1
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Signor S, Yocum G, Bowsher J. Life stage and the environment as effectors of transposable element activity in two bee species. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104361. [PMID: 35063439 DOI: 10.1016/j.jinsphys.2022.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Diapause is a complex physiological phenomenon that allows insects to weather stressful environmental conditions. The regulation of diapause is accordingly complex, including signaling pathways that involve both small RNA and mRNA and affect the cell cycle, stress resistance, and developmental timing. Transposable elements, mobile genetic elements that replicate within the genome, are also thought to be stress responsive and regulated by the small RNA pathway. Therefore, we asked what the relationship was between environmental stress, diapause status, and transposable element expression in two species of agriculturally important bees, Megachile rotundata and Osmia lignaria. We characterized the TE content of the genomes of both species, then evaluated the expression of TE families during temperature stress, general environmental stress, and diapause stage. We found that the genomic TE content of the two species was very different, and M. rotundata has a larger number of annotated TEs compared to O. lignaria. We also found that both diapause stage and temperature stress had large effects on TE expression. The fold change of TE famlies tended to be larger in those expressed during diapause, however there was only a small majority that were upregulated during diapause. This suggests that stress and diapause do not break down to a simple up-regulation or down-regulation of TEs, but rather that the TE family, the genomic position of its insertions, and the exact heterochromatin formation of the organism at any given environmental state or life stage may affect overall expression of TEs.
Collapse
Affiliation(s)
- Sarah Signor
- North Dakota State University, Department of Biological Sciences, United States.
| | - George Yocum
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Service, United States
| | - Julia Bowsher
- North Dakota State University, Department of Biological Sciences, United States
| |
Collapse
|
4
|
Tusso S, Suo F, Liang Y, Du LL, Wolf JBW. Reactivation of transposable elements following hybridization in fission yeast. Genome Res 2021; 32:324-336. [PMID: 34907076 PMCID: PMC8805722 DOI: 10.1101/gr.276056.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
Hybridization is thought to reactivate transposable elements (TEs) that were efficiently suppressed in the genomes of the parental hosts. Here, we provide evidence for this “genomic shock hypothesis” in the fission yeast Schizosaccharomyces pombe. In this species, two divergent lineages (Sp and Sk) have experienced recent, likely human-induced, hybridization. We used long-read sequencing data to assemble genomes of 37 samples derived from 31 S. pombe strains spanning a wide range of ancestral admixture proportions. A comprehensive TE inventory revealed exclusive presence of long terminal repeat (LTR) retrotransposons. Sequence analysis of active full-length elements, as well as solo LTRs, revealed a complex history of homologous recombination. Population genetic analyses of syntenic sequences placed insertion of many solo LTRs before the split of the Sp and Sk lineages. Most full-length elements were inserted more recently, after hybridization. With the exception of a single full-length element with signs of positive selection, both solo LTRs and, in particular, full-length elements carry signatures of purifying selection indicating effective removal by the host. Consistent with reactivation upon hybridization, the number of full-length LTR retrotransposons, varying extensively from zero to 87 among strains, significantly increases with the degree of genomic admixture. This study gives a detailed account of global TE diversity in S. pombe, documents complex recombination histories within TE elements, and provides evidence for the “genomic shock hypothesis.”
Collapse
Affiliation(s)
| | - Fang Suo
- National Institute of Biological Sciences
| | - Yue Liang
- National Institute of Biological Sciences
| | - Li-Lin Du
- National Institute of Biological Sciences
| | | |
Collapse
|
5
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
6
|
Torres DE, Thomma BPHJ, Seidl MF. Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae. Genome Biol Evol 2021; 13:evab135. [PMID: 34100895 PMCID: PMC8290119 DOI: 10.1093/gbe/evab135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization and adaptation. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as polymorphic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the total TE complement. As expected, the polyrmorphic TEs are enriched in the adaptive genomic regions. Besides, we observed an association of polymorphic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of adaptive genomic regions.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Germany
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
7
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
8
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
9
|
Kling E, Spaller T, Schiefner J, Bönisch D, Winckler T. Convergent evolution of integration site selection upstream of tRNA genes by yeast and amoeba retrotransposons. Nucleic Acids Res 2019; 46:7250-7260. [PMID: 29945249 PMCID: PMC6101501 DOI: 10.1093/nar/gky582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Transposable elements amplify in genomes as selfish DNA elements and challenge host fitness because their intrinsic integration steps during mobilization can compromise genome integrity. In gene-dense genomes, transposable elements are notably under selection to avoid insertional mutagenesis of host protein-coding genes. We describe an example of convergent evolution in the distantly related amoebozoan Dictyostelium discoideum and the yeast Saccharomyces cerevisiae, in which the D. discoideum retrotransposon DGLT-A and the yeast Ty3 element developed different mechanisms to facilitate position-specific integration at similar sites upstream of tRNA genes. Transcription of tRNA genes by RNA polymerase III requires the transcription factor complexes TFIIIB and TFIIIC. Whereas Ty3 recognizes tRNA genes mainly through interactions of its integrase with TFIIIB subunits, the DGLT-A-encoded ribonuclease H contacts TFIIIC subunit Tfc4 at an interface that covers tetratricopeptide repeats (TPRs) 7 and 8. A major function of this interface is to connect TFIIIC subcomplexes τA and τB and to facilitate TFIIIB assembly. During the initiation of tRNA gene transcription τB is displaced from τA, which transiently exposes the TPR 7/8 surface of Tfc4 on τA. We propose that the DGLT-A intasome uses this binding site to obtain access to genomic DNA for integration during tRNA gene transcription.
Collapse
Affiliation(s)
- Eva Kling
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Jana Schiefner
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Doreen Bönisch
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| |
Collapse
|
10
|
Esnault C, Lee M, Ham C, Levin HL. Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 2018; 29:85-95. [PMID: 30541785 PMCID: PMC6314160 DOI: 10.1101/gr.239699.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
Abstract
Cells are regularly exposed to a range of naturally occurring stress that can restrict growth or cause lethality. In response, cells activate expression networks with hundreds of genes that together increase resistance to common environmental insults. However, stress response networks can be insufficient to ensure survival, which raises the question of whether cells possess genetic programs that can promote adaptation to novel forms of stress. We found transposable element (TE) mobility in Schizosaccharomyces pombe was greatly increased when cells were exposed to unusual forms of stress such as heavy metals, caffeine, and the plasticizer phthalate. By subjecting TE-tagged cells to CoCl2, we found the TE integration provided the major path to resistance. Groups of insertions that provided resistance were linked to TOR regulation and metal response genes. We extended our study of adaptation by analyzing TE positions in 57 genetically distinct wild strains. The genomic positions of 1048 polymorphic LTRs were strongly associated with a range of stress response genes, indicating TE integration promotes adaptation in natural conditions. These data provide strong support for the idea, first proposed by Barbara McClintock, that TEs provide a system to modify the genome in response to stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chloe Ham
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
12
|
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2016; 18:71-86. [PMID: 27867194 DOI: 10.1038/nrg.2016.139] [Citation(s) in RCA: 859] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| |
Collapse
|
13
|
Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML, Lunt DH. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements. Genome Biol Evol 2016; 8:2964-2978. [PMID: 27566762 PMCID: PMC5635653 DOI: 10.1093/gbe/evw208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes.
Collapse
Affiliation(s)
- Amir Szitenberg
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom The Dead Sea and Arava Science Center, Israel
| | - Soyeon Cha
- Department of Plant Pathology, North Carolina State University
| | | | - David M Bird
- Department of Plant Pathology, North Carolina State University
| | - Mark L Blaxter
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Scotland
| | - David H Lunt
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom
| |
Collapse
|
14
|
Bojang P, Ramos KS. Analysis of LINE-1 Retrotransposition at the Single Nucleus Level. J Vis Exp 2016. [PMID: 27167780 DOI: 10.3791/53753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Long interspersed nuclear element-1 (Line-1 or L1) accounts for approximately 17% of the DNA present in the human genome. While the majority of L1s are inactive due to 5' truncations, ~80-100 of these elements remain retrotransposition competent and propagate to different locations throughout the genome via RNA intermediates. While older L1s are believed to target AT rich regions of the genome, the chromosomal targets of newer, more active L1s remain poorly defined. Here we describe fluorescence in situ hybridization (FISH) methodology that can be used to track patterns of L1 insertion and rates of ectopic L1 incorporation at the single nucleus level. In these experiments, fluorescein isothiocyanate/cyanine-3 (FITC/CY3) labeled neomycin probes were employed to track L1 retrotransposition in vitro in HepG2 cells stably expressing ectopic L1. This methodology prevents errors in the estimation of rates of retrotransposition posed by toxicity and account for the occurrence of multiple insertions into a single nucleus.
Collapse
Affiliation(s)
- Pasano Bojang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine;
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine; Center for Applied Genetics and Genomic Medicine, University of Arizona College of Medicine;
| |
Collapse
|
15
|
Mourier T. Potential movement of transposable elements through DNA circularization. Curr Genet 2016; 62:697-700. [PMID: 26979517 DOI: 10.1007/s00294-016-0592-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
Abstract
The generation of circular DNAs is a relatively unrecognized type of genomic structural variation, but recent findings point to a possible role of circular DNAs in the movement of transposable elements. Circularization of genomic DNA is observed across eukaryotic species, in a range of different cell types, and from all parts of the genome. A recent study on circular DNAs in yeast found that transposable element sequence residing in circular structures mostly corresponded to full-length transposable elements. Transposable elements are mobile genetic elements scattered across eukaryotic genomes. Different classes of transposable elements move either through a copy-and-paste or a cut-and-paste. As circular DNA structures may recombine with the genome and re-integrate into a novel genomic locus, transposable elements could move through circularization. In yeast, the predominant type of transposable element is a so-called LTR (long terminal repeats) retrotransposable element that moves through a copy-and-paste mechanism. The observed circularization of this element means it potentially could move through a cut-and-paste mechanism as well. Although further experimental evidence is needed to establish the extent to which movement of transposable elements through DNA circularization takes place, such movement is likely to have a functional impact on the genomic context.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oester Voldgade 5-7, 1350, Copenhagen K, Denmark.
| |
Collapse
|
16
|
Persson J, Steglich B, Smialowska A, Boyd M, Bornholdt J, Andersson R, Schurra C, Arcangioli B, Sandelin A, Nielsen O, Ekwall K. Regulating retrotransposon activity through the use of alternative transcription start sites. EMBO Rep 2016; 17:753-68. [PMID: 26902262 PMCID: PMC5341516 DOI: 10.15252/embr.201541866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.
Collapse
Affiliation(s)
- Jenna Persson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Babett Steglich
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agata Smialowska
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mette Boyd
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bornholdt
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Catherine Schurra
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Benoit Arcangioli
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Albin Sandelin
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Nielsen
- Department of Biology, Cell Cycle and Genome Stability Group, University of Copenhagen, Copenhagen, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
17
|
Sangesland M, Atwood-Moore A, Rai SK, Levin HL. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe. Methods Mol Biol 2016; 1400:117-30. [PMID: 26895050 DOI: 10.1007/978-1-4939-3372-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.
Collapse
Affiliation(s)
- Maya Sangesland
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Angela Atwood-Moore
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Sudhir K Rai
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr. room 106, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
19
|
Jacobs JZ, Rosado-Lugo JD, Cranz-Mileva S, Ciccaglione KM, Tournier V, Zaratiegui M. Arrested replication forks guide retrotransposon integration. Science 2015; 349:1549-53. [PMID: 26404838 DOI: 10.1126/science.aaa3810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are an abundant class of genomic parasites that replicate by insertion of new copies into the host genome. Fungal LTR retrotransposons prevent mutagenic insertions through diverse targeting mechanisms that avoid coding sequences, but conserved principles guiding their target site selection have not been established. Here, we show that insertion of the fission yeast LTR retrotransposon Tf1 is guided by the DNA binding protein Sap1 and that the efficiency and location of the targeting depend on the activity of Sap1 as a replication fork barrier. We propose that Sap1 and the fork arrest it causes guide insertion of Tf1 by tethering the integration complex to target sites.
Collapse
Affiliation(s)
- Jake Z Jacobs
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Jesus D Rosado-Lugo
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Susanne Cranz-Mileva
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Keith M Ciccaglione
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Vincent Tournier
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe. Genetics 2015; 201:905-24. [PMID: 26358720 DOI: 10.1534/genetics.115.181602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration.
Collapse
|
21
|
Esnault C, Levin HL. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0040-2014. [PMID: 26350316 PMCID: PMC6388632 DOI: 10.1128/microbiolspec.mdna3-0040-2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Bridier-Nahmias A, Tchalikian-Cosson A, Baller JA, Menouni R, Fayol H, Flores A, Saïb A, Werner M, Voytas DF, Lesage P. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 2015; 348:585-8. [PMID: 25931562 DOI: 10.1126/science.1259114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host.
Collapse
Affiliation(s)
- Antoine Bridier-Nahmias
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France. Department CASER Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Aurélie Tchalikian-Cosson
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Joshua A Baller
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA. Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachid Menouni
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Hélène Fayol
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France
| | - Amando Flores
- IBiTec-S, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Université Paris-Sud, CP 22, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Ali Saïb
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France. Department CASER Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Michel Werner
- IBiTec-S, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Université Paris-Sud, CP 22, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pascale Lesage
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Hôpital St. Louis, 75010 Paris, France.
| |
Collapse
|
23
|
Protacio RU, Storey AJ, Davidson MK, Wahls WP. Nonsense codon suppression in fission yeast due to mutations of tRNA(Ser.11) and translation release factor Sup35 (eRF3). Curr Genet 2015; 61:165-73. [PMID: 25519804 PMCID: PMC4393767 DOI: 10.1007/s00294-014-0465-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI (+)] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles.
Collapse
Affiliation(s)
- Reine U. Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| |
Collapse
|
24
|
Bojang P, Anderton MJ, Roberts RA, Ramos KS. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13. Genomics 2014; 104:96-104. [PMID: 25043885 PMCID: PMC4157570 DOI: 10.1016/j.ygeno.2014.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mark J Anderton
- Department of Toxicology Sciences, Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Ruth A Roberts
- Department of Toxicology Sciences, Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
25
|
Chatterjee AG, Esnault C, Guo Y, Hung S, McQueen PG, Levin HL. Serial number tagging reveals a prominent sequence preference of retrotransposon integration. Nucleic Acids Res 2014; 42:8449-60. [PMID: 24948612 PMCID: PMC4117765 DOI: 10.1093/nar/gku534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TE) have both negative and positive impact on the biology of their host. As a result, a balance is struck between the host and the TE that relies on directing integration to specific genome territories. The extraordinary capacity of DNA sequencing can create ultra dense maps of integration that are being used to study the mechanisms that position integration. Unfortunately, the great increase in the numbers of insertion sites detected comes with the cost of not knowing which positions are rare targets and which sustain high numbers of insertions. To address this problem we developed the serial number system, a TE tagging method that measures the frequency of integration at single nucleotide positions. We sequenced 1 million insertions of retrotransposon Tf1 in the genome of Schizosaccharomyces pombe and obtained the first profile of integration with frequencies for each individual position. Integration levels at individual nucleotides varied over two orders of magnitude and revealed that sequence recognition plays a key role in positioning integration. The serial number system is a general method that can be applied to determine precise integration maps for retroviruses and gene therapy vectors.
Collapse
Affiliation(s)
- Atreyi Ghatak Chatterjee
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yabin Guo
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stevephen Hung
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip G McQueen
- Mathematical & Statistical Computing Laboratory, Division of Computational, Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 2014; 5:156. [PMID: 24910642 PMCID: PMC4038923 DOI: 10.3389/fgene.2014.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Lars P Nielsen
- Department of Virology and the Danish National Biobank, Statens Serum Institut Copenhagen, Denmark
| | - Anders J Hansen
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Eske Willerslev
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
28
|
Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 2013; 41:1629-33. [DOI: 10.1042/bst20130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.
Collapse
|
29
|
A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 2013; 8:e68260. [PMID: 23874566 PMCID: PMC3706591 DOI: 10.1371/journal.pone.0068260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6-7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application.
Collapse
|
30
|
BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A 2013; 110:12036-41. [PMID: 23818621 DOI: 10.1073/pnas.1307157110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus, suggestive of targeting by binding to cellular factors. γ-Retroviral murine leukemia virus (MLV) DNA integration into the host genome is favored at transcription start sites, but the underlying mechanism for this preference is unknown. Here, we have identified bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as cellular-binding partners of MLV integrase. We show that purified recombinant Brd4(1-720) binds with high affinity to MLV integrase and stimulates correct concerted integration in vitro. JQ-1, a small molecule that selectively inhibits interactions of BET proteins with modified histone sites impaired MLV but not HIV-1 integration in infected cells. Comparison of the distribution of BET protein-binding sites analyzed using ChIP-Seq data and MLV-integration sites revealed significant positive correlations. Antagonism of BET proteins, via JQ-1 treatment or RNA interference, reduced MLV-integration frequencies at transcription start sites. These findings elucidate the importance of BET proteins for MLV integration efficiency and targeting and provide a route to developing safer MLV-based vectors for human gene therapy.
Collapse
|
31
|
Bridier-Nahmias A, Lesage P. Two large-scale analyses of Ty1 LTR-retrotransposon de novo insertion events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface. Mob DNA 2012; 3:22. [PMID: 23244340 PMCID: PMC3545840 DOI: 10.1186/1759-8753-3-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/29/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Over the years, a number of reports have revealed that Ty1 integration occurs in a 1-kb window upstream of Pol III-transcribed genes with an approximate 80-bp periodicity between each integration hotspot and that this targeting requires active Pol III transcription at the site of integration. However, the molecular bases of Ty1 targeting are still not understood. FINDINGS The publications by Baller et al. and Mularoni et al. in the April issue of Genome Res. report the first high-throughput sequencing analysis of Ty1 de novo insertion events. Their observations converge to the same conclusion, that Ty1 targets a specific surface of the nucleosome at he H2A/H2B interface. CONCLUSION This discovery is important, and should help identifying factor(s) involved in Ty1 targeting. Recent data on transposable elements and retroviruses integration site choice obtained by large-scale analyses indicate that transcription and chromatin structure play an important role in this process. The studies reported in this commentary add a new evidence of the importance of chromatin in integration selectivity that should be of interest for everyone interested in transposable elements integration.
Collapse
Affiliation(s)
- Antoine Bridier-Nahmias
- CNRS/P7 UMR7212, INSERMU 944, Laboratoire Pathologie et Virologie Moléculaire Institut Universitaire d'Hématologie, 1 avenue Claude Vellefaux, F75010, Paris, France.
| | | |
Collapse
|
32
|
Abstract
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Collapse
Affiliation(s)
- Gang Feng
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Qi X, Sandmeyer S. In vitro targeting of strand transfer by the Ty3 retroelement integrase. J Biol Chem 2012; 287:18589-95. [PMID: 22493285 DOI: 10.1074/jbc.m111.326025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Saccharomyces cerevisiae long terminal repeat retrotransposon Ty3 integrates within one or two nucleotides of the transcription initiation sites of genes transcribed by RNA polymerase III. In this study the minimal components required to re-constitute position-specific strand transfer by Ty3 integrase are defined. Ty3 integrase targeted by a synthetic fusion of RNA polymerase III transcription factor IIIB subunits, Brf1 and TBP, mediated position-specific strand transfer of duplex oligonucleotides representing the ends of the Ty3 cDNA. These results further delimit the TFIIIB domains targeted by the Ty3 element and show that IN is the Ty3 component sufficient in vitro to target integration. These results underscore the commonality of protein interactions that mediate transcription and retrotransposon targeting. Surprisingly, in the presence of MnCl(2), strand transfer was TFIIIB-independent and targeted sequences resembling the Ty3 terminal inverted repeat.
Collapse
Affiliation(s)
- Xiaojie Qi
- Department of Biological Chemistry, University of California-Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
34
|
Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res 2012; 22:704-13. [PMID: 22219511 DOI: 10.1101/gr.129585.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ty1, the most abundant retrotransposon in Saccharomyces cerevisiae, integrates preferentially upstream of genes transcribed by RNA polymerase III (Pol III). Targeting is likely due to interactions between the Ty1 integration complex and a feature of chromatin characteristic of sites of Pol III transcription. To better understand Ty1 targeting determinants, >150,000 Ty1 insertions were mapped onto the S. cerevisiae genome sequence. Logistic regression was used to assess relationships between patterns of Ty1 integration and various genomic features, including genome-wide data sets of histone modifications and transcription-factor binding sites. Nucleosomes were positively associated with Ty1 insertions, and fine-scale mapping of insertions upstream of genes transcribed by Pol III indicated that Ty1 preferentially integrates into nucleosome-bound DNA near the H2A/H2B interface. Outside of genes transcribed by Pol III, Ty1 avoids coding sequences, a pattern that is not due to selection, but rather reflects a preference for nucleosome-rich sites flanking genes. Ty1 insertion sites were also mapped in four mutant lines that affect Ty1 transposition frequency or integration specificity (rrm3Δ, hos2Δ, rtt109Δ, and rad6Δ). Patterns of integration were largely preserved in the mutants, although significantly more insertions into coding sequences were observed in the rad6Δ strain, suggesting a loosening of target specificity in this mutant that lacks an enzyme involved in ubiquitinating H2A. Overall, our data suggest that nucleosomes are necessary for Ty1 integration, and that a secondary factor, likely a histone modification or nucleosome-bound factor enriched at sites of Pol III transcription, determines preferred target sites.
Collapse
Affiliation(s)
- Joshua A Baller
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|
36
|
Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proc Natl Acad Sci U S A 2011; 108:20351-6. [PMID: 21788500 DOI: 10.1073/pnas.1103665108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integration sites for many retrotransposons and retroviruses are determined by interactions between retroelement-encoded integrases and specific DNA-bound proteins. The Saccharomyces retrotransposon Ty5 preferentially integrates into heterochromatin because of interactions between Ty5 integrase and the heterochromatin protein silent information regulator 4. We mapped over 14,000 Ty5 insertions onto the S. cerevisiae genome, 76% of which occurred in heterochromatin, which is consistent with the known target site bias of Ty5. Using logistic regression, associations were assessed between Ty5 insertions and various chromosomal features such as genome-wide distributions of nucleosomes and histone modifications. Sites of Ty5 insertion, regardless of whether they occurred in heterochromatin or euchromatin, were strongly associated with DNase hypersensitive, nucleosome-free regions flanking genes. Our data support a model wherein silent information regulator 4 tethers the Ty5 integration machinery to domains of heterochromatin, and then, specific target sites are selected based on DNA access, resulting in a secondary target site bias. For insertions in euchromatin, DNA access is the primary determinant of target site choice. One consequence of the secondary target site bias of Ty5 is that insertions in coding sequences occur infrequently, which may preserve genome integrity.
Collapse
|
37
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
38
|
Hansen KR, Hazan I, Shanker S, Watt S, Verhein-Hansen J, Bähler J, Martienssen RA, Partridge JF, Cohen A, Thon G. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases. PLoS Genet 2011; 7:e1001268. [PMID: 21253571 PMCID: PMC3017117 DOI: 10.1371/journal.pgen.1001268] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 12/03/2010] [Indexed: 01/01/2023] Open
Abstract
Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci. In eukaryotes some histone modifications are preponderantly associated with silent chromosomal domains, however the extent to which distinct modifications contribute to the silencing of gene expression is often not known. A well-studied chromosomal domain in which histone modifications have been extensively characterized is the fission yeast mating-type region. There, histone hypo-acetylation and histone H3 lysine 9 methylation (H3K9me) are associated with a domain refractory to gene expression. Contrary to a general assumption, we found that genes naturally present in the mating-type region of wild-type strains remain repressed in the absence of the H3K9 methyltransferase Clr4. Their repression depends on histone deacetylases and on a hitherto uncharacterized factor, Clr5. Our results reveal an unsuspected robustness in the silencing mechanism, where H3K9me and deacetylation cooperate to ensure that the genes naturally present in the mating-type region remain silent in conditions where their expression would otherwise kill the cells.
Collapse
Affiliation(s)
- Klavs R. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Plant Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Idit Hazan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Sreenath Shanker
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen Watt
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | | | - Jürg Bähler
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | - Robert A. Martienssen
- Department of Plant Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Janet F. Partridge
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Amikam Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
39
|
Determinants that specify the integration pattern of retrotransposon Tf1 in the fbp1 promoter of Schizosaccharomyces pombe. J Virol 2010; 85:519-29. [PMID: 20980525 DOI: 10.1128/jvi.01719-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long terminal repeat (LTR) retrotransposons are closely related to retroviruses and, as such, are important models for the study of viral integration and target site selection. The transposon Tf1 of Schizosaccharomyces pombe integrates with a strong preference for the promoters of polymerase II (Pol II)-transcribed genes. Previous work in vivo with plasmid-based targets revealed that the patterns of insertion were promoter specific and highly reproducible. To determine which features of promoters are recognized by Tf1, we studied integration in a promoter that has been characterized. The promoter of fbp1 has two upstream activating sequences, UAS1 and UAS2. We found that integration was targeted to two windows, one 180 nucleotides (nt) upstream and the other 30 to 40 nt downstream of UAS1. A series of deletions in the promoter showed that the integration activities of these two regions functioned autonomously. Integration assays of UAS2 and of a synthetic promoter demonstrated that strong promoter activity alone was not sufficient to direct integration. The factors that modulate the transcription activities of UAS1 and UAS2 include the activators Atf1p, Pcr1p, and Rst2p as well as the repressors Tup11p, Tup12p, and Pka1p. Strains lacking each of these proteins revealed that Atf1p alone mediated the sites of integration. These data indicate that Atf1p plays a direct and specific role in targeting integration in the promoter of fbp1.
Collapse
|
40
|
Mourier T, Willerslev E. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons. BMC Genomics 2010; 11:167. [PMID: 20226011 PMCID: PMC2848245 DOI: 10.1186/1471-2164-11-167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR) retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription of solitary LTRs is correlated with the transcription of nearby protein-coding genes. Conclusions Presumably, the host organism negatively regulates proliferation of LTR retrotransposons. The finding of considerable transcriptional activity of retrotransposons suggests that part of this regulation is likely to take place at a post-transcriptional level. Alternatively, the transcriptional activity may signify a hitherto unrecognized activity level of retrotransposon proliferation. Our findings underline the usefulness of transcriptome data in elucidating dynamics in retrotransposon transcription.
Collapse
Affiliation(s)
- Tobias Mourier
- Ancient DNA and Evolution Group, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun MC, Allis CD, Engelman A, Hughes SH. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 2010; 107:3135-40. [PMID: 20133638 PMCID: PMC2840313 DOI: 10.1073/pnas.0914142107] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) fusion proteins can direct HIV-1 DNA integration to novel sites in the host genome. The C terminus of LEDGF contains an integrase binding domain (IBD), and the N terminus binds chromatin. LEDGF normally directs integrations to the bodies of expressed genes. Replacing the N terminus of LEDGF with chromatin binding domains (CBDs) from other proteins changes the specificity of HIV-1 DNA integration. We chose two well-characterized CBDs: the plant homeodomain (PHD) finger from ING2 and the chromodomain from heterochromatin binding protein 1alpha (HP1alpha). The ING2 PHD finger binds H3K4me3, a histone mark that is associated with the transcriptional start sites of expressed genes. The HP1alpha chromodomain binds H3K9me2,3, histone marks that are widely distributed throughout the genome. A fusion protein in which the ING2 PHD finger was linked to the LEDGF IBD directed integrations near the start sites of expressed genes. A similar fusion protein in which the HP1alpha chromodomain was linked to the LEDGF IBD directed integrations to sites that differed from both the PHD finger fusion-directed and LEDGF-directed integration sites. The ability to redirect HIV-1 DNA integration may help solve the problems associated with the activation of oncogenes when retroviruses are used in gene therapy.
Collapse
Affiliation(s)
- Andrea L. Ferris
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Xiaolin Wu
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick, MD 21702
| | - Christina M. Hughes
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Claudia Stewart
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick, MD 21702
| | - Steven J. Smith
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Thomas A. Milne
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Gang G. Wang
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Ming-Chieh Shun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Stephen H. Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
42
|
Guo Y, Levin HL. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. Genome Res 2009; 20:239-48. [PMID: 20040583 DOI: 10.1101/gr.099648.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Collapse
Affiliation(s)
- Yabin Guo
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
43
|
Meehan AM, Poeschla EM. Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:182-91. [PMID: 19836475 DOI: 10.1016/j.bbagrm.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/02/2009] [Indexed: 12/23/2022]
Abstract
Permanent integration of the viral genome into a host chromosome is an essential step in the life cycles of lentiviruses and other retroviruses. By archiving the viral genetic information in the genome of the host target cell and its progeny, integrated proviruses prevent curative therapy of HIV-1 and make the development of antiretroviral drug resistance irreversible. Although the integration reaction is known to be catalyzed by the viral integrase (IN), the manner in which retroviruses engage and attach to the chromatin target is only now becoming clear. Lens epithelium-derived growth factor (LEDGF/p75) is a ubiquitously expressed nuclear protein that binds to lentiviral IN protein dimers at its carboxyl terminus and to host chromatin at its amino terminus. LEDGF/p75 thus tethers ectopically expressed IN to chromatin. It also protects IN from proteosomal degradation and can stimulate IN catalysis in vitro. HIV-1 infection is inhibited at the integration step in LEDGF/p75-deficient cells, and the characteristic lentiviral preference for integration into active genes is also reduced. A model in which LEDGF/p75 acts to tether the viral preintegration complex to chromatin has emerged. Intriguingly, similar chromatin tethering mechanisms have been described for other retroelements and for large DNA viruses. Here we review the evidence supporting the LEDGF/p75 tethering model and consider parallels with these other viruses.
Collapse
Affiliation(s)
- Anne M Meehan
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
44
|
Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J Hered 2009; 100:648-55. [PMID: 19666747 DOI: 10.1093/jhered/esp065] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in genome sequencing have led to a vast accumulation of transposable element data. Consideration of the genome sequencing projects in a phylogenetic context reveals that despite the hundreds of eukaryotic genomes that have been sequenced, a strong bias in sampling exists. There is a general under-representation of unicellular eukaryotes and a dearth of genome projects in many branches of the eukaryotic phylogeny. Among sequenced genomes, great variation in genome size exists, however, little difference in the total number of cellular genes is observed. For many eukaryotes, the remaining genomic space is extremely dynamic and predominantly composed of a menagerie of populations of transposable elements. Given the dynamic nature of the genomic niche filled by transposable elements, it is evident that these elements have played an important role in genome evolution. The contribution of transposable elements to genome architecture and to the advent of genetic novelty is likely to be dependent, at least in part, on the transposition mechanism, diversity, number, and rate of turnover of transposable elements in the genome at any given time. The focus of this review is the discussion of some of the forces that act to shape transposable element diversity within and between genomes.
Collapse
Affiliation(s)
- Ellen J Pritham
- Department of Biology, University of Texas, Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
45
|
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet 2009; 42:587-617. [PMID: 18680436 DOI: 10.1146/annurev.genet.42.110807.091549] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons, also called non-LTR retrotransposons, and extrachromosomally-primed (EP) retrotransposons, also called LTR retrotransposons. The TP retrotransposons considered here are group II introns, LINEs and SINEs, whereas the EP elements considered are the Ty and Tf retrotransposons, with a brief comparison to retroviruses. Recurring themes for these elements, in hosts ranging from bacteria to humans, are tie-ins of the retrotransposons to RNA metabolism, DNA replication and repair, and cellular stress. Likewise, there are parallels among host-cell defenses to combat rampant retrotransposon spread. The interactions between the retrotransposon and the host, and their coevolution to balance the tension between retrotransposon proliferation and host survival, form the basis of this review.
Collapse
Affiliation(s)
- Arthur Beauregard
- New York State Department of Health, Center for Medical Sciences, Albany, New York 12208, 12201-2002, USA.
| | | | | |
Collapse
|
46
|
The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection. J Virol 2008; 83:2675-85. [PMID: 19109383 DOI: 10.1128/jvi.01588-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.
Collapse
|
47
|
Paatero AO, Turakainen H, Happonen LJ, Olsson C, Palomäki T, Pajunen MI, Meng X, Otonkoski T, Tuuri T, Berry C, Malani N, Frilander MJ, Bushman FD, Savilahti H. Bacteriophage Mu integration in yeast and mammalian genomes. Nucleic Acids Res 2008; 36:e148. [PMID: 18953026 PMCID: PMC2602771 DOI: 10.1093/nar/gkn801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/14/2022] Open
Abstract
Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.
Collapse
Affiliation(s)
- Anja O. Paatero
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hilkka Turakainen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lotta J. Happonen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cia Olsson
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tiina Palomäki
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria I. Pajunen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xiaojuan Meng
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Otonkoski
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Tuuri
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles Berry
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nirav Malani
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mikko J. Frilander
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Harri Savilahti
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
48
|
Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 2008; 37:243-55. [PMID: 19036793 PMCID: PMC2615609 DOI: 10.1093/nar/gkn938] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Establishment of the stable provirus is an essential step in retroviral replication, orchestrated by integrase (IN), a virus-derived enzyme. Until now, available structural information was limited to the INs of human immunodeficiency virus type 1 (HIV-1), avian sarcoma virus (ASV) and their close orthologs from the Lentivirus and Alpharetrovirus genera. Here, we characterized the in vitro activity of the prototype foamy virus (PFV) IN from the Spumavirus genus and determined the three-dimensional structure of its catalytic core domain (CCD). Recombinant PFV IN displayed robust and almost exclusively concerted integration activity in vitro utilizing donor DNA substrates as short as 16 bp, underscoring its significance as a model for detailed structural studies. Comparison of the HIV-1, ASV and PFV CCD structures highlighted both conserved as well as unique structural features such as organization of the active site and the putative host factor binding face. Despite possessing very limited sequence identity to its HIV counterpart, PFV IN was sensitive to HIV IN strand transfer inhibitors, suggesting that this class of inhibitors target the most conserved features of retroviral IN-DNA complexes.
Collapse
Affiliation(s)
- Eugene Valkov
- Division of Medicine, St. Mary's Campus, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|