan Xie, ; Ming Tang,
| | - Ming Tang
- *Correspondence: Xianan Xie, ; Ming Tang,
| |
Collapse
|
12
|
Perfect adaptation achieved by transport limitations governs the inorganic phosphate response in S. cerevisiae. Proc Natl Acad Sci U S A 2023; 120:e2212151120. [PMID: 36608289 PMCID: PMC9926285 DOI: 10.1073/pnas.2212151120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cells cope with and adapt to ever-changing environmental conditions. Sophisticated regulatory networks allow cells to adjust to these fluctuating environments. One such archetypal system is the Saccharomyces cerevisiae Pho regulon. When external inorganic phosphate (Pi) concentration is low, the Pho regulon activates, expressing genes that scavenge external and internal Pi. However, the precise mechanism controlling this regulon remains elusive. We conducted a systems analysis of the Pho regulon on the single-cell level under well-controlled environmental conditions. This analysis identified a robust, perfectly adapted Pho regulon state in intermediate Pi conditions, and we identified an intermediate nuclear localization state of the transcriptional master regulator Pho4p. The existence of an intermediate nuclear Pho4p state unifies and resolves outstanding incongruities associated with the Pho regulon, explains the observed programmatic states of the Pho regulon, and improves our general understanding of how nature evolves and controls sophisticated gene regulatory networks. We further propose that robustness and perfect adaptation are not achieved through complex network-centric control but by simple transport biophysics. The ubiquity of multitransporter systems suggests that similar mechanisms could govern the function of other regulatory networks as well.
Collapse
|
13
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
14
|
Cao Y, Zhang C, Fang Y, Liu Y, Lyu K, Ding J, Wang X. Investigation the global effect of rare earth gadolinium on the budding Saccharomyces cerevisiae by genome-scale screening. Front Microbiol 2022; 13:1022054. [DOI: 10.3389/fmicb.2022.1022054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionThe rare earth gadolinium (Gd) is widely used in industry and medicine, which has been treated as an emerging pollutant in environment. The increasing pollution of Gd has potential hazards to living organisms. Thus it is essential to investigate the toxicity and action mechanism of Gd in biological system.MethodsIn this study, the global effect and activation mechanism of Gd on yeast were investigated by genome-scale screening.Results and discussionOur results show that 45 gene deletion strains are sensitive to Gd and 10 gene deletion strains are Gd resistant from the diploid gene deletion strain library of Saccharomyces cerevisiae. The result of localization analysis shows that most of these genes are involved in cell metabolism, cell cycle, transcription, translation, protein synthesis, protein folding, and cell transport. The result of functional analysis shows that four genes (CNB1, CRZ1, VCX1, and GDT1) are involved in the calcium signaling pathway, and four genes (PHO84, PHO86, PHO2, and PHO4) are involved in phosphorus metabolism. For Gd3+ has the similar ion radius with Ca2+ and easily binds to the phosphate radical, it affects Ca2+ signaling pathway and phosphorus metabolism. The genes ARF1, ARL1, ARL3, SYS1, COG5, COG6, YPT6, VPS9, SSO2, MRL1, AKL1, and TRS85 participate in vesicle transport and protein sorting. Thus, Gd accumulation affects the function of proteins related to vesicle transport, which may result in the failure of Gd transport out of cells. In addition, the intracellular Gd content in the 45 sensitive deletion strains is higher than that in the wild type yeast under Gd stress. It suggests that the sensitivity of yeast deletion strains is related to the excessive intracellular Gd accumulation.
Collapse
|
15
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
16
|
Wilson AC, Morgan WR. Functional analysis of a Phytophthora host-translocated effector using the yeast model system. PeerJ 2021; 9:e12576. [PMID: 34966585 PMCID: PMC8663620 DOI: 10.7717/peerj.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Phytophthora plant pathogens secrete effector proteins that are translocated into host plant cells during infection and collectively contribute to pathogenicity. A subset of these host-translocated effectors can be identified by the amino acid motif RXLR (arginine, any amino acid, leucine, arginine). Bioinformatics analysis has identified hundreds of putative RXLR effector genes in Phytophthora genomes, but the specific molecular function of most remains unknown. Methods Here we describe initial studies to investigate the use of Saccharomyces cerevisiae as a eukaryotic model to explore the function of Phytophthora RXLR effector proteins. Results and Conclusions Expression of individual RXLR effectors in yeast inhibited growth, consistent with perturbation of a highly conserved cellular process. Transcriptome analysis of yeast cells expressing the poorly characterized P. sojae RXLR effector Avh110 identified nearly a dozen yeast genes whose expression levels were altered greater than two-fold compared to control cells. All five of the most down-regulated yeast genes are normally induced under low phosphate conditions via the PHO4 transcription factor, indicating that PsAvh110 perturbs the yeast regulatory network essential for phosphate homeostasis and suggesting likely PsAvh110 targets during P. sojae infection of its soybean host.
Collapse
Affiliation(s)
- Avery C Wilson
- Department of Biology, The College of Wooster, Wooster, OH, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - William R Morgan
- Department of Biology, The College of Wooster, Wooster, OH, United States
| |
Collapse
|
17
|
Kerdsomboon K, Techo T, Limcharoensuk T, Tatip S, Auesukaree C. Low phosphate mitigates cadmium-induced oxidative stress in Saccharomyces cerevisiae by enhancing endogenous antioxidant defence system. Environ Microbiol 2021; 24:707-720. [PMID: 34927334 DOI: 10.1111/1462-2920.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Cadmium is a highly toxic heavy metal that causes many harmful effects on human health and ecosystems. Metal chelation-based techniques have become a common approach for the treatment of metal poisoning and also for the remediation of metal contamination. Phosphate, an essential nutrient required for key cellular functions, has been supposed to be effective in reducing cadmium bioavailability, possibly through its chelating potential. In this study, we explored the effects of phosphate on cadmium toxicity and cellular response to cadmium stress in the eukaryotic model Saccharomyces cerevisiae. Our results reveal that cadmium toxicity is unexpectedly enhanced during phosphate repletion and optimal phosphate levels for yeast growth under cadmium stress conditions decline with increasing cadmium concentrations. The profound cadmium toxicity during phosphate repletion is unlikely to result from either elevated cadmium accumulation or dysregulated homeostasis of essential metals, but rather due to increased production of intracellular reactive oxygen species. We show that, under phosphate-depleted conditions, the activities of antioxidant enzymes, especially Mn-superoxide dismutase and catalase, are significantly promoted through transcriptional upregulation. Our findings highlight the important role of cellular response to phosphate limitation in mitigating cadmium toxicity and endogenous oxidative stress through the enhancement of antioxidant enzyme activity.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
18
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
19
|
Pavani M, Bonaiuti P, Chiroli E, Gross F, Natali F, Macaluso F, Póti Á, Pasqualato S, Farkas Z, Pompei S, Cosentino Lagomarsino M, Rancati G, Szüts D, Ciliberto A. Epistasis, aneuploidy, and functional mutations underlie evolution of resistance to induced microtubule depolymerization. EMBO J 2021; 40:e108225. [PMID: 34605051 DOI: 10.15252/embj.2021108225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Paolo Bonaiuti
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Elena Chiroli
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Fridolin Gross
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sebastiano Pasqualato
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Human Technopole, Milano, Italy
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Simone Pompei
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | | | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea Ciliberto
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| |
Collapse
|
20
|
Biological feedback control-Respect the loops. Cell Syst 2021; 12:477-487. [PMID: 34139160 DOI: 10.1016/j.cels.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
We, and all organisms, are an evolutionary masterpiece of multiscale feedback control. Feedback loops enable our cells to grow and then stop at the right size, to divide and self-repair, and to respond with agility to their changing environment. Individual cells engage in long range extracellular feedback with other cells, ensuring continued homeostasis of our tissues and organs. Many long ranging feedback loops regulate vital physiological variables. Here, I will argue that focused efforts to understand the properties and constraints of biological feedback control networks should be central to the quest of understanding life. I will also propose many pressing challenges in this field and review conceptual frameworks that might be consequential for addressing them.
Collapse
|
21
|
Crooijmans ME, Delzenne TO, Hensen T, Darehei M, de Winde JH, van Heusden GPH. Cell-to-cell heterogeneity of phosphate gene expression in yeast is controlled by alternative transcription, 14-3-3 and Spl2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194714. [PMID: 33971368 DOI: 10.1016/j.bbagrm.2021.194714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
Dependent on phosphate availability the yeast Saccharomyces cerevisiae expresses either low or high affinity phosphate transporters. In the presence of phosphate yeast cells still express low levels of the high affinity phosphate transporter Pho84. The regulator Spl2 is expressed in approximately 90% of the cells, and is not expressed in the remaining cells. Here we report that deletion of RRP6, encoding an exonuclease degrading non-coding RNA, or BMH1, encoding the major 14-3-3 isoform, resulted in less cells expressing SPL2 and in increased levels of RNA transcribed from sequences upstream of the SPL2 coding region. SPL2 stimulates its own expression and that of PHO84 ensuing a positive feedback. Upon deletion of the region responsible for upstream SPL2 transcription almost all cells express SPL2. These results indicate that the cell-to-cell variation in PHO84 and SPL2 expression is dependent on a specific part of the SPL2 promoter and is controlled by Bmh1 and Spl2.
Collapse
Affiliation(s)
| | - Tijn O Delzenne
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Tim Hensen
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mina Darehei
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | | |
Collapse
|
22
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
23
|
Shaban K, Sauty SM, Yankulov K. Variation, Variegation and Heritable Gene Repression in S. cerevisiae. Front Genet 2021; 12:630506. [PMID: 33747046 PMCID: PMC7970126 DOI: 10.3389/fgene.2021.630506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phenotypic heterogeneity provides growth advantages for a population upon changes of the environment. In S. cerevisiae, such heterogeneity has been observed as "on/off" states in the expression of individual genes in individual cells. These variations can persist for a limited or extended number of mitotic divisions. Such traits are known to be mediated by heritable chromatin structures, by the mitotic transmission of transcription factors involved in gene regulatory circuits or by the cytoplasmic partition of prions or other unstructured proteins. The significance of such epigenetic diversity is obvious, however, we have limited insight into the mechanisms that generate it. In this review, we summarize the current knowledge of epigenetically maintained heterogeneity of gene expression and point out similarities and converging points between different mechanisms. We discuss how the sharing of limiting repression or activation factors can contribute to cell-to-cell variations in gene expression and to the coordination between short- and long- term epigenetic strategies. Finally, we discuss the implications of such variations and strategies in adaptation and aging.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD, Coppens I. A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 2021; 16:e1009067. [PMID: 33383579 PMCID: PMC7817038 DOI: 10.1371/journal.ppat.1009067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/20/2021] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses. Inorganic phosphate (Pi) is indispensable for the biosynthesis of key cellular components, and is involved in many metabolic and signaling pathways. Transport across the plasma membrane is the first step in the utilization of Pi. The import mechanism of Pi by the intracellular parasite Toxoplasma is unknown. We characterized a transmembrane, high-affinity Na+-Pi cotransporter, named TgPiT, expressed by the parasite at the plasma membrane for Pi uptake. Interestingly, TgPiT is also localized to inward buds of the endosomal VAC organelles and some cytoplasmic vesicles. Loss of TgPiT results in a severe reduction in Pi internalization and polyphosphate levels, but stimulation of the biogenesis of phosphate-enriched acidocalcisomes. ΔTgPiT parasites have a shrunken cell body, enlarged VAC organelles, poor release of stored calcium and a mildly alkaline pH, suggesting a role for TgPiT in the maintenance of overall ionic homeostasis. ΔTgPiT parasites are poorly infectious in vitro and in mice. The mutant appears to partially cope with the absence of TgPiT by up-regulating genes coding for ion transporters and enzymes catalyzing phosphate group transfer. Our data highlight a scenario in which the role of TgPiT in Pi and Na+ transport is functionally coupled with osmoregulation activities central to sustain Toxoplasma survival.
Collapse
Affiliation(s)
- Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Claudia F. Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Tejram Sahu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Miyasaka M, Mioka T, Kishimoto T, Itoh E, Tanaka K. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions. PLoS One 2020; 15:e0236520. [PMID: 32730286 PMCID: PMC7392219 DOI: 10.1371/journal.pone.0236520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants. Cfs1p is a membrane protein of the PQ-loop family and is localized to endosomal/Golgi membranes, but its relationship to phospholipid asymmetry remains unknown. The neo1Δ cfs1Δ mutant appears to function normally in membrane trafficking but may function abnormally in the regulation of phospholipid asymmetry. To identify a gene that is functionally relevant to NEO1 and CFS1, we isolated a mutation that is synthetically lethal with neo1Δ cfs1Δ and identified ERD1. Erd1p is a Golgi membrane protein that is involved in the transport of phosphate (Pi) from the Golgi lumen to the cytoplasm. The Neo1p-depleted cfs1Δ erd1Δ mutant accumulated plasma membrane proteins in the Golgi, perhaps due to a lack of phosphatidylinositol 4-phosphate. The Neo1p-depleted cfs1Δ erd1Δ mutant also exhibited abnormal structure of the endoplasmic reticulum (ER) and induced an unfolded protein response, likely due to defects in the retrieval pathway from the cis-Golgi region to the ER. Genetic analyses suggest that accumulation of Pi in the Golgi lumen is responsible for defects in Golgi functions in the Neo1p-depleted cfs1Δ erd1Δ mutant. Thus, the luminal ionic environment is functionally relevant to phospholipid asymmetry. Our results suggest that flippase-mediated phospholipid redistribution and luminal Pi concentration coordinately regulate Golgi membrane functions.
Collapse
Affiliation(s)
- Mamoru Miyasaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Eriko Itoh
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
26
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
28
|
Stosiek N, Terebieniec A, Ząbek A, Młynarz P, Cieśliński H, Klimek-Ochab M. N-phosphonomethylglycine utilization by the psychrotolerant yeast Solicoccozyma terricola M 3.1.4. Bioorg Chem 2019; 93:102866. [PMID: 30902434 DOI: 10.1016/j.bioorg.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Solicoccozyma terricola M 3.1.4., the yeast strain isolated from soil sample from blueberry cultivation in Miedzyrzec Podlaski in Poland, is capable to split of phosphorus to nitrogen and nitrogen to carbon bonds in N-phosphonomethylglycine (PMG, glyphosate). The biodegradation process proceeds in the phosphate-independent manner. It is the first example of a psychrotolerant yeast strain able to degrade PMG via CN bond cleavage accompanied by AMPA formation and not like in most microorganisms via CP bond disruption followed by the sarcosine pathway. Glyphosate oxidoreductase (GOX) type activity was detected in cell-free extracts prepared from S. terricola M 3.1.4. pregrown on 4 mM PMG as a sole phosphorus and nitrogen source in cultivation medium.
Collapse
Affiliation(s)
- Natalia Stosiek
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Agata Terebieniec
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Adam Ząbek
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland; PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Piotr Młynarz
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
29
|
Jung K, Brameyer S, Fabiani F, Gasperotti A, Hoyer E. Phenotypic Heterogeneity Generated by Histidine Kinase-Based Signaling Networks. J Mol Biol 2019; 431:4547-4558. [DOI: 10.1016/j.jmb.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
|
30
|
Hua B, Springer M. Widespread Cumulative Influence of Small Effect Size Mutations on Yeast Quantitative Traits. Cell Syst 2019; 7:590-600.e6. [PMID: 30579728 DOI: 10.1016/j.cels.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/28/2017] [Accepted: 11/19/2018] [Indexed: 02/04/2023]
Abstract
Quantitative traits are influenced by pathways that have traditionally been defined through genes that have a large loss- or gain-of-function effect. However, in theory, a large number of small effect size genes could cumulatively play a substantial role in pathway function. Here, we determine the number, strength, and identity of all non-essential test genes that affect two quantitative galactose-responsive traits in addition to re-analyzing two previously screened quantitative traits. We find that over a quarter of assayed genes have a detectable, quantitative effect on phenotype. Despite their ubiquity, these genes are enriched in core cellular processes in a trait-specific manner. In a simulated population with 50% frequency of all-or-none alleles, we show that small effect size alleles are capable of contributing more to trait variation than alleles in a canonical, large effect size pathway. In total, by demonstrating that the genes effecting quantitative traits can be highly distributed and interconnected, this work challenges the concept of pathways as modular and independent.
Collapse
Affiliation(s)
- Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Wang T, Lou X, Zhang G, Dang Y. Improvement of selenium enrichment in Rhodotorula glutinis X-20 through combining process optimization and selenium transport. Bioengineered 2019; 10:335-344. [PMID: 31322471 PMCID: PMC6682361 DOI: 10.1080/21655979.2019.1644853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selenium-enriched yeast can transform toxic inorganic selenium into absorbable organic selenium, which is of great significance for human health and pharmaceutical industry. A yeast Rhodotorula glutinis X-20 we obtained before has good selenium-enriched ability, but its selenium content is still low for industrial application. In this study, strategies of process optimization and transport regulation of selenium were thus employed to further improve the cell growth and selenium enrichment. Through engineering phosphate transporters from Saccharomyces cerevisiae into R. glutinis X-20, the selenium content was increased by 21.1%. Through using mixed carbon culture (20 g L−1, glycerol: glucose 3:7), both biomass and selenium content were finally increased to 5.3 g L−1 and 5349.6 µg g−1 (cell dry weight, DWC), which were 1.14 folds and 6.77 folds compared to their original values, respectively. Our results indicate that high selenium-enrichment ability and biomass production can be achieved through combining process optimization and regulation of selenium transport.
Collapse
Affiliation(s)
- Ting Wang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Xindan Lou
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Genlin Zhang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| | - Yanyan Dang
- a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Shihezi , China
| |
Collapse
|
32
|
Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, Kulakovskiy IV, Kulakovskaya T. The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae. Cells 2019; 8:cells8050461. [PMID: 31096715 PMCID: PMC6562782 DOI: 10.3390/cells8050461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Anton Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Airat Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Alexey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19 bld .1, Moscow 127051, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia.
| | - Vladimir Ostroumov
- Institute of Physicochemical and Biological Problems of Soil Science, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 2, Pushchino 142290, Russia.
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow GSP-1 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow GSP-1 119991, Russia.
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino 142290, Russia.
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| |
Collapse
|
33
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
34
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
35
|
Gurvich Y, Leshkowitz D, Barkai N. Dual role of starvation signaling in promoting growth and recovery. PLoS Biol 2017; 15:e2002039. [PMID: 29236696 PMCID: PMC5728490 DOI: 10.1371/journal.pbio.2002039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.
Collapse
Affiliation(s)
- Yonat Gurvich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
36
|
H + and Pi Byproducts of Glycosylation Affect Ca 2+ Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1. G3-GENES GENOMES GENETICS 2017; 7:3913-3924. [PMID: 29042410 PMCID: PMC5714488 DOI: 10.1534/g3.117.300339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycosylation reactions in the Golgi complex and the endoplasmic reticulum utilize nucleotide sugars as donors and produce inorganic phosphate (Pi) and acid (H+) as byproducts. Here we show that homologs of mammalian XPR1 and TMEM165 (termed Erd1 and Gdt1) recycle luminal Pi and exchange luminal H+ for cytoplasmic Ca2+, respectively, thereby promoting growth of yeast cells in low Pi and low Ca2+ environments. As expected for reversible H+/Ca2+ exchangers, Gdt1 also promoted growth in high Ca2+ environments when the Golgi-localized V-ATPase was operational but had the opposite effect when the V-ATPase was eliminated. Gdt1 activities were negatively regulated by calcineurin signaling and by Erd1, which recycled the Pi byproduct of glycosylation reactions and prevented the loss of this nutrient to the environment via exocytosis. Thus, Erd1 transports Pi in the opposite direction from XPR1 and other EXS family proteins and facilitates byproduct removal from the Golgi complex together with Gdt1.
Collapse
|
37
|
Teunissen JHM, Crooijmans ME, Teunisse PPP, van Heusden GPH. Lack of 14-3-3 proteins in Saccharomyces cerevisiae results in cell-to-cell heterogeneity in the expression of Pho4-regulated genes SPL2 and PHO84. BMC Genomics 2017; 18:701. [PMID: 28877665 PMCID: PMC5588707 DOI: 10.1186/s12864-017-4105-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/31/2017] [Indexed: 01/16/2023] Open
Abstract
Background Ion homeostasis is an essential property of living organisms. The yeast Saccharomyces cerevisiae is an ideal model organism to investigate ion homeostasis at all levels. In this yeast genes involved in high-affinity phosphate uptake (PHO genes) are strongly induced during both phosphate and potassium starvation, indicating a link between phosphate and potassium homeostasis. However, the signal transduction processes involved are not completely understood. As 14-3-3 proteins are key regulators of signal transduction processes, we investigated the effect of deletion of the 14-3-3 genes BMH1 or BMH2 on gene expression during potassium starvation and focused especially on the expression of genes involved in phosphate uptake. Results Genome-wide analysis of the effect of disruption of either BMH1 or BMH2 revealed that the mRNA levels of the PHO genes PHO84 and SPL2 are greatly reduced in the mutant strains compared to the levels in wild type strains. This was especially apparent at standard potassium and phosphate concentrations. Furthermore the promoter of these genes is less active after deletion of BMH1. Microscopic and flow cytometric analysis of cells with GFP-tagged SPL2 showed that disruption of BMH1 resulted in two populations of genetically identical cells, cells expressing the protein and the majority of cells with no detectible expression. Heterogeneity was also observed for the expression of GFP under control of the PHO84 promoter. Upon deletion of PHO80 encoding a regulator of the transcription factor Pho4, the effect of the BMH1 deletion on SPL2 and PHO84 promoter was lost, suggesting that the BMH1 deletion mainly influences processes upstream of the Pho4 transcription factor. Conclusion Our data indicate that that yeast cells can be in either of two states, expressing or not expressing genes required for high-affinity phosphate uptake and that 14-3-3 proteins are involved in the process(es) that establish the activation state of the PHO regulon. Electronic supplementary material The online version of this article (10.1186/s12864-017-4105-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janneke H M Teunissen
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - Marjolein E Crooijmans
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - Pepijn P P Teunisse
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - G Paul H van Heusden
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands.
| |
Collapse
|
38
|
Phosphate Acquisition and Virulence in Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5030048. [PMID: 28829379 PMCID: PMC5620639 DOI: 10.3390/microorganisms5030048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
The ability of pathogenic fungi to acquire essential macro and micronutrients during infection is a well-established virulence trait. Recent studies in the major human fungal pathogens Candida albicans and Cryptococcus neoformans have revealed that acquisition of the essential macronutrient, phosphate, is essential for virulence. The phosphate sensing and acquisition pathway in fungi, known as the PHO pathway, has been extensively characterized in the model yeast Saccharomyces cerevisiae. In this review, we highlight recent advances in phosphate sensing and signaling mechanisms, and use the S. cerevisiae PHO pathway as a platform from which to compare the phosphate acquisition and storage strategies employed by several human pathogenic fungi. We also explore the multi-layered roles of phosphate acquisition in promoting fungal stress resistance to pH, cationic, and oxidative stresses, and describe emerging roles for the phosphate storage molecule polyphosphate (polyP). Finally, we summarize the recent studies supporting the necessity of phosphate acquisition in mediating the virulence of human fungal pathogens, highlighting the concept that this requirement is intimately linked to promoting resistance to host-imposed stresses.
Collapse
|
39
|
Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria. PLoS One 2017; 12:e0182993. [PMID: 28796832 PMCID: PMC5552118 DOI: 10.1371/journal.pone.0182993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022] Open
Abstract
Bacterial histidine kinase/response regulator systems operate at the interface between environmental cues and physiological states. Escherichia coli contains two LytS/LytTR-type histidine kinase/response regulator systems, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which have been identified as pyruvate-responsive two-component systems. Since they exhibit remarkable similarity, we analyzed their phylogenetic distribution within the γ-proteobacteria, and experimentally characterized them in a set of representative species. We found that BtsS/BtsR is the predominant LytS/LytTR-type two-component system among γ-proteobacteria, whereas YpdA/YpdB primarily appears in a supplementary role. Based on our observations in E. coli, we used the highly conserved DNA-binding motifs to test the in vivo functionality of both systems in various genera, including Salmonella, Enterobacter, Citrobacter, Xenorhabdus, Yersinia, Aeromonas and Vibrio. The results suggest that, in all cases tested, BtsS/BtsR and YpdA/YpdB respond to different levels of pyruvate in the environment.
Collapse
|
40
|
Bru S, Samper-Martín B, Quandt E, Hernández-Ortega S, Martínez-Laínez JM, Garí E, Rafel M, Torres-Torronteras J, Martí R, Ribeiro MPC, Jiménez J, Clotet J. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells. DNA Repair (Amst) 2017; 57:171-178. [PMID: 28822913 DOI: 10.1016/j.dnarep.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022]
Abstract
Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention.
Collapse
Affiliation(s)
- Samuel Bru
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper-Martín
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sara Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Joan M Martínez-Laínez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eloi Garí
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Marta Rafel
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Lleida, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
41
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
42
|
Choi J, Rajagopal A, Xu YF, Rabinowitz JD, O’Shea EK. A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS One 2017; 12:e0176085. [PMID: 28520786 PMCID: PMC5435139 DOI: 10.1371/journal.pone.0176085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient Pi. Pi-limitation induces upregulation of inositol heptakisphosphate (IP7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate the PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Furthermore, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of Pi starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.
Collapse
Affiliation(s)
- Joonhyuk Choi
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Abbhirami Rajagopal
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yi-Fan Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erin K. O’Shea
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
43
|
He BZ, Zhou X, O'Shea EK. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. eLife 2017; 6:25157. [PMID: 28485712 PMCID: PMC5446240 DOI: 10.7554/elife.25157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/29/2017] [Indexed: 01/23/2023] Open
Abstract
Although combinatorial regulation is a common feature in gene regulatory networks, how it evolves and affects network structure and function is not well understood. In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are required for gene induction and survival during phosphate starvation. In the related human commensal C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate starvation and is only partially required for inducing PHO genes. Phylogenetic survey suggests that reduced dependence on Pho2 evolved in C. glabrata and closely related species. In S. cerevisiae, less Pho2-dependent Pho4 orthologs induce more genes. In C. glabrata, its Pho4 binds to more locations and induces three times as many genes as Pho4 in S. cerevisiae does. Our work shows how evolution of combinatorial regulation allows for rapid expansion of a gene regulatory network’s targets, possibly extending its physiological functions. The diversity of life on Earth has intrigued generations of scientists and nature lovers alike. Research over recent decades has revealed that much of the diversity we can see did not require the invention of new genes. Instead, living forms diversified mostly by using old genes in new ways – for example, by changing when or where an existing gene became active. This kind of change is referred to as “regulatory evolution”. A class of proteins called transcription factors are hot spots in regulatory evolution. These proteins recognize specific sequences of DNA to control the activity of other genes, and so represent the “readers” of the genetic information. Small changes to how a transcription factor is regulated, or the genes it targets, can lead to dramatic changes in an organism. Before we can understand how life on Earth evolved to be so diverse, scientists must first answer how transcription factors evolve and what consequences this has on their target genes. So far, most studies of regulatory evolution have focused on networks of transcription factors and genes that control how an organism develops. He et al. have now studied a regulatory network that is behind a different process, namely how an organism responds to stress or starvation. These two types of regulatory networks are structured differently and work in different ways. These differences made He et al. wonder if the networks evolved differently too. The chemical phosphate is an essential nutrient for all living things, and He et al. compared how two different species of yeast responded to a lack of phosphate. The key difference was how much a major transcription factor known as Pho4 depended on a so-called co-activator protein named Pho2 to carry out its role. Baker’s yeast (Saccharomyces cerevisiae), which is commonly used in laboratory experiments, requires both Pho4 and Pho2 to activate about 20 genes when inorganic phosphate is not available in its environment. However, in a related yeast species called Candida glabrata, Pho4 has evolved to depend less on Pho2. He et al. went on to show that, as well as being less dependent on Pho2, Pho4 in C. glabrata activates more than three times as many genes as Pho4 in S. cerevisiae does in the absence of phosphate. These additional gene targets for Pho4 in C. glabrata are predicted to extend the network’s activities, and allow it to regulate new process including the yeast’s responses to other types of stress and the building of the yeast’s cell wall. Together these findings show a new way that regulatory networks can evolve, that is, by reducing its dependence on the co-activator, a transcription factor can expand the number of genes it targets. This has not been seen for regulatory networks related to development, suggesting that different networks can indeed evolve in different ways. Lastly, because disease-causing microbes are often stressed inside their hosts and C. glabrata sometimes infects humans, understanding how this yeast’s response to stress has evolved may lead to new ways to prevent and treat this infection.
Collapse
Affiliation(s)
- Bin Z He
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Xu Zhou
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
44
|
Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Sci Rep 2017; 7:1388. [PMID: 28469239 PMCID: PMC5431176 DOI: 10.1038/s41598-017-01410-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Two-component systems are crucial for signal perception and modulation of bacterial behavior. Nevertheless, to date, very few ligands have been identified that directly interact with histidine kinases. The histidine kinase/response regulator system YehU/YehT of Escherichia coli is part of a nutrient-sensing network. Here we demonstrate that this system senses the onset of nutrient limitation in amino acid rich media and responds to extracellular pyruvate. Binding of radiolabeled pyruvate was found for full-length YehU in right-side-out membrane vesicles as well as for a truncated, membrane-integrated variant, confirming that YehU is a high-affinity receptor for extracellular pyruvate. Therefore we propose to rename YehU/YehT as BtsS/BtsR, after "Brenztraubensäure", the name given to pyruvic acid when it was first synthesized. The function of BtsS/BtsR was also assessed in a clinically relevant uropathogenic E. coli strain. Quantitative transcriptional analysis revealed BtsS/BtsR importance during acute and chronic urinary-tract infections.
Collapse
Affiliation(s)
- Stefan Behr
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Ivica Kristoficova
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Michael Witting
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Erin J Breland
- Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Allison R Eberly
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Corinna Sachs
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Maria Hadjifrangiskou
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Departments of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany.
| |
Collapse
|
45
|
Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, Bonfante P, Zhao B. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. MOLECULAR PLANT 2016; 9:1583-1608. [PMID: 27688206 DOI: 10.1016/j.molp.2016.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A146 (in transmembrane domain [TMD] IV) and Val357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaowei Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Congrui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Kexin Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Antian Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaohui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China.
| |
Collapse
|
46
|
The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Sci Rep 2016; 6:32836. [PMID: 27618952 PMCID: PMC5020356 DOI: 10.1038/srep32836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron supplementation. The absence of Aft2 strongly potentiates the transcriptional responses to selenite, particularly for DNA damage- and oxidative stress-responsive genes, and results in intracellular hyperaccumulation of selenium. Overexpression of PHO4, the transcriptional activator of the PHO regulon under low phosphate conditions, partially reverses sensitivity and hyperaccumulation of selenite in a way that requires the presence of Spl2, a Pho4-controlled protein responsible for post-transcriptional downregulation of the low-affinity phosphate transporters Pho87 and Pho90. SPL2 expression is strongly downregulated in aft2 cells, especially upon selenite treatment. Selenite hypersensitivity of aft2 cells is fully rescued by deletion of PHO90, suggesting a major role for Pho90 in selenite uptake. We propose that the absence of Aft2 leads to enhanced Pho90 function, involving both Spl2-dependent and independent events and resulting in selenite hyperaccumulation and toxicity.
Collapse
|
47
|
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 2016; 352:986-90. [DOI: 10.1126/science.aad9858] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022]
|
48
|
Iosue CL, Attanasio N, Shaik NF, Neal EM, Leone SG, Cali BJ, Peel MT, Grannas AM, Wykoff DD. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata. PLoS One 2016; 11:e0152042. [PMID: 27015653 PMCID: PMC4807840 DOI: 10.1371/journal.pone.0152042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine.
Collapse
Affiliation(s)
- Christine L. Iosue
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nicholas Attanasio
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Noor F. Shaik
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Erin M. Neal
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Sarah G. Leone
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Brian J. Cali
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael T. Peel
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Amanda M. Grannas
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, United States of America
| | - Dennis D. Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Samyn DR, Persson BL. Inorganic Phosphate and Sulfate Transport in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:253-269. [PMID: 26721277 DOI: 10.1007/978-3-319-25304-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.
Collapse
Affiliation(s)
- D R Samyn
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden.
| | - B L Persson
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden
| |
Collapse
|
50
|
Peña A, Sánchez NS, Álvarez H, Calahorra M, Ramírez J. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fou005. [PMID: 25673753 DOI: 10.1093/femsyr/fou005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth of Saccharomyces cerevisiae stopped by maintaining the pH of the medium in a pH-stat at pH 8.0 or 9.0. Studying its main physiological capacities and comparing cells after incubation at pH 6.0 vs. 8.0 or 9.0, we found that (a) fermentation was moderately decreased by high pH and respiration was similar and sensitive to the addition of an uncoupler, (b) ATP and glucose-6-phosphate levels upon glucose addition increased to similar levels and (c) proton pumping and K(+) transport were also not affected; all this indicating that energy mechanisms were preserved. Growth inhibition at high pH was also not due to a significant lower amino acid transport by the cells or incorporation into proteins. The cell cycle stopped at pH 9.0, probably due to an arrest as a result of adjustments needed by the cells to contend with the changes under these conditions, and microarray experiments showed some relevant changes to this response.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D. F., 04510 México, D. F., México
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D. F., 04510 México, D. F., México
| | - Helber Álvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D. F., 04510 México, D. F., México
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D. F., 04510 México, D. F., México
| | - Jorge Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, D. F., 04510 México, D. F., México
| |
Collapse
|