1
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, Fang Y, Lu Z, Wu X, Pan Z, Peng J, Lin J. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy 2024; 20:114-130. [PMID: 37615625 PMCID: PMC10761097 DOI: 10.1080/15548627.2023.2249762] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Weihao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Long Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenlin Hou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingheng Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanbo Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiahua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jin Lan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhai Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhizhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianhong Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu X, Wang J, Boyer JA, Gong W, Zhao S, Xie L, Wu Q, Zhang C, Jain K, Guo Y, Rodriguez J, Li M, Uryu H, Liao C, Hu L, Zhou J, Shi X, Tsai YH, Yan Q, Luo W, Chen X, Strahl BD, von Kriegsheim A, Zhang Q, Wang GG, Baldwin AS, Zhang Q. Histone H3 proline 16 hydroxylation regulates mammalian gene expression. Nat Genet 2022; 54:1721-1735. [PMID: 36347944 PMCID: PMC9674084 DOI: 10.1038/s41588-022-01212-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Histone post-translational modifications (PTMs) are important for regulating various DNA-templated processes. Here, we report the existence of a histone PTM in mammalian cells, namely histone H3 with hydroxylation of proline at residue 16 (H3P16oh), which is catalyzed by the proline hydroxylase EGLN2. We show that H3P16oh enhances direct binding of KDM5A to its substrate, histone H3 with trimethylation at the fourth lysine residue (H3K4me3), resulting in enhanced chromatin recruitment of KDM5A and a corresponding decrease of H3K4me3 at target genes. Genome- and transcriptome-wide analyses show that the EGLN2-KDM5A axis regulates target gene expression in mammalian cells. Specifically, our data demonstrate repression of the WNT pathway negative regulator DKK1 through the EGLN2-H3P16oh-KDM5A pathway to promote WNT/β-catenin signaling in triple-negative breast cancer (TNBC). This study characterizes a regulatory mark in the histone code and reveals a role for H3P16oh in regulating mammalian gene expression.
Collapse
Affiliation(s)
- Xijuan Liu
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qiong Wu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kanishk Jain
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Javier Rodriguez
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mingjie Li
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Qi Zhang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
3
|
Yi T, Weng J, Siwko S, Luo J, Li D, Liu M. LGR4/GPR48 inactivation leads to aniridia-genitourinary anomalies-mental retardation syndrome defects. J Biol Chem 2014; 289:8767-80. [PMID: 24519938 DOI: 10.1074/jbc.m113.530816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AGR syndrome (the clinical triad of aniridia, genitourinary anomalies, and mental retardation, a subgroup of WAGR syndrome for Wilm's tumor, aniridia, genitourinary anomalies, and mental retardation) is a rare syndrome caused by a contiguous gene deletion in the 11p13-14 region. However, the mechanisms of WAGR syndrome pathogenesis are elusive. In this study we provide evidence that LGR4 (also named GPR48), the only G-protein-coupled receptor gene in the human chromosome 11p12-11p14.4 fragment, is the key gene responsible for the diseases of AGR syndrome. Deletion of Lgr4 in mouse led to aniridia, polycystic kidney disease, genitourinary anomalies, and mental retardation, similar to the pathological defects of AGR syndrome. Furthermore, Lgr4 inactivation significantly increased cell apoptosis and decreased the expression of multiple important genes involved in the development of WAGR syndrome related organs. Specifically, deletion of Lgr4 down-regulated the expression of histone demethylases Jmjd2a and Fbxl10 through cAMP-CREB signaling pathways both in mouse embryonic fibroblast cells and in urinary and reproductive system mouse tissues. Our data suggest that Lgr4, which regulates eye, kidney, testis, ovary, and uterine organ development as well as mental development through genetic and epigenetic surveillance, is a novel candidate gene for the pathogenesis of AGR syndrome.
Collapse
Affiliation(s)
- Tingfang Yi
- From the Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030 and
| | | | | | | | | | | |
Collapse
|
4
|
van Dijk M, Visscher KM, Kastritis PL, Bonvin AMJJ. Solvated protein-DNA docking using HADDOCK. JOURNAL OF BIOMOLECULAR NMR 2013; 56:51-63. [PMID: 23625455 DOI: 10.1007/s10858-013-9734-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/20/2013] [Indexed: 06/02/2023]
Abstract
Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein-DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein-DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein-DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein-DNA complexes.
Collapse
Affiliation(s)
- Marc van Dijk
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
5
|
Sarov M, Murray JI, Schanze K, Pozniakovski A, Niu W, Angermann K, Hasse S, Rupprecht M, Vinis E, Tinney M, Preston E, Zinke A, Enst S, Teichgraber T, Janette J, Reis K, Janosch S, Schloissnig S, Ejsmont RK, Slightam C, Xu X, Kim SK, Reinke V, Stewart AF, Snyder M, Waterston RH, Hyman AA. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 2012; 150:855-66. [PMID: 22901814 DOI: 10.1016/j.cell.2012.08.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 03/22/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
Abstract
Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.
Collapse
Affiliation(s)
- Mihail Sarov
- TransgeneOmics Unit, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Osipovich O, Oltz EM. Regulation of antigen receptor gene assembly by genetic-epigenetic crosstalk. Semin Immunol 2010; 22:313-22. [PMID: 20829065 PMCID: PMC2981692 DOI: 10.1016/j.smim.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/08/2010] [Indexed: 02/05/2023]
Abstract
Many aspects of gene function are coordinated by changes in the epigenome, which include dynamic revisions of chromatin modifications, genome packaging, subnuclear localization, and chromosome conformation. All of these mechanisms are used by developing lymphocytes to regulate the assembly of functional antigen receptor genes by V(D)J recombination. This somatic rearrangement of the genome must be tightly regulated to ensure proper B and T cell development and to avoid chromosomal translocations that cause lymphoid tumors. V(D)J recombination is controlled by a complex interplay between cis-acting regulatory elements that use transcription factors as liaisons to communicate with epigenetic pathways. Genetic-epigenetic crosstalk is a key strategy employed by precursor lymphocytes to modulate chromatin configurations at Ig and Tcr loci and thereby permit or deny access to a single V(D)J recombinase complex. This article describes our current knowledge of how genetic elements orchestrate crosstalk with epigenetic mechanisms to regulate recombinase accessibility via localized, regional, or long-range changes in chromatin.
Collapse
Affiliation(s)
- Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
van Dijk M, Bonvin AMJJ. Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance. Nucleic Acids Res 2010; 38:5634-47. [PMID: 20466807 PMCID: PMC2943626 DOI: 10.1093/nar/gkq222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intrinsic flexibility of DNA and the difficulty of identifying its interaction surface have long been challenges that prevented the development of efficient protein-DNA docking methods. We have demonstrated the ability our flexible data-driven docking method HADDOCK to deal with these before, by using custom-built DNA structural models. Here we put our method to the test on a set of 47 complexes from the protein-DNA docking benchmark. We show that HADDOCK is able to predict many of the specific DNA conformational changes required to assemble the interface(s). Our DNA analysis and modelling procedure captures the bend and twist motions occurring upon complex formation and uses these to generate custom-built DNA structural models, more closely resembling the bound form, for use in a second docking round. We achieve throughout the benchmark an overall success rate of 94% of one-star solutions or higher (interface root mean square deviation ≤4 A and fraction of native contacts >10%) according to CAPRI criteria. Our improved protocol successfully predicts even the challenging protein-DNA complexes in the benchmark. Finally, our method is the first to readily dock multiple molecules (N > 2) simultaneously, pushing the limits of what is currently achievable in the field of protein-DNA docking.
Collapse
Affiliation(s)
- Marc van Dijk
- Bijvoet Center for Biomolecular Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
8
|
Najafabadi HS, Goodarzi H, Salavati R. Universal function-specificity of codon usage. Nucleic Acids Res 2010; 37:7014-23. [PMID: 19773421 PMCID: PMC2790905 DOI: 10.1093/nar/gkp792] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synonymous codon usage has long been known as a factor that affects average expression level of proteins in fast-growing microorganisms, but neither its role in dynamic changes of expression in response to environmental changes nor selective factors shaping it in the genomes of higher eukaryotes have been fully understood. Here, we propose that codon usage is ubiquitously selected to synchronize the translation efficiency with the dynamic alteration of protein expression in response to environmental and physiological changes. Our analysis reveals that codon usage is universally correlated with gene function, suggesting its potential contribution to synchronized regulation of genes with similar functions. We directly show that coexpressed genes have similar synonymous codon usages within the genomes of human, yeast, Caenorhabditis elegans and Escherichia coli. We also demonstrate that perturbing the codon usage directly affects the level or even direction of changes in protein expression in response to environmental stimuli. Perturbing tRNA composition also has tangible phenotypic effects on the cell. By showing that codon usage is universally function-specific, our results expand, to almost all organisms, the notion that cells may need to dynamically alter their intracellular tRNA composition in order to adapt to their new environment or physiological role.
Collapse
Affiliation(s)
- Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec, H9X3V9, Canada
| | | | | |
Collapse
|
9
|
Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 2009; 23:2484-9. [PMID: 19884255 DOI: 10.1101/gad.1837309] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factors that play key roles in regulating embryonic stem (ES) cell state have been identified, but the chromatin regulators that help maintain ES cells are less well understood. A high-throughput shRNA screen was used to identify novel chromatin regulators that influence ES cell state. Loss of histone H3 Lys 9 (H3K9) methyltransferases, particularly SetDB1, had the most profound effects on ES cells. Chromatin immunoprecipitation (ChIP) coupled with massively parallel DNA sequencing (ChIP-Seq) and functional analysis revealed that SetDB1 and histone H3K9-methylated nucleosomes occupy and repress genes encoding developmental regulators. These SetDB1-occupied genes are a subset of the "bivalent" genes, which contain nucleosomes with H3K4me3 (H3K4 trimethylation) and H3K27me3 modifications catalyzed by Trithorax and Polycomb group proteins, respectively. These genes are subjected to repression by both Polycomb group proteins and SetDB1, and loss of either regulator can destabilize ES cell state.
Collapse
Affiliation(s)
- Steve Bilodeau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
10
|
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10:697-708. [PMID: 19738629 DOI: 10.1038/nrm2763] [Citation(s) in RCA: 1024] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
11
|
Kim R, Guo JT. PDA: an automatic and comprehensive analysis program for protein-DNA complex structures. BMC Genomics 2009; 10 Suppl 1:S13. [PMID: 19594872 PMCID: PMC2709256 DOI: 10.1186/1471-2164-10-s1-s13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge of protein-DNA interactions at the structural-level can provide insights into the mechanisms of protein-DNA recognition and gene regulation. Although over 1400 protein-DNA complex structures have been deposited into Protein Data Bank (PDB), the structural details of protein-DNA interactions are generally not available. In addition, current approaches to comparison of protein-DNA complexes are mainly based on protein sequence similarity while the DNA sequences are not taken into account. With the number of experimentally-determined protein-DNA complex structures increasing, there is a need for an automatic program to analyze the protein-DNA complex structures and to provide comprehensive structural information for the benefit of the whole research community. RESULTS We developed an automatic and comprehensive protein-DNA complex structure analysis program, PDA (for protein-DNA complex structure analyzer). PDA takes PDB files as inputs and performs structural analysis that includes 1) whole protein-DNA complex structure restoration, especially the reconstruction of double-stranded DNA structures; 2) an efficient new approach for DNA base-pair detection; 3) systematic annotation of protein-DNA interactions; and 4) extraction of DNA subsequences involved in protein-DNA interactions and identification of protein-DNA binding units. Protein-DNA complex structures in current PDB were processed and analyzed with our PDA program and the analysis results were stored in a database. A dataset useful for studying protein-DNA interactions involved in gene regulation was generated using both protein and DNA sequences as well as the contact information of the complexes. WebPDA was developed to provide a web interface for using PDA and for data retrieval. CONCLUSION PDA is a computational tool for structural annotations of protein-DNA complexes. It provides a useful resource for investigating protein-DNA interactions. Data from the PDA analysis can also facilitate the classification of protein-DNA complexes and provide insights into rational design of benchmarks. The PDA program is freely available at http://bioinfozen.uncc.edu/webpda.
Collapse
Affiliation(s)
- RyangGuk Kim
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223 USA.
| | | |
Collapse
|
12
|
Gilbert JR, Adams CS, Shapiro IM, Hickok NJ. A novel short hairpin RNA (shRNA) expression system promotes Sox9-dependent gene silencing. Plasmid 2009; 62:50-5. [PMID: 19389425 PMCID: PMC2760318 DOI: 10.1016/j.plasmid.2009.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 11/23/2022]
Abstract
Cartilage development and function are dependent on a temporally integrated program of gene expression. With the advent of RNA interference (RNAi), artificial control of these complex programs becomes a possibility, limited only by the ability to regulate and express the RNAi. Using existing methods for production of RNAi's, we have constructed a plasmid-based short hairpin RNA (shRNA) expression system under control of the human pol III H1 promoter and supplemented this promoter with DNA binding sites for the cartilage-specific transcription factor Sox9. The resulting shRNA expression system displays robust, Sox9-dependent gene silencing. Dependence on Sox9 expression was confirmed by electrophoretic mobility shift assays. The ability of the system to regulate heterologously expressed Sox9 was demonstrated by Western blot, as a function of both Sox9 to shRNA ratio, as well as time from transfection. This novel expression system supports auto-regulatory gene silencing, providing a tissue-specific feedback mechanism for temporal control of gene expression. Its applications for both basic mechanistic studies and therapeutic purposes should facilitate the design and implementation of innovative tissue engineering strategies.
Collapse
Affiliation(s)
- James R. Gilbert
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Christopher S. Adams
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
13
|
|
14
|
Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R, Boyer LA. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008; 135:649-61. [PMID: 18992931 PMCID: PMC2853257 DOI: 10.1016/j.cell.2008.09.056] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/29/2008] [Accepted: 09/19/2008] [Indexed: 12/20/2022]
Abstract
Elucidating how chromatin influences gene expression patterns and ultimately cell fate is fundamental to understanding development and disease. The histone variant H2AZ has emerged as a key regulator of chromatin function and plays an essential but unknown role during mammalian development. Here, genome-wide analysis reveals that H2AZ occupies the promoters of developmentally important genes in a manner that is remarkably similar to that of the Polycomb group (PcG) protein Suz12. By using RNAi, we demonstrate a role for H2AZ in regulating target gene expression, find that H2AZ and PcG protein occupancy is interdependent at promoters, and further show that H2AZ is necessary for ES cell differentiation. Notably, H2AZ occupies a different subset of genes in lineage-committed cells, suggesting that its dynamic redistribution is necessary for cell fate transitions. Thus, H2AZ, together with PcG proteins, may establish specialized chromatin states in ES cells necessary for the proper execution of developmental gene expression programs.
Collapse
Affiliation(s)
- Menno P. Creyghton
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
| | - Styliani Markoulaki
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
| | - Stuart S. Levine
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
| | - Jacob Hanna
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
| | - Michael A. Lodato
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge MA 02139 USA
| | - Ky Sha
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge MA 02139 USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge MA 02139 USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142 USA
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge MA 02139 USA
| | - Laurie A. Boyer
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge MA 02139 USA
| |
Collapse
|