1
|
Villain P, Basta T. Regulation of DNA Topology in Archaea: State of the Art and Perspectives. Mol Microbiol 2025; 123:245-264. [PMID: 39709598 PMCID: PMC11894792 DOI: 10.1111/mmi.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
DNA topology is a direct consequence of the double helical nature of DNA and is defined by how the two complementary DNA strands are intertwined. Virtually every reaction involving DNA is influenced by DNA topology or has topological effects. It is therefore of fundamental importance to understand how this phenomenon is controlled in living cells. DNA topoisomerases are the key actors dedicated to the regulation of DNA topology in cells from all domains of life. While significant progress has been made in the last two decades in understanding how these enzymes operate in vivo in Bacteria and Eukaryotes, studies in Archaea have been lagging behind. This review article aims to summarize what is currently known about DNA topology regulation by DNA topoisomerases in main archaeal model organisms. These model archaea exhibit markedly different lifestyles, genome organization and topoisomerase content, thus highlighting the diversity and the complexity of DNA topology regulation mechanisms and their evolution in this domain of life. The recent development of functional genomic assays supported by next-generation sequencing now allows to delve deeper into this timely and exciting, yet still understudied topic.
Collapse
Affiliation(s)
- Paul Villain
- Medical Research Council Laboratory of Medical SciencesLondonUK
- Institute of Clinical Sciences, Faculty of MedicineImperial College LondonLondonUK
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Kim S, Guo MS. Temporospatial control of topoisomerases by essential cellular processes. Curr Opin Microbiol 2024; 82:102559. [PMID: 39520813 DOI: 10.1016/j.mib.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Topoisomerases are essential, ubiquitous enzymes that break and rejoin the DNA strand to control supercoiling. Because topoisomerases are DNA scissors, these enzymes are highly regulated to avoid excessive DNA cleavage, a vulnerability exploited by many antibiotics. Topoisomerase activity must be co-ordinated in time and space with transcription, replication, and cell division or else these processes stall, leading to genome loss. Recent work in Escherichia coli has revealed that topoisomerases do not act alone. Most topoisomerases interact with the essential process that they promote, a coupling that may stimulate topoisomerase activity precisely when and where cleavage is required. Surprisingly, in E. coli and most other bacteria, gyrase is not apparently regulated in this manner. We review how each E. coli topoisomerase is regulated, propose possible solutions to 'the gyrase problem', and conclude by highlighting how this regulation may present opportunities for antimicrobial development.
Collapse
Affiliation(s)
- Sora Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Monica S Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Vontalge EJ, Kavlashvili T, Dahmen SN, Cranford MT, Dewar JM. Control of DNA replication in vitro using a reversible replication barrier. Nat Protoc 2024; 19:1940-1983. [PMID: 38594502 PMCID: PMC11230854 DOI: 10.1038/s41596-024-00977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
A major obstacle to studying DNA replication is that it involves asynchronous and highly delocalized events. A reversible replication barrier overcomes this limitation and allows replication fork movement to be synchronized and localized, facilitating the study of replication fork function and replication coupled repair. Here we provide details on establishing a reversible replication barrier in vitro and using it to monitor different aspects of DNA replication. DNA template containing an array of lac operator (lacO) sequences is first bound to purified lac repressor (LacR). This substrate is then replicated in vitro using a biochemical replication system, which results in replication forks stalled on either side of the LacR array regardless of when or where they arise. Once replication forks are synchronized at the barrier, isopropyl-β-D-thiogalactopyranoside can be added to disrupt LacR binding so that replication forks synchronously resume synthesis. We describe how this approach can be employed to control replication fork elongation, termination, stalling and uncoupling, as well as assays that can be used to monitor these processes. We also explain how this approach can be adapted to control whether replication forks encounter a DNA lesion on the leading or lagging strand template and whether a converging fork is present. The required reagents can be prepared in 1-2 weeks and experiments using this approach are typically performed over 1-3 d. The main requirements for utilizing the LacR replication barrier are basic biochemical expertise and access to an in vitro system to study DNA replication. Investigators should also be trained in working with radioactive materials.
Collapse
Affiliation(s)
- Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven N Dahmen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew T Cranford
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Saha LK, Pommier Y. TOP3A coupling with replication forks and repair of TOP3A cleavage complexes. Cell Cycle 2024; 23:115-130. [PMID: 38341866 PMCID: PMC11037291 DOI: 10.1080/15384101.2024.2314440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
Humans have two Type IA topoisomerases, topoisomerase IIIα (TOP3A) and topoisomerase IIIβ (TOP3B). In this review, we focus on the role of human TOP3A in DNA replication and highlight the recent progress made in understanding TOP3A in the context of replication. Like other topoisomerases, TOP3A acts by a reversible mechanism of cleavage and rejoining of DNA strands allowing changes in DNA topology. By cleaving and resealing single-stranded DNA, it generates TOP3A-linked single-strand breaks as TOP3A cleavage complexes (TOP3Accs) with a TOP3A molecule covalently bound to the 5´-end of the break. TOP3A is critical for both mitochondrial and for nuclear DNA replication. Here, we discuss the formation and repair of irreversible TOP3Accs, as their presence compromises genome integrity as they form TOP3A DNA-protein crosslinks (TOP3A-DPCs) associated with DNA breaks. We discuss the redundant pathways that repair TOP3A-DPCs, and how their defects are a source of DNA damage leading to neurological diseases and mitochondrial disorders.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Bonde NJ, Henry C, Wood EA, Cox MM, Keck J. Interaction with the carboxy-terminal tip of SSB is critical for RecG function in E. coli. Nucleic Acids Res 2023; 51:3735-3753. [PMID: 36912097 PMCID: PMC10164576 DOI: 10.1093/nar/gkad162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Brochu J, Vlachos-Breton É, Irsenco D, Drolet M. Characterization of a pathway of genomic instability induced by R-loops and its regulation by topoisomerases in E. coli. PLoS Genet 2023; 19:e1010754. [PMID: 37141391 DOI: 10.1371/journal.pgen.1010754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The prototype enzymes of the ubiquitous type IA topoisomerases (topos) family are Escherichia coli topo I (topA) and topo III (topB). Topo I shows preference for relaxation of negative supercoiling and topo III for decatenation. However, as they could act as backups for each other or even share functions, strains lacking both enzymes must be used to reveal the roles of type IA enzymes in genome maintenance. Recently, marker frequency analysis (MFA) of genomic DNA from topA topB null mutants revealed a major RNase HI-sensitive DNA peak bordered by Ter/Tus barriers, sites of replication fork fusion and termination in the chromosome terminus region (Ter). Here, flow cytometry for R-loop-dependent replication (RLDR), MFA, R-loop detection with S9.6 antibodies, and microscopy were used to further characterize the mechanism and consequences of over-replication in Ter. It is shown that the Ter peak is not due to the presence of a strong origin for RLDR in Ter region; instead RLDR, which is partly inhibited by the backtracking-resistant rpoB*35 mutation, appears to contribute indirectly to Ter over-replication. The data suggest that RLDR from multiple sites on the chromosome increases the number of replication forks trapped at Ter/Tus barriers which leads to RecA-dependent DNA amplification in Ter and to a chromosome segregation defect. Overproducing topo IV, the main cellular decatenase, does not inhibit RLDR or Ter over-replication but corrects the chromosome segregation defect. Furthermore, our data suggest that the inhibition of RLDR by topo I does not require its C-terminal-mediated interaction with RNA polymerase. Overall, our data reveal a pathway of genomic instability triggered by R-loops and its regulation by various topos activities at different steps.
Collapse
Affiliation(s)
- Julien Brochu
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Émilie Vlachos-Breton
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Dina Irsenco
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Marc Drolet
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
11
|
Shinn MK, Chaturvedi SK, Kozlov AG, Lohman T. Allosteric effects of E. coli SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Res 2023; 51:2284-2297. [PMID: 36808259 PMCID: PMC10018359 DOI: 10.1093/nar/gkad084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Escherichia coli single stranded (ss) DNA binding protein (SSB) plays essential roles in DNA maintenance. It binds ssDNA with high affinity through its N-terminal DNA binding core and recruits at least 17 different SSB interacting proteins (SIPs) that are involved in DNA replication, recombination, and repair via its nine amino acid acidic tip (SSB-Ct). E. coli RecO, a SIP, is an essential recombination mediator protein in the RecF pathway of DNA repair that binds ssDNA and forms a complex with E. coli RecR protein. Here, we report ssDNA binding studies of RecO and the effects of a 15 amino acid peptide containing the SSB-Ct monitored by light scattering, confocal microscope imaging, and analytical ultracentrifugation (AUC). We find that one RecO monomer can bind the oligodeoxythymidylate, (dT)15, while two RecO monomers can bind (dT)35 in the presence of the SSB-Ct peptide. When RecO is in molar excess over ssDNA, large RecO-ssDNA aggregates occur that form with higher propensity on ssDNA of increasing length. Binding of RecO to the SSB-Ct peptide inhibits RecO-ssDNA aggregation. RecOR complexes can bind ssDNA via RecO, but aggregation is suppressed even in the absence of the SSB-Ct peptide, demonstrating an allosteric effect of RecR on RecO binding to ssDNA. Under conditions where RecO binds ssDNA but does not form aggregates, SSB-Ct binding enhances the affinity of RecO for ssDNA. For RecOR complexes bound to ssDNA, we also observe a shift in RecOR complex equilibrium towards a RecR4O complex upon binding SSB-Ct. These results suggest a mechanism by which SSB recruits RecOR to facilitate loading of RecA onto ssDNA gaps.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sumit K Chaturvedi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- To whom correspondence should be addressed. Tel: +1 314 362 4393; Fax: +1 314 362 7183;
| |
Collapse
|
12
|
Campos LV, Van Ravenstein SX, Vontalge EJ, Greer BH, Heintzman DR, Kavlashvili T, McDonald WH, Rose KL, Eichman BF, Dewar JM. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Rep 2023; 42:112109. [PMID: 36807139 PMCID: PMC10432576 DOI: 10.1016/j.celrep.2023.112109] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.
Collapse
Affiliation(s)
- Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Menger KE, Chapman J, Díaz-Maldonado H, Khazeem M, Deen D, Erdinc D, Casement JW, Di Leo V, Pyle A, Rodríguez-Luis A, Cowell I, Falkenberg M, Austin C, Nicholls T. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res 2022; 50:11154-11174. [PMID: 36215039 PMCID: PMC9638942 DOI: 10.1093/nar/gkac857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Genetic processes require the activity of multiple topoisomerases, essential enzymes that remove topological tension and intermolecular linkages in DNA. We have investigated the subcellular localisation and activity of the six human topoisomerases with a view to understanding the topological maintenance of human mitochondrial DNA. Our results indicate that mitochondria contain two topoisomerases, TOP1MT and TOP3A. Using molecular, genomic and biochemical methods we find that both proteins contribute to mtDNA replication, in addition to the decatenation role of TOP3A, and that TOP1MT is stimulated by mtSSB. Loss of TOP3A or TOP1MT also dysregulates mitochondrial gene expression, and both proteins promote transcription elongation in vitro. We find no evidence for TOP2 localisation to mitochondria, and TOP2B knockout does not affect mtDNA maintenance or expression. Our results suggest a division of labour between TOP3A and TOP1MT in mtDNA topology control that is required for the proper maintenance and expression of human mtDNA.
Collapse
Affiliation(s)
- Katja E Menger
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Héctor Díaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Mushtaq M Khazeem
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Direnis Erdinc
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - John W Casement
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
14
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
15
|
Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun 2022; 13:584. [PMID: 35102151 PMCID: PMC8803869 DOI: 10.1038/s41467-022-28082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed. Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.
Collapse
|
16
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
17
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
18
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
19
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
20
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Bansod S, Bung N, Singh P, Suthram N, Choudhury H, Roy A, Bulusu G, Bhattacharyya S. Elucidation of an essential function of the unique charged domain of Plasmodium topoisomerase III. Biochem J 2020; 477:BCJ20200318. [PMID: 33241842 DOI: 10.1042/bcj20200318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Topoisomerase III (TopoIII) along with RecQ helicases are required for the resolution of abnormal DNA structures that result from the stalling of replication forks. Sequence analyses have identified a putative TopoIII in the Plasmodium falciparum genome (PfTopoIII). PfTopoIII shows dual nuclear and mitochondrial localization. The expression and association of PfTopoIII with mtDNA is tightly linked to the asexual replication of the parasite. In this study, we observed that PfTopoIII physically interacts with PfBlm and PfWrn. Sequence alignment and domain analyses have revealed that it contains a unique positively charged region, spanning 85 amino acids, within domain II. A molecular dynamics simulation study revealed that this unstructured domain communicates with DNA and attains a thermodynamically stable state upon DNA binding. Here, we found that the association between PfTopoIII and the mitochondrial genome is negatively affected by the absence of the charged domain. Our study shows that PfTOPOIII can completely rescue the slow growth phenotype of the ΔtopoIII strain in Saccharomyces cerevisiae, but neither PfY421FtopoIII (catalytic-active site mutant) nor Pf(Δ259-337)topoIII (charged region deletion mutant) can functionally complement ScTOPOIII. Hydroxyurea (HU) led to stalling of the replication fork during the S phase, caused moderate toxicity to the growth of P. falciparum, and was associated with concomitant transcriptional upregulation of PfTOPOIII. In addition, ectopic expression of PfTOPOIII reversed HU-induced toxicity. Interestingly, the expression of Pf(Δ259-337)topoIII failed to reverse HU-mediated toxicity. Taken together, our results establish the importance of TopoIII during Plasmodium replication and emphasize the essential requirement of the charged domain in PfTopoIII function.
Collapse
Affiliation(s)
- Shephali Bansod
- University of Hyderabad, School of Life Sciences, Hyderabad, India
| | - Navneet Bung
- Tata Consultancy Services Limited, Hyderabad, India, India
| | - Priyanka Singh
- University of Hyderabad, School of Life Sciences, Hyderabad, India
| | | | | | - Arijit Roy
- Tata Consultancy Services Limited, Hyderabad, India
| | | | | |
Collapse
|
22
|
Heintzman DR, Campos LV, Byl JAW, Osheroff N, Dewar JM. Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination. Cell Rep 2020; 29:422-436.e5. [PMID: 31597101 PMCID: PMC6919565 DOI: 10.1016/j.celrep.2019.08.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022] Open
Abstract
Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine (Hematology, Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
Direct observation of helicase-topoisomerase coupling within reverse gyrase. Proc Natl Acad Sci U S A 2020; 117:10856-10864. [PMID: 32371489 PMCID: PMC7245102 DOI: 10.1073/pnas.1921848117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reverse gyrases (RGs) are the only topoisomerases capable of generating positive supercoils in DNA. Members of the type IA family, they do so by generating a single-strand break in substrate DNA and then manipulating the two single strands to generate positive topology. Here, we use single-molecule experimentation to reveal the obligatory succession of steps that make up the catalytic cycle of RG. In the initial state, RG binds to DNA and unwinds ∼2 turns of the double helix in an ATP-independent fashion. Upon nucleotide binding, RG then rewinds ∼1 turn of DNA. Nucleotide hydrolysis and/or product release leads to an increase of 2 units of DNA writhe and resetting of the enzyme, for a net change of topology of +1 turn per cycle. Final dissociation of RG from DNA results in rewinding of the 2 turns of DNA that were initially disrupted. These results show how tight coupling of the helicase and topoisomerase activities allows for induction of positive supercoiling despite opposing torque.
Collapse
|
24
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
25
|
Sun CH, Weng SC, Wu JH, Tung SY, Su LH, Lin MH, Lee GA. DNA topoisomerase IIIβ promotes cyst generation by inducing cyst wall protein gene expression in Giardia lamblia. Open Biol 2020; 10:190228. [PMID: 32019477 PMCID: PMC7058931 DOI: 10.1098/rsob.190228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Giardia lamblia causes waterborne diarrhoea by transmission of infective cysts. Three cyst wall proteins are highly expressed in a concerted manner during encystation of trophozoites into cysts. However, their gene regulatory mechanism is still largely unknown. DNA topoisomerases control topological homeostasis of genomic DNA during replication, transcription and chromosome segregation. They are involved in a variety of cellular processes including cell cycle, cell proliferation and differentiation, so they may be valuable drug targets. Giardia lamblia possesses a type IA DNA topoisomerase (TOP3β) with similarity to the mammalian topoisomerase IIIβ. We found that TOP3β was upregulated during encystation and it possessed DNA-binding and cleavage activity. TOP3β can bind to the cwp promoters in vivo using norfloxacin-mediated topoisomerase immunoprecipitation assays. We also found TOP3β can interact with MYB2, a transcription factor involved in the coordinate expression of cwp1-3 genes during encystation. Interestingly, overexpression of TOP3β increased expression of cwp1-3 and myb2 genes and cyst formation. Microarray analysis confirmed upregulation of cwp1-3 and myb2 genes by TOP3β. Mutation of the catalytically important Tyr residue, deletion of C-terminal zinc ribbon domain or further deletion of partial catalytic core domain reduced the levels of cleavage activity, cwp1-3 and myb2 gene expression, and cyst formation. Interestingly, some of these mutant proteins were mis-localized to cytoplasm. Using a CRISPR/Cas9 system for targeted disruption of top3β gene, we found a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that TOP3β may be functionally conserved, and involved in inducing Giardia cyst formation.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Meng-Hsuan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
26
|
Shinn MK, Kozlov AG, Nguyen B, Bujalowski WM, Lohman TM. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res 2019; 47:8581-8594. [PMID: 31329947 PMCID: PMC7145534 DOI: 10.1093/nar/gkz606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli single strand (ss) DNA binding (SSB) protein protects ssDNA intermediates and recruits at least 17 SSB interacting proteins (SIPs) during genome maintenance. The SSB C-termini contain a 9 residue acidic tip and a 56 residue intrinsically disordered linker (IDL). The acidic tip interacts with SIPs; however a recent proposal suggests that the IDL may also interact with SIPs. Here we examine the binding to four SIPs (RecO, PriC, PriA and χ subunit of DNA polymerase III) of three peptides containing the acidic tip and varying amounts of the IDL. Independent of IDL length, we find no differences in peptide binding to each individual SIP indicating that binding is due solely to the acidic tip. However, the tip shows specificity, with affinity decreasing in the order: RecO > PriA ∼ χ > PriC. Yet, RecO binding to the SSB tetramer and an SSB–ssDNA complex show significant thermodynamic differences compared to the peptides alone, suggesting that RecO interacts with another region of SSB, although not the IDL. SSB containing varying IDL deletions show different binding behavior, with the larger linker deletions inhibiting RecO binding, likely due to increased competition between the acidic tip interacting with DNA binding sites within SSB.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wlodek M Bujalowski
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy M Lohman
- Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Drolet M, Brochu J. R-loop-dependent replication and genomic instability in bacteria. DNA Repair (Amst) 2019; 84:102693. [DOI: 10.1016/j.dnarep.2019.102693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
28
|
Bagchi D, Manosas M, Zhang W, Manthei KA, Hodeib S, Ducos B, Keck JL, Croquette V. Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Res 2019; 46:8500-8515. [PMID: 30053104 PMCID: PMC6144805 DOI: 10.1093/nar/gky647] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a ‘Helicase and RNase D C-terminal’ (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, ‘slow’ and ‘normal’, as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third ‘fast’ unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.
Collapse
Affiliation(s)
- Debjani Bagchi
- Physics Department, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002, India
| | - Maria Manosas
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Weiting Zhang
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Samar Hodeib
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Bertrand Ducos
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | - Vincent Croquette
- Laboratoire de physique statistique, Département de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France. IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
29
|
Deegan TD, Baxter J, Ortiz Bazán MÁ, Yeeles JTP, Labib KPM. Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes. Mol Cell 2019; 74:231-244.e9. [PMID: 30850330 PMCID: PMC6477153 DOI: 10.1016/j.molcel.2019.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023]
Abstract
The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms.
Collapse
Affiliation(s)
- Tom D Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Jonathan Baxter
- Genome Damage and Stability Centre, Department of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - María Ángeles Ortiz Bazán
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Joseph T P Yeeles
- The MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Karim P M Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Topoisomerase III Acts at the Replication Fork To Remove Precatenanes. J Bacteriol 2019; 201:JB.00563-18. [PMID: 30617245 DOI: 10.1128/jb.00563-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
The role of DNA topoisomerase III (Topo III) in bacterial cells has proven elusive. Whereas eukaryotic Top IIIα homologs are clearly involved with homologs of the bacterial DNA helicase RecQ in unraveling double Holliday junctions, preventing crossover exchange of genetic information at unscheduled recombination intermediates, and Top IIIβ homologs have been shown to be involved in regulation of various mRNAs involved in neuronal function, there is little evidence for similar reactions in bacteria. Instead, most data point to Topo III playing a role supplemental to that of topoisomerase IV in unlinking daughter chromosomes during DNA replication. In support of this model, we show that Escherichia coli Topo III associates with the replication fork in vivo (likely via interactions with the single-stranded DNA-binding protein and the β clamp-loading DnaX complex of the DNA polymerase III holoenzyme), that the DnaX complex stimulates the ability of Topo III to unlink both catenated and precatenated DNA rings, and that ΔtopB cells show delayed and disorganized nucleoid segregation compared to that of wild-type cells. These data argue that Topo III normally assists topoisomerase IV in chromosome decatenation by removing excess positive topological linkages at or near the replication fork as they are converted into precatenanes.IMPORTANCE Topological entanglement between daughter chromosomes has to be reduced to exactly zero every time an E. coli cell divides. The enzymatic agents that accomplish this task are the topoisomerases. E. coli possesses four topoisomerases. It has been thought that topoisomerase IV is primarily responsible for unlinking the daughter chromosomes during DNA replication. We show here that topoisomerase III also plays a role in this process and is specifically localized to the replisome, the multiprotein machine that duplicates the cell's genome, in order to do so.
Collapse
|
31
|
Weaver GM, Mettrick KA, Corocher TA, Graham A, Grainge I. Replication fork collapse at a protein-DNA roadblock leads to fork reversal, promoted by the RecQ helicase. Mol Microbiol 2018; 111:455-472. [PMID: 30466158 DOI: 10.1111/mmi.14166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
Abstract
Proteins that bind DNA are the cause of the majority of impediments to replication fork progression and can lead to subsequent collapse of the replication fork. Failure to deal with fork collapse efficiently leads to mutation or cell death. Several models have been proposed for how a cell processes a stalled or collapsed replication fork; eukaryotes and bacteria are not dissimilar in terms of the general pathways undertaken to deal with these events. This study shows that replication fork regression, the combination of replication fork reversal leading to formation of a Holliday Junction along with exonuclease digestion, is the preferred pathway for dealing with a collapsed fork in Escherichia coli. Direct endo-nuclease activity at the replication fork was not observed. The protein that had the greatest effect on these fork processing events was the RecQ helicase, while RecG and RuvABC, which have previously been implicated in this process, were found to play a lesser role. Eukaryotic RecQ homologues, BLM and WRN, have also been implicated in processing events following replication fork collapse and may reflect a conserved mechanism. Finally, the SOS response was not induced by the protein-DNA roadblock under these conditions, so did not affect fork processing.
Collapse
Affiliation(s)
- Georgia M Weaver
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Karla A Mettrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Tayla-Ann Corocher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Adam Graham
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
32
|
Mills M, Tse-Dinh YC, Neuman KC. Direct observation of topoisomerase IA gate dynamics. Nat Struct Mol Biol 2018; 25:1111-1118. [PMID: 30478267 PMCID: PMC6379066 DOI: 10.1038/s41594-018-0158-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA.
Collapse
Affiliation(s)
- Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet 2018; 14:e1007668. [PMID: 30222737 PMCID: PMC6160223 DOI: 10.1371/journal.pgen.1007668] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 1A topoisomerases (topos) are the only ubiquitous topos. E. coli has two type 1A topos, topo I (topA) and topo III (topB). Topo I relaxes negative supercoiling in part to inhibit R-loop formation. To grow, topA mutants acquire compensatory mutations, base substitutions in gyrA or gyrB (gyrase) or amplifications of a DNA region including parC and parE (topo IV). topB mutants grow normally and topo III binds tightly to single-stranded DNA. What functions topo I and III share in vivo and how cells lacking these important enzymes can survive is unclear. Previously, a gyrB(Ts) compensatory mutation was used to construct topA topB null mutants. These mutants form very long filaments and accumulate diffuse DNA, phenotypes that appears to be related to replication from R-loops. Here, next generation sequencing and qPCR for marker frequency analysis were used to further define the functions of type 1A topos. The results reveal the presence of a RNase HI-sensitive origin of replication in the terminus (Ter) region of the chromosome that is more active in topA topB cells than in topA and rnhA (RNase HI) null cells. The S9.6 antibodies specific to DNA:RNA hybrids were used in dot-blot experiments to show the accumulation of R-loops in rnhA, topA and topA topB null cells. Moreover topA topB gyrB(Ts) strains, but not a topA gyrB(Ts) strain, were found to carry a parC parE amplification. When a topA gyrB(Ts) mutant carried a plasmid producing topo IV, topB null transductants did not have parC parE amplifications. Altogether, the data indicate that in E. coli type 1A topos are required to inhibit R-loop formation/accumulation mostly to prevent unregulated replication in Ter, and that they are essential to prevent excess negative supercoiling and its detrimental effects on cell growth and survival. DNA topoisomerases are nicking closing enzymes with strand passage activity that solves the topological problems inherent to the double-helical structure of DNA. Topos of the type 1A family are the only ubiquitous topos. They are classified in two subfamilies, topo I and topo III respectively found in bacteria only and in organisms from the three domains of life. The prototype enzymes of these two subfamilies are topo I and topo III from Escherichia coli. Recent data suggest that duplications leading to topo I and III subfamilies occurred in the Last Common Universal Ancestor of the three domains of life. In this context, our finding reported here that both E. coli topo I and III control R-loop formation/accumulation, mostly to inhibit unregulated replication, may suggest that R-loops have been a problem early in the evolution of life. Furthermore, our data show that E. coli cells can survive in the absence of type 1A topos, owing to the surproduction of topo IV that can relax excess negative supercoiling and prevent R-loop formation. Thus, our results strongly suggest that a major function of type 1A topos is to control R-loop formation to preserve the integrity of the genome.
Collapse
|
34
|
Reconstitution of anaphase DNA bridge recognition and disjunction. Nat Struct Mol Biol 2018; 25:868-876. [PMID: 30177760 DOI: 10.1038/s41594-018-0123-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022]
Abstract
Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.
Collapse
|
35
|
Ferencziová V, Harami GM, Németh JB, Vellai T, Kovács M. Functional fine-tuning between bacterial DNA recombination initiation and quality control systems. PLoS One 2018; 13:e0192483. [PMID: 29470542 PMCID: PMC5823372 DOI: 10.1371/journal.pone.0192483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
Homologous recombination (HR) is crucial for the error-free repair of DNA double-strand breaks (DSBs) and the restart of stalled replication. However, imprecise HR can lead to genome instability, highlighting the importance of HR quality control. After DSB formation, HR proceeds via DNA end resection and recombinase loading, whereas helicase-catalyzed disruption of a subset of subsequently formed DNA invasions is thought to be essential for maintaining HR accuracy via inhibiting illegitimate (non-allelic) recombination. Here we show that in vitro characterized mechanistic aberrations of E. coli RecBCD (resection and recombinase loading) RecQ (multifunctional DNA-restructuring helicase) mutant enzyme variants, on one hand, cumulatively deteriorate cell survival under certain conditions of genomic stress. On the other hand, we find that RecBCD and RecQ defects functionally compensate each other in terms of HR accuracy. The abnormally long resection and unproductive recombinase loading activities of a mutant RecBCD complex (harboring the D1080A substitution in RecB) cause enhanced illegitimate recombination. However, this compromised HR-accuracy phenotype is suppressed in double mutant strains harboring mutant RecQ variants with abnormally enhanced helicase and inefficient invasion disruptase activities. These results frame an in vivo context for the interplay of biochemical activities leading to illegitimate recombination, and underscore its long-range genome instability effects manifest in higher eukaryotes.
Collapse
Affiliation(s)
- Veronika Ferencziová
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, Hungary
| | - Gábor M. Harami
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, Hungary
| | - Julianna B. Németh
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, Hungary
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, Hungary
| |
Collapse
|
36
|
Nicholls TJ, Nadalutti CA, Motori E, Sommerville EW, Gorman GS, Basu S, Hoberg E, Turnbull DM, Chinnery PF, Larsson NG, Larsson E, Falkenberg M, Taylor RW, Griffith JD, Gustafsson CM. Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. Mol Cell 2017; 69:9-23.e6. [PMID: 29290614 DOI: 10.1016/j.molcel.2017.11.033] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 11/26/2017] [Indexed: 01/01/2023]
Abstract
How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Elisa Motori
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
37
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
38
|
Su’etsugu M, Takada H, Katayama T, Tsujimoto H. Exponential propagation of large circular DNA by reconstitution of a chromosome-replication cycle. Nucleic Acids Res 2017; 45:11525-11534. [PMID: 29036468 PMCID: PMC5714178 DOI: 10.1093/nar/gkx822] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022] Open
Abstract
Propagation of genetic information is a fundamental property of living organisms. Escherichia coli has a 4.6 Mb circular chromosome with a replication origin, oriC. While the oriC replication has been reconstituted in vitro more than 30 years ago, continuous repetition of the replication cycle has not yet been achieved. Here, we reconstituted the entire replication cycle with 14 purified enzymes (25 polypeptides) that catalyze initiation at oriC, bidirectional fork progression, Okazaki-fragment maturation and decatenation of the replicated circular products. Because decatenation provides covalently closed supercoiled monomers that are competent for the next round of replication initiation, the replication cycle repeats autonomously and continuously in an isothermal condition. This replication-cycle reaction (RCR) propagates ∼10 kb circular DNA exponentially as intact covalently closed molecules, even from a single DNA molecule, with a doubling time of ∼8 min and extremely high fidelity. Very large DNA up to 0.2 Mb is successfully propagated within 3 h. We further demonstrate a cell-free cloning in which RCR selectively propagates circular molecules constructed by a multi-fragment assembly reaction. Our results define the minimum element necessary for the repetition of the chromosome-replication cycle, and also provide a powerful in vitro tool to generate large circular DNA molecules without relying on conventional biological cloning.
Collapse
Affiliation(s)
- Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiraku Takada
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Tsutomu Katayama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroko Tsujimoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
39
|
Mills M, Harami GM, Seol Y, Gyimesi M, Martina M, Kovács ZJ, Kovács M, Neuman KC. RecQ helicase triggers a binding mode change in the SSB-DNA complex to efficiently initiate DNA unwinding. Nucleic Acids Res 2017; 45:11878-11890. [PMID: 29059328 PMCID: PMC5714189 DOI: 10.1093/nar/gkx939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
The single-stranded DNA binding protein (SSB) of Escherichia coli plays essential roles in maintaining genome integrity by sequestering ssDNA and mediating DNA processing pathways through interactions with DNA-processing enzymes. Despite its DNA-sequestering properties, SSB stimulates the DNA processing activities of some of its binding partners. One example is the genome maintenance protein RecQ helicase. Here, we determine the mechanistic details of the RecQ-SSB interaction using single-molecule magnetic tweezers and rapid kinetic experiments. Our results reveal that the SSB-RecQ interaction changes the binding mode of SSB, thereby allowing RecQ to gain access to ssDNA and facilitating DNA unwinding. Conversely, the interaction of RecQ with the SSB C-terminal tail increases the on-rate of RecQ-DNA binding and has a modest stimulatory effect on the unwinding rate of RecQ. We propose that this bidirectional communication promotes efficient DNA processing and explains how SSB stimulates rather than inhibits RecQ activity.
Collapse
Affiliation(s)
- Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gábor M. Harami
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Máté Gyimesi
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Máté Martina
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Zoltán J. Kovács
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Bianco PR, Lyubchenko YL. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci 2017; 26:638-649. [PMID: 28078722 DOI: 10.1002/pro.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif-containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.
Collapse
Affiliation(s)
- Piero R Bianco
- SUNY Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, 321 Cary Hall, 3435 Main St, Buffalo, New York 14214.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.,Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025
| |
Collapse
|
41
|
Tan HY, Wilczek LA, Pottinger S, Manosas M, Yu C, Nguyenduc T, Bianco PR. The intrinsically disordered linker of E. coli SSB is critical for the release from single-stranded DNA. Protein Sci 2017; 26:700-717. [PMID: 28078720 DOI: 10.1002/pro.3115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022]
Abstract
The Escherichia coli single stranded DNA binding protein (SSB) is crucial for DNA replication, recombination and repair. Within each process, it has two seemingly disparate roles: it stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing and, forms complexes with a group of proteins known as the SSB-interactome. Key to both roles is the C-terminal, one-third of the protein, in particular the intrinsically disordered linker (IDL). Previously, they have shown using a series of linker deletion mutants that the IDL links both ssDNA and target protein binding by mediating interactions with the oligosaccharide/oligonucleotide binding fold in the target. In this study, they examine the role of the linker region in SSB function in a variety of DNA metabolic processes in vitro. Using the same linker mutants, the results show that in addition to association reactions (either DNA or protein), the IDL is critical for the release of SSB from DNA. This release can be under conditions of ssDNA competition or active displacement by a DNA helicase or recombinase. Consistent with their previous work these results indicate that SSB linker mutants are defective for SSB-SSB interactions, and when the IDL is removed a terminal SSB-DNA complex results. Formation of this complex inhibits downstream processing of DNA by helicases such as RecG or PriA as well as recombination, mediated by RecA. A model, based on the evidence herein, is presented to explain how the IDL acts in SSB function.
Collapse
Affiliation(s)
- Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Luke A Wilczek
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Maria Manosas
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028, Barcelona, Spain.,CIBER-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Sanidad Carlos III, Madrid, Spain
| | - Cong Yu
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| | - Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York
| |
Collapse
|
42
|
Bianco PR, Pottinger S, Tan HY, Nguyenduc T, Rex K, Varshney U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein-protein interactions. Protein Sci 2017; 26:227-241. [PMID: 28127816 DOI: 10.1002/pro.3072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022]
Abstract
The E. coli single strand DNA binding protein (SSB) is essential to viability where it functions in two seemingly disparate roles: it binds to single stranded DNA (ssDNA) and to target proteins that comprise the SSB interactome. The link between these roles resides in a previously under-appreciated region of the protein known as the intrinsically disordered linker (IDL). We present a model wherein the IDL is responsible for mediating protein-protein interactions critical to each role. When interactions occur between SSB tetramers, cooperative binding to ssDNA results. When binding occurs between SSB and an interactome partner, storage or loading of that protein onto the DNA takes place. The properties of the IDL that facilitate these interactions include the presence of repeats, a putative polyproline type II helix and, PXXP motifs that may facilitate direct binding to the OB-fold in a manner similar to that observed for SH3 domain binding of PXXP ligands in eukaryotic systems.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Kervin Rex
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
43
|
Affiliation(s)
- Giovanni Capranico
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Jessica Marinello
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
44
|
Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination. Proc Natl Acad Sci U S A 2017; 114:E466-E475. [PMID: 28069956 DOI: 10.1073/pnas.1615439114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.
Collapse
|
45
|
Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016; 8:101-111. [PMID: 28510219 DOI: 10.1007/s12551-016-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023] Open
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Bianco PR. The tale of SSB. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:111-118. [PMID: 27838363 DOI: 10.1016/j.pbiomolbio.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023]
Abstract
The E. coli single stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism. Here, it has two seemingly disparate but equally important roles: it binds rapidly and cooperatively to single stranded DNA (ssDNA) and it binds to partner proteins that constitute the SSB interactome. These two roles are not disparate but are instead, intimately linked. A model is presented wherein the intrinsically disordered linker (IDL) is directly responsible for mediating protein-protein interactions. It does this by binding, via PXXP motifs, to the OB-fold (aka SH3 domain) of a nearby protein. When the nearby protein is another SSB tetramer, this leads to a highly efficient ssDNA binding reaction that rapidly and cooperatively covers and protects the exposed nucleic acid from degradation. Alternatively, when the nearby protein is a member of the SSB interactome, loading of the enzyme onto the DNA takes places.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
47
|
Xia J, Chen LT, Mei Q, Ma CH, Halliday JA, Lin HY, Magnan D, Pribis JP, Fitzgerald DM, Hamilton HM, Richters M, Nehring RB, Shen X, Li L, Bates D, Hastings PJ, Herman C, Jayaram M, Rosenberg SM. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. SCIENCE ADVANCES 2016; 2:e1601605. [PMID: 28090586 PMCID: PMC5222578 DOI: 10.1126/sciadv.1601605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 05/05/2023]
Abstract
DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.
Collapse
Affiliation(s)
- Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Tzu Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Jennifer A. Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Magnan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly M. Hamilton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Richters
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
48
|
Callegari AJ, Kelly TJ. Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast. Cell Cycle 2016; 15:261-73. [PMID: 26652183 PMCID: PMC5007584 DOI: 10.1080/15384101.2015.1121353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.
Collapse
Affiliation(s)
- A John Callegari
- a Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Thomas J Kelly
- a Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
49
|
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| |
Collapse
|
50
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|