1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Zhang Z, Tang Y, Wang Y, Xu J, Yang X, Liu M, Mazzone M, Niu N, Sun Y, Tang Y, Xue J. SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402244. [PMID: 39316363 DOI: 10.1002/advs.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Despite progress significant advances in immunotherapy for some solid tumors, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive poorly responsive to such interventions, largely due to its highly immunosuppressive tumor microenvironment (TME) with limited CD8+ T cell infiltration. This study explores the role of the epigenetic factor Sin3B in the PDAC TME. Using murine PDAC models, we found that tumor cell-intrinsic Sin3B loss reshapes the TME, increasing CD8+ T cell infiltration and cytotoxicity, thus impeding tumor progression and enhancing sensitivity to anti-PD1 treatment. Sin3B-deficient tumor cells exhibited amplified CXCL9/10 secretion in response to Interferon-gamma (IFNγ), creating a positive feedback loop via the CXCL9/10-CXCR3 axis, thereby intensifying the anti-tumor immune response against PDAC. Mechanistically, extensive epigenetic regulation is uncovered by Sin3B loss, particularly enhanced H3K27Ac distribution on genes related to immune responses in PDAC cells. Consistent with the murine model findings, analysis of human PDAC samples revealed a significant inverse correlation between SIN3B levels and both CD8+ T cell infiltration and CXCL9/10 expression. Notebly, PDAC patients with lower SIN3B expression showed a more favorable response to anti-PD1 therapy. The findings suggest that targeting SIN3B can enhance cytotoxic T cell infiltration into the tumor site and improve immunotherapy efficacy in PDAC, offering potential avenues for therapeutic biomarker or target in this challenging disease.
Collapse
Affiliation(s)
- Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaotong Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, 3000, Belgium
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
3
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
5
|
Kataria A, Tyagi S. Domain architecture and protein-protein interactions regulate KDM5A recruitment to the chromatin. Epigenetics 2023; 18:2268813. [PMID: 37838974 PMCID: PMC10578193 DOI: 10.1080/15592294.2023.2268813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Tri-methylation of Histone 3 lysine 4 (H3K4) is an important epigenetic modification whose deposition and removal can affect the chromatin at structural and functional levels. KDM5A is one of the four known H3K4-specific demethylases. It is a part of the KDM5 family, which is characterized by a catalytic Jumonji domain capable of removing H3K4 di- and tri-methylation marks. KDM5A has been found to be involved in multiple cellular processes such as differentiation, metabolism, cell cycle, and transcription. Its link to various diseases, including cancer, makes KDM5A an important target for drug development. However, despite several studies outlining its significance in various pathways, our lack of understanding of its recruitment and function at the target sites on the chromatin presents a challenge in creating effective and targeted treatments. Therefore, it is essential to understand the recruitment mechanism of KDM5A to chromatin, and its activity therein, to comprehend how various roles of KDM5A are regulated. In this review, we discuss how KDM5A functions in a context-dependent manner on the chromatin, either directly through its structural domain, or through various interacting partners, to bring about a diverse range of functions.
Collapse
Affiliation(s)
- Avishek Kataria
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
6
|
Robert VJ, Caron M, Gely L, Adrait A, Pakulska V, Couté Y, Chevalier M, Riedel CG, Bedet C, Palladino F. SIN-3 acts in distinct complexes to regulate the germline transcriptional program in Caenorhabditis elegans. Development 2023; 150:dev201755. [PMID: 38771303 PMCID: PMC10617626 DOI: 10.1242/dev.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.
Collapse
Affiliation(s)
- Valerie J. Robert
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Loic Gely
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Annie Adrait
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Victoria Pakulska
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Manon Chevalier
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Christian G. Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 16, 14157 Huddinge, Sweden
| | - Cecile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
7
|
Barrett A, Shingare MR, Rechtsteiner A, Wijeratne TU, Rodriguez KM, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564489. [PMID: 37961464 PMCID: PMC10634886 DOI: 10.1101/2023.10.28.564489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Manisha R. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Tilini U. Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kelsie M. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A. Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Wang D, Zhang Y, Liao Z, Ge H, Güngör C, Li Y. KDM5 family of demethylases promotes CD44-mediated chemoresistance in pancreatic adenocarcinomas. Sci Rep 2023; 13:18250. [PMID: 37880235 PMCID: PMC10600175 DOI: 10.1038/s41598-023-44536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
A growing body of evidence suggests that the histone demethylase-lysine demethylase 5 (KDM5) family is associated with drug resistance in cancer cells. However, it is still not clear whether KDM5 family members promote chemotherapy resistance in pancreatic ductal adenocarcinomas (PDAC). Comprehensive bioinformatics analysis was performed to investigate the prognostic value, and functional mechanisms of KDM5 family members in PDAC. The effects of KDM5 family members on drug resistance in PDAC cells and the relationship with CD44, as a stem cell marker, were explored by gene knockout and overexpression strategies. Finally, our findings were validated by functional experiments such as cell viability, colony formation and invasion assays. We found that the expression of KDM5A/C was significantly higher in gemcitabine-resistant cells than in sensitive cells, consistent with the analysis of the GSCALite database. The knockdown of KDM5A/C in PDAC cells resulted in diminished drug resistance, less cell colonies and reduced invasiveness, while KDM5A/C overexpression showed the opposite effect. Of note, the expression of KDM5A/C changed accordingly with the knockdown of CD44. In addition, members of the KDM5 family function in a variety of oncogenic pathways, including PI3K/AKT and Epithelial-Mesenchymal Transition. In conclusion, KDM5 family members play an important role in drug resistance and may serve as new biomarkers or potential therapeutic targets in PDAC patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zhang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, China
| | - Zhouning Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Division of Translational Immunology, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Morales-Valencia J, Petit C, Calderon A, Saini S, David G. Chromatin-Associated SIN3B Protects Cancer Cells from Genotoxic Stress-Induced Apoptosis and Dictates DNA Damage Repair Pathway Choice. Mol Cancer Res 2023; 21:947-957. [PMID: 37314748 PMCID: PMC10527583 DOI: 10.1158/1541-7786.mcr-22-0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Transcription and DNA damage repair act in a coordinated manner. The scaffolding protein SIN3B serves as a transcriptional co-repressor of hundreds of cell cycle-related genes. However, the contribution of SIN3B during the DNA damage response remains unknown. Here, we show that SIN3B inactivation delays the resolution of DNA double-strand breaks and sensitizes cancer cells to DNA-damaging agents, including the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, SIN3B is rapidly recruited to DNA damage sites where it directs the accumulation of Mediator of DNA Damage Checkpoint 1 (MDC1). In addition, we show that SIN3B inactivation favors the engagement of the alternative nonhomologous end joining (NHEJ) repair pathway over the canonical NHEJ. Altogether, our findings impute an unexpected function for the transcriptional co-repressor SIN3B as a gatekeeper of genomic integrity and a determining factor in the DNA repair choice pathway, and point to the inhibition of the SIN3B chromatin-modifying complex as a novel therapeutic vulnerability in cancer cells. IMPLICATIONS Identifying SIN3B as a modulator of DNA damage repair choice provides novel potential therapeutic avenues to sensitize cancer cells to cytotoxic therapies.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Coralie Petit
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
- Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
10
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo CW, Tsang M. Sin3a associated protein 130 kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. Front Cell Dev Biol 2023; 11:1197109. [PMID: 37711853 PMCID: PMC10498550 DOI: 10.3389/fcell.2023.1197109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130 kDa (Sap130), part of the chromatin modifying SIN3A/HDAC complex, as a gene contributing to the etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cardiac function were dysregulated in sap130a, but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a, in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A. DeMoya
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel E. Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Wan MSM, Muhammad R, Koliopoulos MG, Roumeliotis TI, Choudhary JS, Alfieri C. Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex. Nat Commun 2023; 14:2556. [PMID: 37137925 PMCID: PMC10156912 DOI: 10.1038/s41467-023-38276-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
Lysine acetylation in histone tails is a key post-translational modification that controls transcription activation. Histone deacetylase complexes remove histone acetylation, thereby repressing transcription and regulating the transcriptional output of each gene. Although these complexes are drug targets and crucial regulators of organismal physiology, their structure and mechanisms of action are largely unclear. Here, we present the structure of a complete human SIN3B histone deacetylase holo-complex with and without a substrate mimic. Remarkably, SIN3B encircles the deacetylase and contacts its allosteric basic patch thereby stimulating catalysis. A SIN3B loop inserts into the catalytic tunnel, rearranges to accommodate the acetyl-lysine moiety, and stabilises the substrate for specific deacetylation, which is guided by a substrate receptor subunit. Our findings provide a model of specificity for a main transcriptional regulator conserved from yeast to human and a resource of protein-protein interactions for future drug designs.
Collapse
Affiliation(s)
- Mandy S M Wan
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Reyhan Muhammad
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Marios G Koliopoulos
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.
| |
Collapse
|
12
|
Guo Z, Chu C, Lu Y, Zhang X, Xiao Y, Wu M, Gao S, Wong CCL, Zhan X, Wang C. Structure of a SIN3-HDAC complex from budding yeast. Nat Struct Mol Biol 2023:10.1038/s41594-023-00975-z. [PMID: 37081318 DOI: 10.1038/s41594-023-00975-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
SIN3-HDAC (histone deacetylases) complexes have important roles in facilitating local histone deacetylation to regulate chromatin accessibility and gene expression. Here, we present the cryo-EM structure of the budding yeast SIN3-HDAC complex Rpd3L at an average resolution of 2.6 Å. The structure reveals that two distinct arms (ARM1 and ARM2) hang on a T-shaped scaffold formed by two coiled-coil domains. In each arm, Sin3 interacts with different subunits to create a different environment for the histone deacetylase Rpd3. ARM1 is in the inhibited state with the active site of Rpd3 blocked, whereas ARM2 is in an open conformation with the active site of Rpd3 exposed to the exterior space. The observed asymmetric architecture of Rpd3L is different from those of available structures of other class I HDAC complexes. Our study reveals the organization mechanism of the SIN3-HDAC complex and provides insights into the interaction pattern by which it targets histone deacetylase to chromatin.
Collapse
Affiliation(s)
- Zhouyan Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chen Chu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yichen Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Shuaixin Gao
- Human Nutrition Program & James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
13
|
Wang C, Guo Z, Chu C, Lu Y, Zhang X, Zhan X. Two assembly modes for SIN3 histone deacetylase complexes. Cell Discov 2023; 9:42. [PMID: 37076472 PMCID: PMC10115800 DOI: 10.1038/s41421-023-00539-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
The switch-independent 3 (SIN3)/histone deacetylase (HDAC) complexes play essential roles in regulating chromatin accessibility and gene expression. There are two major types of SIN3/HDAC complexes (named SIN3L and SIN3S) targeting different chromatin regions. Here we present the cryo-electron microscopy structures of the SIN3L and SIN3S complexes from Schizosaccharomyces pombe (S. pombe), revealing two distinct assembly modes. In the structure of SIN3L, each Sin3 isoform (Pst1 and Pst3) interacts with one histone deacetylase Clr6, and one WD40-containing protein Prw1, forming two lobes. These two lobes are bridged by two vertical coiled-coil domains from Sds3/Dep1 and Rxt2/Png2, respectively. In the structure of SIN3S, there is only one lobe organized by another Sin3 isoform Pst2; each of the Cph1 and Cph2 binds to an Eaf3 molecule, providing two modules for histone recognition and binding. Notably, the Pst1 Lobe in SIN3L and the Pst2 Lobe in SIN3S adopt similar conformation with their deacetylase active sites exposed to the space; however, the Pst3 Lobe in SIN3L is in a compact state with its active center buried inside and blocked. Our work reveals two classical organization mechanisms for the SIN3/HDAC complexes to achieve specific targeting and provides a framework for studying the histone deacetylase complexes.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo C, Tsang M. Sin3a Associated Protein 130kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534737. [PMID: 37034673 PMCID: PMC10081270 DOI: 10.1101/2023.03.30.534737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130kDa ( Sap130 ), a protein in the chromatin modifying SIN3A/HDAC1 complex, as a gene contributing to the digenic etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cell communication were dysregulated in sap130a , but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a , in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A DeMoya
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Rachel E Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| |
Collapse
|
15
|
Zhang SM, Cao J, Yan Q. KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:113-137. [PMID: 37751138 DOI: 10.1007/978-3-031-38176-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Collapse
Affiliation(s)
- Shang-Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
16
|
Diverse Functions of KDM5 in Cancer: Transcriptional Repressor or Activator? Cancers (Basel) 2022; 14:cancers14133270. [PMID: 35805040 PMCID: PMC9265395 DOI: 10.3390/cancers14133270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are crucial for chromatin remodeling and transcriptional regulation. Post-translational modifications of histones are epigenetic processes that are fine-tuned by writer and eraser enzymes, and the disorganization of these enzymes alters the cellular state, resulting in human diseases. The KDM5 family is an enzymatic family that removes di- and tri-methyl groups (me2 and me3) from lysine 4 of histone H3 (H3K4), and its dysregulation has been implicated in cancer. Although H3K4me3 is an active chromatin marker, KDM5 proteins serve as not only transcriptional repressors but also transcriptional activators in a demethylase-dependent or -independent manner in different contexts. Notably, KDM5 proteins regulate the H3K4 methylation cycle required for active transcription. Here, we review the recent findings regarding the mechanisms of transcriptional regulation mediated by KDM5 in various contexts, with a focus on cancer, and further shed light on the potential of targeting KDM5 for cancer therapy.
Collapse
|
17
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
18
|
Hatch HAM, O'Neil MH, Marion RW, Secombe J, Shulman LH. Caregiver-reported characteristics of children diagnosed with pathogenic variants in KDM5C. Am J Med Genet A 2021; 185:2951-2958. [PMID: 34089235 DOI: 10.1002/ajmg.a.62381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/09/2022]
Abstract
Loss of function variants in the lysine demethylase 5C (KDM5C) gene account for approximately 0.7-2.8% of X-linked intellectual disability (ID) cases and pose significant burdens for patients and their caregivers. To date, 45 unique variants in KDM5C have been reported in individuals with ID. As a rare disorder, its etiology and natural history remain an area of active investigation, with treatment limited to symptom management. Previous studies have found that males present with moderate to severe ID with significant syndromic comorbidities such as epilepsy, short stature, and craniofacial abnormalities. Although not as well characterized, females have been reported to predominantly display mild to moderate ID with approximately half being asymptomatic. Here, we present caregiver-reported data for 37 unrelated individuals with pathogenic variants in KDM5C; the largest cohort reported to-date. We find that up to 70% of affected females were reported to display syndromic features including gastrointestinal dysfunction and hearing impairment. Additionally, more than half of individuals reported a diagnosis of autism spectrum disorder or described features consistent with this spectrum. Our data thus provide further evidence of sexually dimorphic heterogeneity in disease presentation and suggest that pathogenic variants in KDM5C may be more common than previously assumed.
Collapse
Affiliation(s)
- Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Molly H O'Neil
- Rose F. Kennedy Children's Evaluation and Rehabilitation Center, The Children's Hospital at Montefiore, Bronx, New York, USA
| | - Robert W Marion
- Division of Genetic Medicine, The Children's Hospital at Montefiore, Bronx, New York, USA
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lisa H Shulman
- Rose F. Kennedy Children's Evaluation and Rehabilitation Center, The Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
19
|
Gaillard S, Charasson V, Ribeyre C, Salifou K, Pillaire MJ, Hoffmann JS, Constantinou A, Trouche D, Vandromme M. KDM5A and KDM5B histone-demethylases contribute to HU-induced replication stress response and tolerance. Biol Open 2021; 10:268370. [PMID: 34184733 PMCID: PMC8181900 DOI: 10.1242/bio.057729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
KDM5A and KDM5B histone-demethylases are overexpressed in many cancers and have been involved in drug tolerance. Here, we describe that KDM5A, together with KDM5B, contribute to replication stress (RS) response and tolerance. First, they positively regulate RRM2, the regulatory subunit of ribonucleotide reductase. Second, they are required for optimal levels of activated Chk1, a major player of the intra-S phase checkpoint that protects cells from RS. We also found that KDM5A is enriched at ongoing replication forks and associates with both PCNA and Chk1. Because RRM2 is a major determinant of replication stress tolerance, we developed cells resistant to HU, and show that KDM5A/B proteins are required for both RRM2 overexpression and tolerance to HU. Altogether, our results indicate that KDM5A/B are major players of RS management. They also show that drugs targeting the enzymatic activity of KDM5 proteins may not affect all cancer-related consequences of KDM5A/B overexpression.
Collapse
Affiliation(s)
- Solenne Gaillard
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Virginie Charasson
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Kader Salifou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037 Toulouse, France
| | - Jean-Sebastien Hoffmann
- Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Didier Trouche
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marie Vandromme
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
20
|
Latypova X, Vincent M, Mollé A, Adebambo OA, Fourgeux C, Khan TN, Caro A, Rosello M, Orellana C, Niyazov D, Lederer D, Deprez M, Capri Y, Kannu P, Tabet AC, Levy J, Aten E, den Hollander N, Splitt M, Walia J, Immken LL, Stankiewicz P, McWalter K, Suchy S, Louie RJ, Bell S, Stevenson RE, Rousseau J, Willem C, Retiere C, Yang XJ, Campeau PM, Martinez F, Rosenfeld JA, Le Caignec C, Küry S, Mercier S, Moradkhani K, Conrad S, Besnard T, Cogné B, Katsanis N, Bézieau S, Poschmann J, Davis EE, Isidor B. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. Am J Hum Genet 2021; 108:929-941. [PMID: 33811806 DOI: 10.1016/j.ajhg.2021.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.
Collapse
Affiliation(s)
- Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Alice Mollé
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Cynthia Fourgeux
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Alfonso Caro
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Monica Rosello
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Clinic, New Orleans, LA 70128, USA
| | - Damien Lederer
- Centre de Génétique Humaine, IPG, 6041 Gosselies, Belgium
| | - Marie Deprez
- Service de Neuropédiatrie, Clinique Saint Elizabeth, 5000 Namur, Belgium
| | - Yline Capri
- Service de Génétique Médicale, Hôpital Robert Debré, 75019 Paris, France
| | - Peter Kannu
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Jonathan Levy
- Service de Cytogénétique, Hôpital Robert Debré, 75019 Paris, France
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Nicolette den Hollander
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle Upon Tyne NE1 3BZ, UK
| | - Jagdeep Walia
- Kingston General Hospital Research Institute, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Ladonna L Immken
- Clinical Genetics, Dell Children's Medical Group, Austin, TX 78731, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sharon Suchy
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Raymond J Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Shannon Bell
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Roger E Stevenson
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Justine Rousseau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | | | - Christelle Retiere
- Etablissement Français du Sang, 44000 Nantes, France; CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000 Nantes, France; LabEx IGO, Nantes 44000, France
| | - Xiang-Jiao Yang
- Rosalind & Morris Goodman Cancer Research Center and Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital, 3175, Cote-Sainte-Catherine, Montreal, QC, Canada
| | - Francisco Martinez
- Unidad de Genética, Grupo de Investigación Traslacional en Genética, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Kamran Moradkhani
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Jeremie Poschmann
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France.
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
21
|
Hatch HAM, Belalcazar HM, Marshall OJ, Secombe J. A KDM5-Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation. eLife 2021; 10:63886. [PMID: 33729157 PMCID: PMC7997662 DOI: 10.7554/elife.63886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the lysine demethylase 5 (KDM5) family of transcriptional regulators are associated with intellectual disability, yet little is known regarding their spatiotemporal requirements or neurodevelopmental contributions. Utilizing the mushroom body (MB), a major learning and memory center within the Drosophila brain, we demonstrate that KDM5 is required within ganglion mother cells and immature neurons for proper axogenesis. Moreover, the mechanism by which KDM5 functions in this context is independent of its canonical histone demethylase activity. Using in vivo transcriptional and binding analyses, we identify a network of genes directly regulated by KDM5 that are critical modulators of neurodevelopment. We find that KDM5 directly regulates the expression of prospero, a transcription factor that we demonstrate is essential for MB morphogenesis. Prospero functions downstream of KDM5 and binds to approximately half of KDM5-regulated genes. Together, our data provide evidence for a KDM5-Prospero transcriptional axis that is essential for proper MB development.
Collapse
Affiliation(s)
- Hayden AM Hatch
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States
| | - Helen M Belalcazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| | - Owen J Marshall
- Menzies Institute for Medical Research University of Tasmania, Hobart, Australia
| | - Julie Secombe
- Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, Bronx, United States.,Department of Genetics Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
22
|
Bugge K, Staby L, Salladini E, Falbe-Hansen RG, Kragelund BB, Skriver K. αα-Hub domains and intrinsically disordered proteins: A decisive combo. J Biol Chem 2021; 296:100226. [PMID: 33361159 PMCID: PMC7948954 DOI: 10.1074/jbc.rev120.012928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus G Falbe-Hansen
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR. Viruses 2020; 12:v12091040. [PMID: 32961937 PMCID: PMC7551090 DOI: 10.3390/v12091040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
The C-promoter binding factor-1 (CBF-1) is a potent and specific inhibitor of the human immunodeficiency virus (HIV)-1 LTR promoter. Here, we demonstrate that the knockdown of endogenous CBF-1 in latently infected primary CD4+ T cells, using specific small hairpin RNAs (shRNA), resulted in the reactivation of latent HIV proviruses. Chromatin immunoprecipitation (ChIP) assays using latently infected primary T cells and Jurkat T-cell lines demonstrated that CBF-1 induces the establishment and maintenance of HIV latency by recruiting polycomb group (PcG/PRC) corepressor complexes or polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Knockdown of CBF-1 resulted in the dissociation of PRCs corepressor complexes enhancing the recruitment of RNA polymerase II (RNAP II) at HIV LTR. Knockdown of certain components of PRC1 and PRC2 also led to the reactivation of latent proviruses. Similarly, the treatment of latently infected primary CD4+ T cells with the PRC2/EZH2 inhibitor, 3-deazaneplanocin A (DZNep), led to their reactivation.
Collapse
|
25
|
Gong X, Yu Q, Duan K, Tong Y, Zhang X, Mei Q, Lu L, Yu X, Li S. Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194603. [PMID: 32663628 DOI: 10.1016/j.bbagrm.2020.194603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Many chromatin modifying factors regulate gene expression in an as-yet-unknown indirect manner. Revealing the molecular basis for this indirect gene regulation will help understand their precise roles in gene regulation and associated biological processes. Here, we studied histone modifying enzymes that indirectly regulate gene expression by modulating the expression of histone methyltransferase, Set1. Through unbiased screening of the histone H3/H4 mutant library, we identified 13 histone substitution mutations with reduced levels of Set1 and H3K4 trimethylation (H3K4me3) and 2 mutations with increased levels of Set1 and H3K4me3, which concentrate at 3 structure clusters. Among these substitutions, the H3K14A mutant substantially reduces SET1 transcription and H3K4me3. H3K14 is acetylated by histone acetyltransferase Gcn5 at SET1 promoter, which then promotes SET1 transcription to maintain normal H3K4me3 levels. In contrast, the histone deacetylase Rpd3 deacetylates H3K14 to repress SET1 transcription and hence reduce H3K4me3 levels, establishing a dynamic crosstalk between H3K14ac and H3K4me3. By promoting the transcription of SET1 and maintaining H3K4me3 levels, Gcn5 regulates the transcription of a subset gene in an indirect manner. Collectively, we propose a model wherein Gcn5 promotes the expression of chromatin modifiers to regulate histone crosstalk and gene transcription.
Collapse
Affiliation(s)
- Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Li Lu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
26
|
Karia D, Gilbert RCG, Biasutto AJ, Porcher C, Mancini EJ. The histone H3K4 demethylase JARID1A directly interacts with haematopoietic transcription factor GATA1 in erythroid cells through its second PHD domain. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191048. [PMID: 32218938 PMCID: PMC7029945 DOI: 10.1098/rsos.191048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here, we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Dimple Karia
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert C. G. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antonio J. Biasutto
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, 3 S Parks Road, Oxford OX1 3QU, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Erika J. Mancini
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
27
|
Zargar ZU, Kimidi MR, Tyagi S. Dynamic site-specific recruitment of RBP2 by pocket protein p130 modulates H3K4 methylation on E2F-responsive promoters. Nucleic Acids Res 2019; 46:174-188. [PMID: 29059406 PMCID: PMC5758877 DOI: 10.1093/nar/gkx961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/07/2017] [Indexed: 02/01/2023] Open
Abstract
The Histone 3 lysine 4 methylation (H3K4me3) mark closely correlates with active transcription. E2F-responsive promoters display dynamic changes in H3K4 methylation during the course of cell cycle progression. However, how and when these marks are reset, is not known. Here we show that the retinoblastoma binding protein RBP2/KDM5A, capable of removing tri-methylation marks on H3K4, associates with the E2F4 transcription factor via the pocket protein-p130-in a cell-cycle-stage specific manner. The association of RBP2 with p130 is LxCxE motif dependent. RNAi experiments reveal that p130 recruits RBP2 to E2F-responsive promoters in early G1 phase to bring about H3K4 demethylation and gene repression. A point mutation in LxCxE motif of RBP2 renders it incapable of p130-interaction and hence, repression of E2F-regulated gene promoters. We also examine how RBP2 may be recruited to non-E2F responsive promoters. Our studies provide insight into how the chromatin landscape needs to be adjusted rapidly and periodically during cell-cycle progression, concomitantly with temporal transcription, to bring about expression/repression of specific gene sets.
Collapse
Affiliation(s)
- Zaffer Ullah Zargar
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.,Graduate Studies, Manipal University, Manipal, India
| | - Mallikharjuna Rao Kimidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| |
Collapse
|
28
|
Zamurrad S, Hatch HAM, Drelon C, Belalcazar HM, Secombe J. A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep 2019; 22:2359-2369. [PMID: 29490272 DOI: 10.1016/j.celrep.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Mutations in KDM5 family histone demethylases cause intellectual disability in humans. However, the molecular mechanisms linking KDM5-regulated transcription and cognition remain unknown. Here, we establish Drosophila as a model to understand this connection by generating a fly strain harboring an allele analogous to a disease-causing missense mutation in human KDM5C (kdm5A512P). Transcriptome analysis of kdm5A512P flies revealed a striking downregulation of genes required for ribosomal assembly and function and a concomitant reduction in translation. kdm5A512P flies also showed impaired learning and/or memory. Significantly, the behavioral and transcriptional changes in kdm5A512P flies were similar to those specifically lacking demethylase activity. These data suggest that the primary defect of the KDM5A512P mutation is a loss of histone demethylase activity and reveal an unexpected role for this enzymatic function in gene activation. Because translation is critical for neuronal function, we propose that this defect contributes to the cognitive defects of kdm5A512P flies.
Collapse
Affiliation(s)
- Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Bainor AJ, Saini S, Calderon A, Casado-Polanco R, Giner-Ramirez B, Moncada C, Cantor DJ, Ernlund A, Litovchick L, David G. The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Rep 2018; 25:2797-2807.e8. [PMID: 30517867 PMCID: PMC6324198 DOI: 10.1016/j.celrep.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
The mammalian DREAM complex is responsible for the transcriptional repression of hundreds of cell-cycle-related genes in quiescence. How the DREAM complex recruits chromatin-modifying entities to aid in its repression remains unknown. Using unbiased proteomics analysis, we have uncovered a robust association between the chromatin-associated Sin3B protein and the DREAM complex. We have determined that genetic inactivation of Sin3B results in the de-repression of DREAM target genes during quiescence but is insufficient to allow quiescent cells to resume proliferation. However, inactivation of APC/CCDH1 was sufficient for Sin3B-/- cells, but not parental cells, to re-enter the cell cycle. These studies identify Sin3B as a transcriptional corepressor associated with the DREAM complex in quiescence and reveals a functional cooperation between E2F target repression and APC/CCDH1 in the negative regulation of cell-cycle progression.
Collapse
Affiliation(s)
- Anthony J Bainor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Siddharth Saini
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alexander Calderon
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Raquel Casado-Polanco
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Belén Giner-Ramirez
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Claudia Moncada
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David J Cantor
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA; Department of Urology, NYU Langone Medical Center, New York, NY 10016, USA; NYU Cancer Institute, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
30
|
Plch J, Hrabeta J, Eckschlager T. KDM5 demethylases and their role in cancer cell chemoresistance. Int J Cancer 2018; 144:221-231. [PMID: 30246379 DOI: 10.1002/ijc.31881] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Histone methylation is important in the regulation of genes expression, and thus its dysregulation has been observed in various cancers. KDM5 enzymes are capable of removing tri- and di- methyl marks from lysine 4 on histone H3 (H3K4) which makes them potential players in the downregulation of tumor suppressors, but could also suggest that their activity repress oncogenes. Depending on the methylation site, their effect on transcription can be either activating or repressing. There is emerging evidence for deregulation of KDM5A/B/C/D and important phenotypic consequences in various types of cancer. It has been suggested that the KDM5 family of demethylases plays a role in the appearance of drug tolerance. Drug resistance remains a challenge to successful cancer treatment. This review summarizes recent advances in understanding the functions of KDM5 histone demethylases in cancer chemoresistance and potential therapeutic targeting of these enzymes, which seems to prevent the emergence of a drug-resistant population.
Collapse
Affiliation(s)
- Johana Plch
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
31
|
Tran KA, Dillingham CM, Sridharan R. The role of α-ketoglutarate-dependent proteins in pluripotency acquisition and maintenance. J Biol Chem 2018; 294:5408-5419. [PMID: 30181211 DOI: 10.1074/jbc.tm118.000831] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
α-Ketoglutarate is an important metabolic intermediate that acts as a cofactor for several chromatin-modifying enzymes, including histone demethylases and the Tet family of enzymes that are involved in DNA demethylation. In this review, we focus on the function and genomic localization of these α-ketoglutarate-dependent enzymes in the maintenance of pluripotency during cellular reprogramming to induced pluripotent stem cells and in disruption of pluripotency during in vitro differentiation. The enzymatic function of many of these α-ketoglutarate-dependent proteins is required for pluripotency acquisition and maintenance. A better understanding of their specific function will be essential in furthering our knowledge of pluripotency.
Collapse
Affiliation(s)
- Khoa A Tran
- From the Wisconsin Institute for Discovery.,Molecular and Cellular Pharmacology Program, and
| | - Caleb M Dillingham
- From the Wisconsin Institute for Discovery.,Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Rupa Sridharan
- From the Wisconsin Institute for Discovery, .,Department of Cell and Regenerative Biology
| |
Collapse
|
32
|
Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 2018; 114:5792-5799. [PMID: 28584084 DOI: 10.1073/pnas.1610622114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blood cells are derived from a common set of hematopoietic stem cells, which differentiate into more specific progenitors of the myeloid and lymphoid lineages, ultimately leading to differentiated cells. This developmental process is controlled by a complex regulatory network involving cytokines and their receptors, transcription factors, and chromatin remodelers. Using public data and data from our own molecular genetic experiments (quantitative PCR, Western blot, EMSA) or genome-wide assays (RNA-sequencing, ChIP-sequencing), we have assembled a comprehensive regulatory network encompassing the main transcription factors and signaling components involved in myeloid and lymphoid development. Focusing on B-cell and macrophage development, we defined a qualitative dynamical model recapitulating cytokine-induced differentiation of common progenitors, the effect of various reported gene knockdowns, and the reprogramming of pre-B cells into macrophages induced by the ectopic expression of specific transcription factors. The resulting network model can be used as a template for the integration of new hematopoietic differentiation and transdifferentiation data to foster our understanding of lymphoid/myeloid cell-fate decisions.
Collapse
|
33
|
Chaubal A, Pile LA. Same agent, different messages: insight into transcriptional regulation by SIN3 isoforms. Epigenetics Chromatin 2018; 11:17. [PMID: 29665841 PMCID: PMC5902990 DOI: 10.1186/s13072-018-0188-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
SIN3 is a global transcriptional coregulator that governs expression of a large repertoire of gene targets. It is an important player in gene regulation, which can repress or activate diverse gene targets in a context-dependent manner. SIN3 is required for several vital biological processes such as cell proliferation, energy metabolism, organ development, and cellular senescence. The functional flexibility of SIN3 arises from its ability to interact with a large variety of partners through protein interaction domains that are conserved across species, ranging from yeast to mammals. Several isoforms of SIN3 are present in these different species that can perform common and specialized functions through interactions with distinct enzymes and DNA-binding partners. Although SIN3 has been well studied due to its wide-ranging functions and highly conserved interaction domains, precise roles of individual SIN3 isoforms have received less attention. In this review, we discuss the differences in structure and function of distinct SIN3 isoforms and provide possible avenues to understand the complete picture of regulation by SIN3.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
34
|
Srivas S, Thakur MK. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia. J Neurochem 2018; 145:204-216. [PMID: 29494759 DOI: 10.1111/jnc.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long-term memory. Earlier we demonstrated that scopolamine-induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in mice. DNMT1 and HDAC2 act together by recruiting a co-repressor complex and deacetylating the chromatin. The catalytic activity of HDACs is mainly dependent on its incorporation into multiprotein co-repressor complexes, among which SIN3A-HDAC2 co-repressor is widely studied to regulate synaptic plasticity. However, the involvement of co-repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co-repressor SIN3A in scopolamine-induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN3A expression in mice. To prevent such increase in SIN3A expression, we used hippocampal infusion of SIN3A-siRNA and assessed the effect of SIN3A silencing on scopolamine-induced amnesia. Silencing of SIN3A in amnesic mice reduced the binding of HDAC2 at neuronal immediate early genes (IEGs) promoter, but did not change the expression of HDAC2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEGs (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine-induced down-regulation of IEGs and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Sweta Srivas
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra K Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
35
|
Suzuki N, Vojnovic N, Lee KL, Yang H, Gradin K, Poellinger L. HIF-dependent and reversible nucleosome disassembly in hypoxia-inducible gene promoters. Exp Cell Res 2018; 366:181-191. [PMID: 29574021 DOI: 10.1016/j.yexcr.2018.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Hypoxia causes dramatic changes in gene expression profiles, and the mechanism of hypoxia-inducible transcription has been analyzed for use as a model system of stress-inducible gene regulation. In this study, changes in chromatin organization in promoters of hypoxia-inducible genes were investigated during hypoxia-reoxygenation conditions. Most of the hypoxia-inducible gene promoters were hypersensitive to DNase I under both normal and hypoxic conditions, and our data indicate an immediate recruitment of transcription factors under hypoxic conditions. In some of the hypoxia-inducible promoters, nucleosome-free DNA regions (NFRs) were established in parallel with hypoxia-induced transcription. We also show that the hypoxia-inducible formation of NFRs requires that hypoxia-inducible transcription factors (HIFs) bind to the promoters together with the transcriptional coactivator CBP. Within 1 h after the hypoxia exposure was ended (reoxygenation), HIF complexes were dissociated from the promoter regions. Within 24 h of reoxygenation, the hypoxia-induced transcription returned to basal levels and the nucleosome structure was reassembled in the hypoxia-inducible NFRs. Nucleosome reassembly required the function of the transcriptional coregulator SIN3A. Thus, reversible changes in nucleosome organization mediated by transcription factors are notable features of stress-inducible gene regulation.
Collapse
Affiliation(s)
- Norio Suzuki
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Nikola Vojnovic
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kian-Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Katarina Gradin
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
36
|
Repression of Cell Differentiation by a cis-Acting lincRNA in Fission Yeast. Curr Biol 2018; 28:383-391.e3. [PMID: 29395921 DOI: 10.1016/j.cub.2017.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022]
Abstract
The cell fate decision leading to gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. In fission yeast, starvation-induced signaling leads to the transcriptional induction of the ste11 gene, which encodes the central inducer of mating and gametogenesis, known as sporulation. We find that the long intergenic non-coding (linc) RNA rse1 is transcribed divergently upstream of the ste11 gene. During vegetative growth, rse1 directly recruits a Mug187-Lid2-Set1 complex that mediates cis repression at the ste11 promoter through SET3C-dependent histone deacetylation. The absence of rse1 bypasses the starvation-induced signaling and induces gametogenesis in the presence of nutrients. Our data reveal that the remodeling of chromatin through ncRNA scaffolding of repressive complexes that is observed in higher eukaryotes is a conserved, likely very ancient mechanism for tight control of cell differentiation.
Collapse
|
37
|
Gale M, Sayegh J, Cao J, Norcia M, Gareiss P, Hoyer D, Merkel JS, Yan Q. Screen-identified selective inhibitor of lysine demethylase 5A blocks cancer cell growth and drug resistance. Oncotarget 2018; 7:39931-39944. [PMID: 27224921 PMCID: PMC5129982 DOI: 10.18632/oncotarget.9539] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
Lysine demethylase 5A (KDM5A/RBP2/JARID1A) is a histone lysine demethylase that is overexpressed in several human cancers including lung, gastric, breast and liver cancers. It plays key roles in important cancer processes including tumorigenesis, metastasis, and drug tolerance, making it a potential cancer therapeutic target. Chemical tools to analyze KDM5A demethylase activity are extremely limited as available inhibitors are not specific for KDM5A. Here, we characterized KDM5A using a homogeneous luminescence-based assay and conducted a screen of about 9,000 small molecules for inhibitors. From this screen, we identified several 3-thio-1,2,4-triazole compounds that inhibited KDM5A with low μM in vitro IC50 values. Importantly, these compounds showed great specificity and did not inhibit its close homologue KDM5B (PLU1/JARID1B) or the related H3K27 demethylases KDM6A (UTX) and KDM6B (JMJD3). One compound, named YUKA1, was able to increase H3K4me3 levels in human cells and selectively inhibit the proliferation of cancer cells whose growth depends on KDM5A. As KDM5A was shown to mediate drug tolerance, we investigated the ability of YUKA1 to prevent drug tolerance in EGFR-mutant lung cancer cells treated with gefitinib and HER2+ breast cancer cells treated with trastuzumab. Remarkably, this compound hindered the emergence of drug-tolerant cells, highlighting the critical role of KDM5A demethylase activity in drug resistance. The small molecules presented here are excellent tool compounds for further study of KDM5A's demethylase activity and its contributions to cancer.
Collapse
Affiliation(s)
- Molly Gale
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Joyce Sayegh
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.,Current address: Department of Biology and Chemistry, Azusa Pacific University, Azusa, CA, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Norcia
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Peter Gareiss
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Jane S Merkel
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Cantor DJ, David G. The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opin Ther Targets 2017; 21:1051-1061. [PMID: 28956957 DOI: 10.1080/14728222.2017.1386655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Sin3B serves as a scaffold for chromatin-modifying complexes that repress gene transcription to regulate distinct biological processes. Sin3B-containing complexes are critical for cell cycle withdrawal, and abrogation of Sin3B-dependent cell cycle exit impacts tumor progression. Areas covered: In this review, we discuss the biochemical characteristics of Sin3B-containing complexes and explore how these complexes regulate gene transcription. We focus on how Sin3B-containing complexes, through the association of the Rb family of proteins, repress the expression of E2F target genes during quiescence, differentiation, and senescence. Finally, we speculate on the potential benefits of the inhibition of Sin3B-containing complexes for the treatment of cancer. Expert opinion: Further identification and characterization of specific Sin3B-containing complexes provide a unique opportunity to prevent the pro-tumorigenic effects of the senescence-associated secretory phenotype, and to abrogate cancer stem cell quiescence and the associated resistance to therapy.
Collapse
Affiliation(s)
- David J Cantor
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Gregory David
- a Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA.,b Department of Urology.,c NYU Cancer Institute , New York University School of Medicine , New York , NY , USA
| |
Collapse
|
39
|
Moravec CE, Yousef H, Kinney BA, Salerno-Eichenholz R, Monestime CM, Martin BL, Sirotkin HI. Zebrafish sin3b mutants are viable but have size, skeletal, and locomotor defects. Dev Dyn 2017; 246:946-955. [PMID: 28850761 DOI: 10.1002/dvdy.24581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The transcriptional co-repressor Sin3 is highly conserved from yeast to vertebrates and has multiple roles controlling cell fate, cell cycle progression, and senescence programming. Sin3 proteins recruit histone deacetylases and other chromatin modifying factors to specific loci through interactions with transcription factors including Myc, Rest, p53 and E2F. Most vertebrates have two Sin3 family members (sin3a and sin3b), but zebrafish have a second sin3a paralogue. In mice, sin3a and sin3b are essential for embryonic development. Sin3b knockout mice show defects in growth as well as bone and blood differentiation. RESULTS To study the requirement for Sin3b during development, we disrupted zebrafish sin3b using CRISPR-Cas9, and studied the effects on early development and locomotor behavior. CONCLUSIONS Surprisingly, Sin3b is not essential in zebrafish. sin3b mutants show a decrease in fitness, small size, changes to locomotor behavior, and delayed bone development. We did not detect a role for Sin3b in cell proliferation. Our analysis of the sin3b mutant revealed a more nuanced requirement for zebrafish Sin3b than would be predicted from analysis of mutants in other species. Developmental Dynamics 246:946-955, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| | - Hakeem Yousef
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Brian A Kinney
- Genetics Gradate Program Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Ryan Salerno-Eichenholz
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Camillia M Monestime
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| |
Collapse
|
40
|
Patrick NM, Griggs CA, Icenogle AL, Gilpatrick MM, Kadiyala V, Jaime-Frias R, Smith CL. Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1. J Steroid Biochem Mol Biol 2017; 167:1-13. [PMID: 27645313 PMCID: PMC5444329 DOI: 10.1016/j.jsbmb.2016.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 01/23/2023]
Abstract
Small molecule inhibitors of lysine deacetylases (KDACs) are approved for clinical use in treatment of several diseases. Nuclear receptors, such as the glucocorticoid receptor (GR) use lysine acetyltransferases (KATs or HATs) and KDACs to regulate transcription through acetylation and deacetylation of protein targets such as histones. Previously we have shown that KDAC1 activity facilitates GR-activated transcription at about half of all cellular target genes. In the current study we examine the role of Class I KDACs in glucocorticoid-mediated repression of gene expression. Inhibition of KDACs through two structurally distinct Class I-selective inhibitors prevented dexamethasone (Dex)-mediated transcriptional repression in a gene-selective fashion. In addition, KDAC activity is also necessary to maintain repression. Steroid receptor coactivator 2 (SRC2), which is known to play a vital role in GR-mediated repression of pro-inflammatory genes, was found to be dispensable for repression of glucocorticoid target genes sensitive to KDAC inhibition. At the promoters of these genes, KDAC inhibition did not result in altered nucleosome occupancy or histone H3 acetylation. Surprisingly, KDAC inhibition rapidly induced a significant decrease in H3K4Me2 at promoter nucleosomes with no corresponding change in H3K4Me3, suggesting the activation of the lysine demethylase, LSD1/KDM1A. Depletion of LSD1 expression via siRNA restored Dex-mediated repression in the presence of KDAC inhibitors, suggesting that LSD1 activation at these gene promoters is incompatible with transcriptional repression. Treatment with KDAC inhibitors does not alter cellular levels of LSD1 or its association with Dex-repressed gene promoters. Therefore, we conclude that Class I KDACs facilitate Dex-induced transcriptional repression by suppressing LSD1 complex activity at selected target gene promoters. Rather than facilitating repression of transcription, LSD1 opposes it in these gene contexts.
Collapse
Affiliation(s)
- Nina M Patrick
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Ali L Icenogle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Maryam M Gilpatrick
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ, 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
41
|
Maggi EC, Crabtree JS. Novel targets in the treatment of neuroendocrine tumors: RBP2. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2016-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma binding protein 2, also known as RBP2, JARID1A or KDM5A, is an H3K4 demethylase implicated in a variety of non-neuroendocrine, and more recently, neuroendocrine tumors (NETs). NETs are tumors that form from neuroendocrine cells in tissues of the GI tract, endocrine pancreas, lung, skin and other tissues. RBP2 is expressed at abnormally high levels in NETs and recent work demonstrates that modulation of RBP2 in vitro and in vivo impacts end points of tumorigenesis. Interestingly, the demethylase activity of RBP2 is not exclusively responsible for these changes, as RBP2's binding partners may mediate its activity in a tissue- or context-dependent manner. Here, we discuss the features of RBP2 and its role in cell cycle regulation, angiogenesis and drug resistance in cancer.
Collapse
Affiliation(s)
- Elaine C Maggi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
42
|
Vitale G, Gaudenzi G, Circelli L, Manzoni MF, Bassi A, Fioritti N, Faggiano A, Colao A. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 2017; 24:R1-R12. [PMID: 27799362 DOI: 10.1530/erc-16-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Medullary thyroid carcinoma is a neuroendocrine tumour originating from parafollicular C cells accounting for 5-10% of thyroid cancers. Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid carcinoma. These drugs increase progression-free survival; however, they are often poorly tolerated and most treatment responses are transient. Animal models are indispensable tools for investigating the pathogenesis, mechanisms for tumour invasion and metastasis and new therapeutic approaches for cancer. Unfortunately, only few models are available for medullary thyroid carcinoma. This review provides an overview of the state of the art of animal models in medullary thyroid carcinoma and highlights future developments in this field, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
| | - Luisa Circelli
- Department of Experimental OncologyLaboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 'Fondazione Pascale' - IRCCS, Naples, Italy
| | - Marco F Manzoni
- Department of Endocrinology and Internal MedicineEndocrine Tumors Unit, San Raffaele Hospital Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bassi
- Department of PhysicsPolitecnico di Milano, Milan, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgerySection of Endocrinology, 'Federico II' University of Naples, Naples, Italy
| | | |
Collapse
|
43
|
Liu M, Pile LA. The Transcriptional Corepressor SIN3 Directly Regulates Genes Involved in Methionine Catabolism and Affects Histone Methylation, Linking Epigenetics and Metabolism. J Biol Chem 2016; 292:1970-1976. [PMID: 28028175 DOI: 10.1074/jbc.m116.749754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
Chromatin modification and cellular metabolism are tightly connected. Chromatin modifiers regulate the expression of genes involved in metabolism and, in turn, the levels of metabolites. The generated metabolites are utilized by chromatin modifiers to affect epigenetic modification. The mechanism for this cross-talk, however, remains incompletely understood. The corepressor SIN3 controls histone acetylation through association with the histone deacetylase RPD3. The SIN3 complex is known to regulate genes involved in a number of metabolic processes. Here, we find that Drosophila SIN3 binds to the promoter region of genes involved in methionine catabolism and that this binding affects histone modification, which in turn influences gene expression. Specifically, we observe that reduced expression of SIN3 leads to an increase in S-adenosylmethionine (SAM), which is the major cellular donor of methyl groups for protein modification. Additionally, Sin3A knockdown results in an increase in global histone H3K4me3 levels. Furthermore, decreased H3K4me3 caused by knockdown of either SAM synthetase (Sam-S) or the histone methyltransferase Set1 is restored to near normal levels when SIN3 is also reduced. Taken together, these results indicate that knockdown of Sin3A directly alters the expression of methionine metabolic genes to increase SAM, which in turn leads to an increase in global H3K4me3. Our study reveals that SIN3 is an important epigenetic regulator directly connecting methionine metabolism and histone modification.
Collapse
Affiliation(s)
- Mengying Liu
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Lori A Pile
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202.
| |
Collapse
|
44
|
The chromatin-associated Sin3B protein is required for hematopoietic stem cell functions in mice. Blood 2016; 129:60-70. [PMID: 27806947 DOI: 10.1182/blood-2016-06-721746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and are the origin of all blood cells produced throughout an individual's life. The balance between HSC self-renewal and differentiation is maintained by various intrinsic and extrinsic mechanisms. Among these, the molecular pathways that restrict cell cycle progression are critical to the maintenance of functional HSCs. Alterations in the regulation of cell cycle progression in HSCs invariably lead to the development of hematologic malignancies or bone marrow failure syndromes. Here we report that hematopoietic-specific genetic inactivation of Sin3B, an essential component of the mammalian Sin3-histone deacetylase corepressor complex, severely impairs the competitive repopulation capacity of HSCs. Sin3B-deleted HSCs accumulate and fail to properly differentiate following transplantation. Moreover, Sin3B inactivation impairs HSC quiescence and sensitizes mice to myelosuppressive therapy. Together, these results identify Sin3B as a novel and critical regulator of HSC functions.
Collapse
|
45
|
Maggi EC, Trillo-Tinoco J, Struckhoff AP, Vijayaraghavan J, Del Valle L, Crabtree JS. Retinoblastoma-binding protein 2 (RBP2) is frequently expressed in neuroendocrine tumors and promotes the neoplastic phenotype. Oncogenesis 2016; 5:e257. [PMID: 27548814 PMCID: PMC5007832 DOI: 10.1038/oncsis.2016.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine tumors (NETs), which can have survival rates as low as 4%, currently have limited therapeutic interventions available highlighting the dire need for the identification of novel biological targets for use as new potential drug targets. One such potential target is retinoblastoma-binding protein 2 (RBP2), an H3K4 demethylase whose overexpression has been linked to cancer formation and metastasis in non-endocrine tumor types. We measured RBP2 mRNA and protein levels in enteropancreatic NETs by measuring RBP2 in matched human normal and NET tissue samples. Further, proliferation, migration, invasion and colony formation assays were performed in the physiologically relevant NET cell lines βlox5, H727 and QGP-1 to understand the role of RBP2 and its demethylase activity on end points of tumorigenesis. Our data indicate a strong correlation between RBP2 mRNA and protein expression in NET specimens. RBP2 was overexpressed relative to tissue-matched normal controls in 80% of the human tumors measured. In vitro studies showed RBP2 overexpression significantly increased proliferation, migration, invasion and colony formation, whereas knockdown significantly decreases the same parameters in a demethylase-independent manner. The cell cycle inhibitors p21 and p57 decreased with RBP2 overexpression and increased upon its depletion, suggesting a regulatory role for RBP2 in cellular proliferation. Taken together, our results support the hypothesis that the aberrant overexpression of RBP2 is a frequent contributing factor to tumor formation and metastasis in enteropancreatic NETs.
Collapse
Affiliation(s)
- E C Maggi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Trillo-Tinoco
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| | - A P Struckhoff
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| | - J Vijayaraghavan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA.,Departments of Medicine and Pathology, Louisiana State University Health, New Orleans, LA, USA
| | - J S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| |
Collapse
|
46
|
Horton JR, Liu X, Gale M, Wu L, Shanks JR, Zhang X, Webber PJ, Bell JSK, Kales SC, Mott BT, Rai G, Jansen DJ, Henderson MJ, Urban DJ, Hall MD, Simeonov A, Maloney DJ, Johns MA, Fu H, Jadhav A, Vertino PM, Yan Q, Cheng X. Structural Basis for KDM5A Histone Lysine Demethylase Inhibition by Diverse Compounds. Cell Chem Biol 2016; 23:769-781. [PMID: 27427228 PMCID: PMC4958579 DOI: 10.1016/j.chembiol.2016.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/15/2016] [Accepted: 06/04/2016] [Indexed: 12/12/2022]
Abstract
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases removes methyl groups from methylated lysine 4 of histone H3. Accumulating evidence supports a role for KDM5 family members as oncogenic drivers. We compare the in vitro inhibitory properties and binding affinity of ten diverse compounds with all four family members, and present the crystal structures of the KDM5A-linked Jumonji domain in complex with eight of these inhibitors in the presence of Mn(II). All eight inhibitors structurally examined occupy the binding site of α-ketoglutarate, but differ in their specific binding interactions, including the number of ligands involved in metal coordination. We also observed inhibitor-induced conformational changes in KDM5A, particularly those residues involved in the binding of α-ketoglutarate, the anticipated peptide substrate, and intramolecular interactions. We discuss how particular chemical moieties contribute to inhibitor potency and suggest strategies that might be utilized in the successful design of selective and potent epigenetic inhibitors.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Molly Gale
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - John R Shanks
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Philip J Webber
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA
| | - Joshua S K Bell
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Bryan T Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Daniel J Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Margaret A Johns
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Paula M Vertino
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Witteveen JS, Willemsen MH, Dombroski TCD, van Bakel NHM, Nillesen WM, van Hulten JA, Jansen EJR, Verkaik D, Veenstra-Knol HE, van Ravenswaaij-Arts CMA, Wassink-Ruiter JSK, Vincent M, David A, Le Caignec C, Schieving J, Gilissen C, Foulds N, Rump P, Strom T, Cremer K, Zink AM, Engels H, de Munnik SA, Visser JE, Brunner HG, Martens GJM, Pfundt R, Kleefstra T, Kolk SM. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet 2016; 48:877-87. [PMID: 27399968 DOI: 10.1038/ng.3619] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.
Collapse
Affiliation(s)
- Josefine S Witteveen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Thaís C D Dombroski
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Nick H M van Bakel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Josephus A van Hulten
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Dave Verkaik
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Marie Vincent
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France
| | - Albert David
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France.,Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, INSERM UMRS 957, Nantes, France
| | - Jolanda Schieving
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton National Health Service Foundation Trust, Princess Anne Hospital, Southampton, UK.,Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Neurology, Amphia Hospital Breda, Berda, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
48
|
Negative autoregulation of BMP dependent transcription by SIN3B splicing reveals a role for RBM39. Sci Rep 2016; 6:28210. [PMID: 27324164 PMCID: PMC4914931 DOI: 10.1038/srep28210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/01/2022] Open
Abstract
BMP signalling is negatively autoregulated by several genes including SMAD6, Noggin and Gremlin, and autoregulators are possible targets for enhancing BMP signalling in disorders such as fibrosis and pulmonary hypertension. To identify novel negative regulators of BMP signalling, we used siRNA screening in mouse C2C12 cells with a BMP-responsive luciferase reporter. Knockdown of several splicing factors increased BMP4-dependent transcription and target gene expression. Knockdown of RBM39 produced the greatest enhancement in BMP activity. Transcriptome-wide RNA sequencing identified a change in Sin3b exon usage after RBM39 knockdown. SIN3B targets histone deacetylases to chromatin to repress transcription. In mouse, Sin3b produces long and short isoforms, with the short isoform lacking the ability to recruit HDACs. BMP4 induced a shift in SIN3B expression to the long isoform, and this change in isoform ratio was prevented by RBM39 knockdown. Knockdown of long isoform SIN3B enhanced BMP4-dependent transcription, whereas knockdown of the short isoform did not. We propose that BMP4-dependent transcription is negatively autoregulated in part by SIN3B alternative splicing, and that RBM39 plays a role in this process.
Collapse
|
49
|
The TRAF-interacting protein (TRAIP) is a novel E2F target with peak expression in mitosis. Oncotarget 2016; 6:20933-45. [PMID: 26369285 PMCID: PMC4673240 DOI: 10.18632/oncotarget.3055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
The TRAF-interacting protein (TRAIP) is an E3 ubiquitin ligase required for cell proliferation. TRAIP mRNA is downregulated in human keratinocytes after inhibition of the PI3K/AKT/mTOR signaling. Since E2F transcription factors are downstream of PI3K/AKT/mTOR we investigated whether they regulate TRAIP expression. E2F1 expression significantly increased the TRAIP mRNA level in HeLa cells. Reporter assays with the 1400bp 5′-upstream promoter in HeLa cells and human keratinocytes showed that E2F1-, E2F2- and E2F4-induced upregulation of TRAIP expression is mediated by 168bp upstream of the translation start site. Mutating the E2F binding site within this fragment reduced the E2F1- and E2F2-dependent promoter activities and protein-DNA complex formation in gel shift assays. Abundance of TRAIP mRNA and protein was regulated by the cell cycle with a peak in G2/M. Expression of GFP and TRAIP-GFP demonstrated that TRAIP-GFP protein has a lower steady-state concentration than GFP despite similar mRNA levels. Cycloheximide inhibition experiments indicated that the TRAIP protein has a half-life of around four hours. Therefore, the combination of cell cycle-dependent transcription of the TRAIP gene by E2F and rapid protein degradation leads to cell cycle-dependent expression with a maximum in G2/M. These findings suggest that TRAIP has important functions in mitosis and tumorigenesis.
Collapse
|
50
|
Krijger PHL, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Stem Cell 2016; 18:597-610. [PMID: 26971819 PMCID: PMC4858530 DOI: 10.1016/j.stem.2016.01.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 11/27/2022]
Abstract
Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. The 3D genome topology of four somatic cell types varies greatly and differs from ESCs The 3D genomes of iPSCs from different founders and of ESCs are overall highly similar Early-passage iPSCs show subtle but reproducible founder-dependent 3D differences The distinctive topology features of iPSCs are acquired during reprogramming
Collapse
Affiliation(s)
- Peter Hugo Lodewijk Krijger
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Bruno Di Stefano
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG) and Pompeu Fabra University, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Elzo de Wit
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Francesco Limone
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG) and Pompeu Fabra University, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Chris van Oevelen
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG) and Pompeu Fabra University, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Thomas Graf
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG) and Pompeu Fabra University, Dr Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|