1
|
Galkina S, Matveeva K, Takki O, Volodkina V, Kulak M, Shalutina J, Gaginskaya E. Coilin-containing nuclear biomolecular condensates in zebra finch Taeniopygia guttata growing oocytes. Dev Biol 2025; 524:144-151. [PMID: 40374142 DOI: 10.1016/j.ydbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
In most animals, oocyte growth is accompanied by genome activation, an increase in nuclear volume, and the formation of various biomolecular condensates (BioMCs) through multivalent interactions involving intrinsically disordered protein regions (IDRs) and phase separation. In this study, we characterize specific nuclear biomolecular condensates (NBioMCs) detectable by light microscopy in the oocytes of the zebra finch (Taeniopygia guttata, Passeriformes, Aves), a model species in genomics and neurobiology. We identified a nucleolus in oocytes at the early diplotene stage and observed numerous NBioMCs that tested positive for coilin in oocytes at the lampbrush stage, a period of active transcription. The coilin-positive NBioMCs may be freely distributed within the nucleus or associated with chromosome centromeres. They share characteristics with several known nuclear structures, including nucleoli (due to the presence of fibrillarin and nucleolin), Cajal bodies (marked by coilin and scaRNA2), interchromatin granule clusters (containing SRSF2), and centromeric protein bodies (CPBs) described in other avian species (exhibiting centromeric localization when chromosome-associated and containing STAG2 and SMC5). However, their specific function in zebra finch oocytes remains unclear and requires further investigation.
Collapse
Affiliation(s)
| | | | - Olga Takki
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | | |
Collapse
|
2
|
Pérez-Roldán J, Henn L, Bernués J, Torras-LLort M, Tamirisa S, Belloc E, Rodríguez-Muñoz L, Timinszky G, Jiménez G, Méndez R, Carbonell A, Azorín F. Maternal histone mRNAs are uniquely processed through polyadenylation in a Stem-Loop Binding Protein (SLBP) dependent manner. Nucleic Acids Res 2025; 53:gkaf288. [PMID: 40239992 PMCID: PMC11997800 DOI: 10.1093/nar/gkaf288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
During early embryogenesis the zygotic genome remains transcriptionally silent and expression relies on maternally deposited products. Maternal deposition of histones is crucial to preserve chromatin integrity during early embryo development, when the number of nuclei exponentially increases in the absence of zygotic expression. In the Drosophila embryo, histones are maternally deposited as both proteins and mRNAs. Histone transcripts are the only nonpolyadenylated cellular mRNAs. They contain a highly conserved 3'UTR stem-loop structure, which is recognized by the Stem-Loop Binding Protein (SLBP) that, in conjunction with U7 snRNP, regulates their unique 3'-end processing. Here we report that, unexpectedly, maternal histone mRNAs are polyadenylated and have a truncated 3' stem-loop. This noncanonical 3'-end processing of maternal histone mRNAs occurs at their synthesis during oogenesis and requires SLBP, but not U7 snRNP. We show that maternal histone transcripts are subjected to cytoplasmic poly(A) tail elongation by Wisp, which results in their stabilization and is a requisite for translation. We also show that maternal histone transcripts remain largely quiescent and that their translation is activated upon loss of the embryonic linker histone dBigH1, which impairs chromatin assembly and induces DNA damage. Here, we discuss possible models to integrate these observations.
Collapse
Affiliation(s)
- Juan Pérez-Roldán
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - László Henn
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - Mònica Torras-LLort
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - Srividya Tamirisa
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - Laura Rodríguez-Muñoz
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Gerardo Jiménez
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona. Spain
| |
Collapse
|
3
|
O'Haren T, Aoki T, Rieder LE. Zelda is dispensable for Drosophila melanogaster histone gene regulation. Mol Biol Cell 2025; 36:br3. [PMID: 39661467 PMCID: PMC11809315 DOI: 10.1091/mbc.e24-01-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The Drosophila melanogaster pioneer factor CLAMP regulates the embryonic histone genes and helps establish the histone locus body, a suite of factors that controls histone mRNA biosynthesis, but CLAMP is not unique to the histone genes. Zelda collaborates with CLAMP across the genome to regulate zygotic genome activation and target early activated genes. We hypothesized that Zelda helps identify histone genes for early embryonic expression. We found that Zelda targets the histone gene locus early during embryogenesis, prior to histone gene expression. However, depletion of zelda in the early embryo does not affect histone mRNA levels or prevent the recruitment of other factors. These results suggest the earliest events responsible for specifying the zygotic histone genes remain undiscovered.
Collapse
Affiliation(s)
- Tommy O'Haren
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | | |
Collapse
|
4
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2025; 437:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
5
|
Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cissé II. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024; 187:7079-7090.e17. [PMID: 39426378 PMCID: PMC11793346 DOI: 10.1016/j.cell.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
Collapse
Affiliation(s)
- Choongman Lee
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Quintana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ida Suppanz
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim I Cissé
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
6
|
Mendiratta S, Ray-Gallet D, Lemaire S, Gatto A, Forest A, Kerlin MA, Almouzni G. Regulation of replicative histone RNA metabolism by the histone chaperone ASF1. Mol Cell 2024; 84:791-801.e6. [PMID: 38262410 DOI: 10.1016/j.molcel.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Dominique Ray-Gallet
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Sébastien Lemaire
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France
| | - Maciej A Kerlin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France.
| |
Collapse
|
7
|
Sorourian S, Behzad Behbahani A, Forouzanfar M, Jafarinia M, Safari F. Time and Cost-Effective Genome Editing Protocol for Simultaneous Caspase 8 Associated Protein 2 Gene Knock in/out in Chinese Hamster Ovary Cells Using CRISPR-Cas9 System. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3714. [PMID: 38827341 PMCID: PMC11139449 DOI: 10.30498/ijb.2024.398567.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 06/04/2024]
Abstract
Background CHO cells are preferred for producing biopharmaceuticals, and genome editing technologies offer opportunities to enhance recombinant protein production. Targeting apoptosis-related genes, such as Caspases 8-Associated Protein 2 (CASP8AP2), improves CHO cell viability and productivity. Integrating robust strategies with the CRISPR-Cas9 system enables its application in CHO cell engineering. Objectives This study was performed to develop a cost-effective protocol using the CRISPR-Cas9 system combined with the HITI strategy for simultaneous CASP8AP2 gene deletion/insertion in CHO cells and to assess its impact on cell viability and protein expression. Materials and Methods We developed an efficient protocol for CHO cell engineering by combining CRISPR/Cas9 with the HITI strategy. Two distinct sgRNA sequences were designed to target the 3' UTR region of the CASP8AP2 gene using CHOPCHOP software. The gRNAs were cloned into PX459 and PX460-1 vectors and transfected into CHO cells using the cost-effective PEI reagent. A manual selection system was employed to streamline the process of single-cell cloning. MTT assays assessed gene silencing and cell viability at 24, 48, and 72 hours. Flow cytometry evaluated protein expression in CASP8AP2-silenced CHO cells. Results The study confirmed the robustness of combining CRISPR-Cas9 with the HITI strategy, achieving a high 60% efficiency in generating knockout clones. PEI transfection successfully delivered the constructs to nearly 65% of the clones, with the majority being homozygous. The protocol proved feasible for resource-limited labs, requiring only an inverted fluorescent microscope. CASP8AP2 knockout (CHO-KO) cells exhibited significantly extended cell viability compared to CHO-K1 cells when treated with NaBu, with IC50 values of 7.28 mM and 14.25 mM at 48 hours, respectively (P-value 24 hours ≤ 0.0001, 48 hours ≤ 0.0001, P-value 72 hours = 0.0007). CHO CASP8AP2-silenced cells showed a 1.3-fold increase in JRed expression compared to native cells. Conclusions CRISPR-Cas9 and HITI strategy was used to efficiently engineer CHO cells for simultaneous CASP8AP2 gene deletion/insertion, which improved cell viability and protein expression.
Collapse
Affiliation(s)
- Soofia Sorourian
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Chaubal A, Waldern JM, Taylor C, Laederach A, Marzluff WF, Duronio RJ. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell 2023; 34:ar118. [PMID: 37647143 PMCID: PMC10846616 DOI: 10.1091/mbc.e22-11-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Justin M. Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin Taylor
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - William F. Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. RNA (NEW YORK, N.Y.) 2023; 29:1673-1690. [PMID: 37562960 PMCID: PMC10578488 DOI: 10.1261/rna.079709.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Anthony Desotell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Agata Malinowska
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Swale C, Hakimi MA. 3'-end mRNA processing within apicomplexan parasites, a patchwork of classic, and unexpected players. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1783. [PMID: 36994829 DOI: 10.1002/wrna.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 03/31/2023]
Abstract
The 3'-end processing of mRNA is a co-transcriptional process that leads to the formation of a poly-adenosine tail on the mRNA and directly controls termination of the RNA polymerase II juggernaut. This process involves a megadalton complex composed of cleavage and polyadenylation specificity factors (CPSFs) that are able to recognize cis-sequence elements on nascent mRNA to then carry out cleavage and polyadenylation reactions. Recent structural and biochemical studies have defined the roles played by different subunits of the complex and provided a comprehensive mechanistic understanding of this machinery in yeast or metazoans. More recently, the discovery of small molecule inhibitors of CPSF function in Apicomplexa has stimulated interest in studying the specificities of this ancient eukaryotic machinery in these organisms. Although its function is conserved in Apicomplexa, the CPSF complex integrates a novel reader of the N6-methyladenosine (m6A). This feature, inherited from the plant kingdom, bridges m6A metabolism directly to 3'-end processing and by extension, to transcription termination. In this review, we will examine convergence and divergence of CPSF within the apicomplexan parasites and explore the potential of small molecule inhibition of this machinery within these organisms. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
11
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. Cell Rep 2023; 42:112768. [PMID: 37428633 PMCID: PMC10440735 DOI: 10.1016/j.celrep.2023.112768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this burst in histone biosynthesis as DNA replication begins. Here, we use single-cell time-lapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the restriction point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
Affiliation(s)
- Claire Armstrong
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Victor J Passanisi
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Humza M Ashraf
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
12
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540203. [PMID: 37215023 PMCID: PMC10197641 DOI: 10.1101/2023.05.10.540203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
|
13
|
Armstrong C, Passanisi VJ, Ashraf HM, Spencer SL. Cyclin E/CDK2 and feedback from soluble histone protein regulate the S phase burst of histone biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533218. [PMID: 36993620 PMCID: PMC10055190 DOI: 10.1101/2023.03.17.533218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Faithful DNA replication requires that cells fine-tune their histone pool in coordination with cell-cycle progression. Replication-dependent histone biosynthesis is initiated at a low level upon cell-cycle commitment, followed by a burst at the G1/S transition, but it remains unclear how exactly the cell regulates this change in histone biosynthesis as DNA replication begins. Here, we use single-cell timelapse imaging to elucidate the mechanisms by which cells modulate histone production during different phases of the cell cycle. We find that CDK2-mediated phosphorylation of NPAT at the Restriction Point triggers histone transcription, which results in a burst of histone mRNA precisely at the G1/S phase boundary. Excess soluble histone protein further modulates histone abundance by promoting the degradation of histone mRNA for the duration of S phase. Thus, cells regulate their histone production in strict coordination with cell-cycle progression by two distinct mechanisms acting in concert.
Collapse
|
14
|
Yuan L, Jiang X, Gong Q, Gao N. Arsenic resistance protein 2 and microRNA biogenesis: Biological implications in cancer development. Pharmacol Ther 2023; 244:108386. [PMID: 36933704 DOI: 10.1016/j.pharmthera.2023.108386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Arsenic resistance protein 2 (Ars2) is a nuclear protein that plays a critical role in the regulation of microRNA (miRNA) biogenesis. Ars2 is required for cell proliferation and for the early stages of mammalian development through a possible effect on miRNA processing. Increasing evidence reveal that Ars2 is highly expressed in proliferating cancer cells, suggesting that Ars2 may be a potential therapeutic target for cancer. Therefore, development of the novel Ars2 inhibitors could represent the novel therapeutic strategies for treatment of cancer. In this review, we briefly discuss the mechanisms by which Ars2 regulates miRNA biogenesis and its impact on cell proliferation and cancer development. Particularly, we mainly discuss the role of Ars2 in the regulation of cancer development and highlight pharmacological targeting of Ars2 as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| |
Collapse
|
15
|
Myacheva K, Walsh A, Riester M, Pelos G, Carl J, Diederichs S. CRISPRi screening identifies CASP8AP2 as an essential viability factor in lung cancer controlling tumor cell death via the AP-1 pathway. Cancer Lett 2023; 552:215958. [PMID: 36252816 DOI: 10.1016/j.canlet.2022.215958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 02/09/2023]
Abstract
Since lung cancer remains the leading cause of cancer death globally, there is an urgent demand for novel therapeutic targets. We carried out a CRISPR interference (CRISPRi) loss-of-function screen for human lung adenocarcinoma (LUAD) targeting 2098 deregulated genes using a customized algorithm to comprehensively probe the functionality of every resolvable transcriptional start site (TSS). CASP8AP2 was identified as the only hit that significantly affected the viability of all eight screened LUAD cell lines while the viability of non-transformed lung cells was only moderately impacted. Knockdown (KD) of CASP8AP2 induced both autophagy and apoptotic cell death pathways. Systematic expression profiling linked the AP-1 transcription factor to the CASP8AP2 KD-induced cancer cell death. Furthermore, inhibition of AP-1 reverted the CASP8AP2 silencing-induced phenotype. Overall, the tailored CRISPRi screen profiled the impact of over 2000 genes on the survival of eight LUAD cell lines and identified the CASP8AP2 - AP-1 axis mediating lung cancer viability.
Collapse
Affiliation(s)
- Ksenia Myacheva
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany; Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew Walsh
- siTOOLs Biotech GmbH, Lochhamerstr. 29A, Planegg, Martinsried, Germany
| | - Marisa Riester
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Giulia Pelos
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jane Carl
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany; Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Ielasi FS, Ternifi S, Fontaine E, Iuso D, Couté Y, Palencia A. Human histone pre-mRNA assembles histone or canonical mRNA-processing complexes by overlapping 3'-end sequence elements. Nucleic Acids Res 2022; 50:12425-12443. [PMID: 36447390 PMCID: PMC9756948 DOI: 10.1093/nar/gkac878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3' processing and polyadenylation.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sara Ternifi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emeline Fontaine
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Domenico Iuso
- Institute for Advanced Biosciences (IAB), Epigenetics and Cell Signaling, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Andrés Palencia
- To whom correspondence should be addressed. Tel: +33 476 54 95 75;
| |
Collapse
|
17
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Gutierrez PA, Baughman K, Sun Y, Tong L. A real-time fluorescence assay for CPSF73, the nuclease for pre-mRNA 3'-end processing. RNA (NEW YORK, N.Y.) 2021; 27:1148-1154. [PMID: 34230059 PMCID: PMC8457007 DOI: 10.1261/rna.078764.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
CPSF73 is the endonuclease that catalyzes the cleavage reaction for 3'-end processing of mRNA precursors (pre-mRNAs) in two distinct machineries, a canonical machinery for the majority of pre-mRNAs and a U7 snRNP (U7 machinery) for replication-dependent histone pre-mRNAs in animal cells. CPSF73 also possesses 5'-3' exonuclease activity in the U7 machinery, degrading the downstream cleavage product after the endonucleolytic cleavage. Recent studies show that CPSF73 is a potential target for developing anticancer, antimalarial, and antiprotozoal drugs, spurring interest in identifying new small-molecule inhibitors against this enzyme. CPSF73 nuclease activity has so far been demonstrated using a gel-based end-point assay, using radiolabeled or fluorescently labeled RNA substrates. By taking advantage of unique properties of the U7 machinery, we have developed a novel, real-time fluorescence assay for the nuclease activity of CPSF73. This assay is facile and high-throughput, and should also be helpful for the discovery of new CPSF73 inhibitors.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Kirk Baughman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
19
|
Liu H, Moore CL. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Trends Biochem Sci 2021; 46:772-784. [PMID: 33941430 PMCID: PMC8364479 DOI: 10.1016/j.tibs.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
20
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
21
|
Abstract
The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.
Collapse
|
22
|
ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control. Biochem Soc Trans 2021; 49:1325-1336. [PMID: 34060620 DOI: 10.1042/bst20201008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/26/2023]
Abstract
ARS2/SRRT is an essential eukaryotic protein that has emerged as a critical factor in the sorting of functional from non-functional RNA polymerase II (Pol II) transcripts. Through its interaction with the Cap Binding Complex (CBC), it associates with the cap of newly made RNAs and acts as a hub for competitive exchanges of protein factors that ultimately determine the fate of the associated RNA. The central position of the protein within the nuclear gene expression machinery likely explains why its depletion causes a broad range of phenotypes, yet an exact function of the protein remains elusive. Here, we consider the literature on ARS2/SRRT with the attempt to garner the threads into a unifying working model for ARS2/SRRT function at the nexus of Pol II transcription, transcript maturation and quality control.
Collapse
|
23
|
Sun Y, Aik WS, Yang XC, Marzluff WF, Dominski Z, Tong L. Reconstitution and biochemical assays of an active human histone pre-mRNA 3'-end processing machinery. Methods Enzymol 2021; 655:291-324. [PMID: 34183127 DOI: 10.1016/bs.mie.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery. This chapter presents protocols for preparing nuclear extracts containing endogenous processing machinery, for assembling semi-recombinant and fully reconstituted machineries, and for histone pre-mRNA 3'-end processing assays with these samples.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
24
|
Liang D, Tatomer DC, Wilusz JE. Use of circular RNAs as markers of readthrough transcription to identify factors regulating cleavage/polyadenylation events. Methods 2021; 196:121-128. [PMID: 33882363 DOI: 10.1016/j.ymeth.2021.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs with covalently linked ends are generated from many eukaryotic protein-coding genes when the pre-mRNA splicing machinery backsplices. These mature transcripts are resistant to digestion by exonucleases and typically have much longer half-lives than their associated linear mRNAs. Circular RNAs thus have great promise as sensitive biomarkers, including for detection of transcriptional activity. Here, we show that circular RNAs can serve as markers of readthrough transcription events in Drosophila and human cells, thereby revealing mechanistic insights into RNA polymerase II transcription termination as well as pre-mRNA 3' end processing. We describe methods that take advantage of plasmids that generate a circular RNA when an upstream polyadenylation signal fails to be used and/or RNA polymerase II fails to terminate. As a proof-of-principle, we show that RNAi-mediated depletion of well-established transcription termination factors, including the RNA endonuclease Cpsf73, results in increased circular RNA output from these plasmids in Drosophila and human cells. This method is generalizable as a circular RNA can be easily encoded downstream of any genomic region of interest. Circular RNA biomarkers, therefore, have great promise for identifying novel cellular factors and conditions that impact transcription termination processes.
Collapse
Affiliation(s)
- Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Kemp JP, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Superresolution light microscopy of the Drosophila histone locus body reveals a core-shell organization associated with expression of replication-dependent histone genes. Mol Biol Cell 2021; 32:942-955. [PMID: 33788585 PMCID: PMC8108526 DOI: 10.1091/mbc.e20-10-0645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core–shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core–shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core–shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
26
|
Potter-Birriel JM, Gonsalvez GB, Marzluff WF. A region of SLBP outside the mRNA-processing domain is essential for deposition of histone mRNA into the Drosophila egg. J Cell Sci 2021; 134:jcs251728. [PMID: 33408246 PMCID: PMC7888719 DOI: 10.1242/jcs.251728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. Stemloop-binding protein (SLBP) binds the 3' end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte. The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in wild-type stage 10B oocytes, the histone locus bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, which is normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10-amino-acid deletion, fail to deposit sufficient histone mRNA in the oocyte, and do not transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion phenocopy the deletion. We conclude that a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer Michelle Potter-Birriel
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graydon B Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 , USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Cui L, Gao C, Wang CJ, Liu SG, Wu MY, Zhang RD, Li ZG. Low expression of CTBP2 and CASP8AP2 predicts risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a retrospective cohort study. Pediatr Hematol Oncol 2020; 37:732-746. [PMID: 32804017 DOI: 10.1080/08880018.2020.1798572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CtBP is a known corepressor abundantly expressed in cancer and regulates genes involved in cancer initiation, progression, and metastasis. This study aimed to investigate the prognostic significance of CTBP2 expression in a cohort of pediatric patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL). It further evaluated the role of combined CTBP2 and CASP8AP2 expression in risk of relapse of BCP-ALL. The expression of CTBP2 mRNA was retrospectively detected by a qRT-PCR approach in bone marrow samples from 104 children with newly diagnosed BCP-ALL. CASP8AP2 was assessed simultaneously in the 100 patients included in this study. The receiver operating characteristic (ROC) curve analysis determined the cut off levels for CTBP2 and CASP8AP2 expression with good predictive significance for relapse of BCP-ALL. Patients with low CTBP2 expression had inferior relapse-free survival (RFS) and event-free survival (EFS) when compared to patients with high-CTBP2 expression. The expression level of CTBP2 was significantly associated with CASP8AP2 expression (r = 0.449, P < 0.001). Patients were stratified into three groups according to the combined evaluation of the two gene expression, and patients with simultaneous low-expression had the worst outcome (6-year RFS: 64.6%±12.8%, P < 0.001). Multivariate analysis demonstrated the expression of CTBP2 and CASP8AP2, minimal residual disease (MRD) at day 33 remained as independent prognostic factors for RFS. Based on the final Cox hazards model, we proposed an algorithm to calculate the risk index, which was more precise for predicting relapse. In conclusion, low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Lei Cui
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chan-Juan Wang
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
28
|
Yang XC, Sun Y, Aik WS, Marzluff WF, Tong L, Dominski Z. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5'-3' exonuclease. RNA (NEW YORK, N.Y.) 2020; 26:1345-1359. [PMID: 32554553 PMCID: PMC7491329 DOI: 10.1261/rna.076273.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 05/24/2023]
Abstract
Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the β-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
29
|
Abaandou L, Sharma AK, Shiloach J. Knockout of the caspase 8-associated protein 2 gene improves recombinant protein expression in HEK293 cells through up-regulation of the cyclin-dependent kinase inhibitor 2A gene. Biotechnol Bioeng 2020; 118:186-198. [PMID: 32910455 DOI: 10.1002/bit.27561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Cell lines used in bioproduction are routinely engineered to improve their production efficiency. Numerous strategies, such as random mutagenesis, RNA interference screens, and transcriptome analyses have been employed to identify effective engineering targets. A genome-wide small interfering RNA screen previously identified the CASP8AP2 gene as a potential engineering target for improved expression of recombinant protein in the HEK293 cell line. Here, we validate the CASP8AP2 gene as an engineering target in HEK293 cells by knocking it out using CRISPR/Cas9 genome editing and assessing the effect of its knockout on recombinant protein expression, cell growth, cell viability, and overall gene expression. HEK293 cells lacking CASP8AP2 showed a seven-fold increase in specific expression of recombinant luciferase and a 2.5-fold increase in specific expression of recombinant SEAP, without significantly affecting cell growth and viability. Transcriptome analysis revealed that the deregulation of the cell cycle, specifically the upregulation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, contributed to the improvement in recombinant protein expression in CASP8AP2 deficient cells. The results validate the CASP8AP2 gene is a viable engineering target for improved recombinant protein expression in the HEK293 cell line.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA.,Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
| | - Ashish K Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Davidian A, Koshel E, Dyomin A, Galkina S, Saifitdinova A, Gaginskaya E. On some structural and evolutionary aspects of rDNA amplification in oogenesis of Trachemys scripta turtles. Cell Tissue Res 2020; 383:853-864. [PMID: 32897424 DOI: 10.1007/s00441-020-03282-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
The features of rDNA amplification have been studied in oocytes of the red-eared slider Trachemys scripta using a number of specific histochemical and cytomolecular methods. A single nucleolus in early diplotene oocytes is associated with the nucleolus organizer region (NOR). With oocyte growth, the number of nucleoli increases dramatically and reaches hundreds by the lampbrush chromosome stage (pre-vitellogenesis). RNA-polymerase I, fibrillarin, and PCNA immunodetection in the amplified nucleoli and FISH of the 5'ETS probe to the oocyte nuclear content suggest pre-rRNA and rDNA synthesis in the nucleoli at all stages studied. This implies a continuous reproduction of the nucleoli during oocyte development from early diplotene up to vitellogenesis. The data obtained offer a different way for rDNA amplification and formation of extrachromosomal nucleoli in turtle oocytes compared with the amplified nucleoli formation in amphibian and fish oocytes. In the Sauropsida clade of Archelosauria, which includes turtles, crocodiles, and birds, rDNA function is known to be suppressed in avian oogenesis during the lampbrush stage (Gaginskaya et al. in Cytogenet Genome Res 124:251-267, 2009).
Collapse
Affiliation(s)
- Asya Davidian
- St Petersburg University, St Petersburg, 199034, Russia
| | | | - Alexander Dyomin
- St Petersburg University, St Petersburg, 199034, Russia.,Saratov State Medical University, Saratov, 410000, Russia
| | | | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, St Petersburg, 191186, Russia
| | | |
Collapse
|
31
|
Bucholc K, Skrajna A, Adamska K, Yang XC, Krajewski K, Poznański J, Dadlez M, Domiński Z, Zhukov I. Structural Analysis of the SANT/Myb Domain of FLASH and YARP Proteins and Their Complex with the C-Terminal Fragment of NPAT by NMR Spectroscopy and Computer Simulations. Int J Mol Sci 2020; 21:ijms21155268. [PMID: 32722282 PMCID: PMC7432317 DOI: 10.3390/ijms21155268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.
Collapse
Affiliation(s)
- Katarzyna Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Kinga Adamska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
| | - Zbigniew Domiński
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; (K.B.); (A.S.); (K.A.); (J.P.); (M.D.)
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
- Correspondence: (Z.D.); (I.Z.); Tel.: +48-22-592-2038 (I.Z.)
| |
Collapse
|
32
|
Hur W, Kemp JP, Tarzia M, Deneke VE, Marzluff WF, Duronio RJ, Di Talia S. CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and Function of Histone Locus Bodies. Dev Cell 2020; 54:379-394.e6. [PMID: 32579968 DOI: 10.1016/j.devcel.2020.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.
Collapse
Affiliation(s)
- Woonyung Hur
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tarzia
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
33
|
Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription 2020; 11:83-96. [PMID: 32522085 DOI: 10.1080/21541264.2020.1777047] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS APA: alternative polyadenylation; β-CASP: metallo-β-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|
34
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
35
|
Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Hluchý M, Ule J, Blazek D. CDK11 is required for transcription of replication-dependent histone genes. Nat Struct Mol Biol 2020; 27:500-510. [PMID: 32367068 PMCID: PMC7116321 DOI: 10.1038/s41594-020-0406-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during S-phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S-phase. Moreover, its N-terminal region binds FLASH, RDH-specific 3´end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the C-terminal domain (CTD) of RNA polymerase II (RNAPII), which is initiated at the middle of RDH genes and is required for further RNAPII elongation and 3´end processing. CDK11 depletion leads to decreased number of cells in S-phase, likely due to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for growth of many cancers.
Collapse
Affiliation(s)
- Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
36
|
Sun Y, Zhang Y, Aik WS, Yang XC, Marzluff WF, Walz T, Dominski Z, Tong L. Structure of an active human histone pre-mRNA 3'-end processing machinery. Science 2020; 367:700-703. [PMID: 32029631 DOI: 10.1126/science.aaz7758] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/31/2019] [Indexed: 01/10/2023]
Abstract
The 3'-end processing machinery for metazoan replication-dependent histone precursor messenger RNAs (pre-mRNAs) contains the U7 small nuclear ribonucleoprotein and shares the key cleavage module with the canonical cleavage and polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing machinery using 13 recombinant proteins and two RNAs and determined its structure by cryo-electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with one long handle. We captured the pre-mRNA in the active site of the endonuclease, the 73-kilodalton subunit of the cleavage and polyadenylation specificity factor, poised for cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for activation, triggered through the recognition of the duplex between the authentic pre-mRNA and U7 small nuclear RNA (snRNA). Our study also has notable implications for understanding canonical and snRNA 3'-end processing.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA.
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
37
|
Prieto-Sánchez S, Moreno-Castro C, Hernández-Munain C, Suñé C. Drosophila Prp40 localizes to the histone locus body and regulates gene transcription and development. J Cell Sci 2020; 133:jcs.239509. [PMID: 32094262 DOI: 10.1242/jcs.239509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, a large amount of histones need to be synthesized during the S phase of the cell cycle to package newly synthesized DNA into chromatin. The transcription and 3' end processing of histone pre-mRNAs are controlled by the histone locus body (HLB), which is assembled on the shared promoter for H3 and H4 Here, we identified the Drosophila Prp40 pre-mRNA processing factor (dPrp40, annotated as CG3542) as a novel HLB component. We showed that dPrp40 is essential for Drosophila development, with functionally conserved activity in vertebrates and invertebrates. We observed that dPrp40 is fundamental in endocycling cells, highlighting a role for this factor in mediating replication efficiency in vivo The depletion of dPrp40 from fly cells inhibited the transcription, but not the 3' end processing, of histone mRNA in a H3- and H4-promoter-dependent manner. Our results establish that dPrp40 is an essential protein for Drosophila development that can localize to the HLB and might participate in histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| |
Collapse
|
38
|
Bucholc K, Aik WS, Yang XC, Wang K, Zhou ZH, Dadlez M, Marzluff WF, Tong L, Dominski Z. Composition and processing activity of a semi-recombinant holo U7 snRNP. Nucleic Acids Res 2020; 48:1508-1530. [PMID: 31819999 PMCID: PMC7026596 DOI: 10.1093/nar/gkz1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/29/2019] [Accepted: 11/25/2019] [Indexed: 11/14/2022] Open
Abstract
In animal cells, replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP consisting of two core components: a ∼60-nucleotide U7 snRNA and a ring of seven proteins, with Lsm10 and Lsm11 replacing the spliceosomal SmD1 and SmD2. Lsm11 interacts with FLASH and together they recruit the endonuclease CPSF73 and other polyadenylation factors, forming catalytically active holo U7 snRNP. Here, we assembled core U7 snRNP bound to FLASH from recombinant components and analyzed its appearance by electron microscopy and ability to support histone pre-mRNA processing in the presence of polyadenylation factors from nuclear extracts. We demonstrate that semi-recombinant holo U7 snRNP reconstituted in this manner has the same composition and functional properties as endogenous U7 snRNP, and accurately cleaves histone pre-mRNAs in a reconstituted in vitro processing reaction. We also demonstrate that the U7-specific Sm ring assembles efficiently in vitro on a spliceosomal Sm site but the engineered U7 snRNP is functionally impaired. This approach offers a unique opportunity to study the importance of various regions in the Sm proteins and U7 snRNA in 3' end processing of histone pre-mRNAs.
Collapse
Affiliation(s)
- Katarzyna Bucholc
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaituo Wang
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol 2020; 38:728-736. [PMID: 32123383 PMCID: PMC7289633 DOI: 10.1038/s41587-020-0434-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Chromatin modifications regulate genome function by recruiting protein factors to the genome. However, the protein composition at distinct chromatin modifications remains to be fully characterized. Here, we use natural protein domains as modular building blocks to develop engineered chromatin readers (eCRs) selective for DNA methylation and histone tri-methylation at H3K4, H3K9 a H3K27 residues. We first demonstrate their utility as selective chromatin binders in living cells by stably expressing eCRs in mouse embryonic stem cells and measuring their subnuclear localisation, genomic distribution and histone modification–binding preference. By fusing eCRs to the biotin ligase BASU, we establish ChromID, a method for identifying the chromatin-dependent protein interactome based on proximity biotinylation, and apply it to distinct chromatin modifications in mouse stem cells. Using a synthetic dual-modification reader, we also uncover the protein composition at bivalent promoters marked by H3K4me3 and H3K27me3. These results highlight the ability of ChromID to obtain a detailed view of protein interaction networks on chromatin.
Collapse
|
40
|
ARS2 Regulates Nuclear Paraspeckle Formation through 3'-End Processing and Stability of NEAT1 Long Noncoding RNA. Mol Cell Biol 2020; 40:MCB.00269-19. [PMID: 31818879 DOI: 10.1128/mcb.00269-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA that functions as an essential framework of subnuclear paraspeckle bodies. Of the two isoforms (NEAT1_1 and NEAT1_2) produced by alternative 3'-end RNA processing, the longer isoform, NEAT1_2, plays a crucial role in paraspeckle formation. Here, we demonstrate that the 3'-end processing and stability of NEAT1 RNAs are regulated by arsenic resistance protein 2 (ARS2), a factor interacting with the cap-binding complex (CBC) that binds to the m7G cap structure of RNA polymerase II transcripts. The knockdown of ARS2 inhibited the association between NEAT1 and mammalian cleavage factor I (CFIm), which produces the shorter isoform, NEAT1_1. Furthermore, the knockdown of ARS2 led to the preferential stabilization of NEAT1_2. As a result, NEAT1_2 RNA levels were markedly elevated in ARS2 knockdown cells, leading to an increase in the number of paraspeckles. These results reveal a suppressive role for ARS2 in NEAT1_2 expression and the subsequent formation of paraspeckles.
Collapse
|
41
|
Skrajna A, Yang XC, Dadlez M, Marzluff WF, Dominski Z. Protein composition of catalytically active U7-dependent processing complexes assembled on histone pre-mRNA containing biotin and a photo-cleavable linker. Nucleic Acids Res 2019. [PMID: 29529248 PMCID: PMC5961079 DOI: 10.1093/nar/gky133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
3′ end cleavage of metazoan replication-dependent histone pre-mRNAs requires the multi-subunit holo-U7 snRNP and the stem–loop binding protein (SLBP). The exact composition of the U7 snRNP and details of SLBP function in processing remain unclear. To identify components of the U7 snRNP in an unbiased manner, we developed a novel approach for purifying processing complexes from Drosophila and mouse nuclear extracts. In this method, catalytically active processing complexes are assembled in vitro on a cleavage-resistant histone pre-mRNA containing biotin and a photo-sensitive linker, and eluted from streptavidin beads by UV irradiation for direct analysis by mass spectrometry. In the purified processing complexes, Drosophila and mouse U7 snRNP have a remarkably similar composition, always being associated with CPSF73, CPSF100, symplekin and CstF64. Many other proteins previously implicated in the U7-dependent processing are not present. Drosophila U7 snRNP bound to histone pre-mRNA in the absence of SLBP contains the same subset of polyadenylation factors but is catalytically inactive and addition of recombinant SLBP is sufficient to trigger cleavage. This result suggests that Drosophila SLBP promotes a structural rearrangement of the processing complex, resulting in juxtaposition of the CPSF73 endonuclease with the cleavage site in the pre-mRNA substrate.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michal Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Ryu I, Kim YK. AU-rich element-mediated mRNA decay via the butyrate response factor 1 controls cellular levels of polyadenylated replication-dependent histone mRNAs. J Biol Chem 2019; 294:7558-7565. [PMID: 30962286 DOI: 10.1074/jbc.ac118.006766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/03/2019] [Indexed: 11/06/2022] Open
Abstract
Replication-dependent histone (RDH) mRNAs have a nonpolyadenylated 3'-UTR that ends in a highly conserved stem-loop structure. Nonetheless, a subset of RDH mRNAs has a poly(A) tail under physiological conditions. The biological meaning of poly(A)-containing (+) RDH mRNAs and details of their biosynthesis remain elusive. Here, using HeLa cells and Western blotting, qRT-PCR, and biotinylated RNA pulldown assays, we show that poly(A)+ RDH mRNAs are post-transcriptionally regulated via adenylate- and uridylate-rich element-mediated mRNA decay (AMD). We observed that the rapid degradation of poly(A)+ RDH mRNA is driven by butyrate response factor 1 (BRF1; also known as ZFP36 ring finger protein-like 1) under normal conditions. Conversely, cellular stresses such as UV C irradiation promoted BRF1 degradation, increased the association of Hu antigen R (HuR; also known as ELAV-like RNA-binding protein 1) with the 3'-UTR of poly(A)+ RDH mRNAs, and eventually stabilized the poly(A)+ RDH mRNAs. Collectively, our results provide evidence that AMD surveils poly(A)+ RDH mRNAs via BRF1-mediated degradation under physiological conditions.
Collapse
Affiliation(s)
- Incheol Ryu
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- From the Creative Research Initiatives Center for Molecular Biology of Translation and Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
43
|
Fan J, Wang K, Du X, Wang J, Chen S, Wang Y, Shi M, Zhang L, Wu X, Zheng D, Wang C, Wang L, Tian B, Li G, Zhou Y, Cheng H. ALYREF links 3'-end processing to nuclear export of non-polyadenylated mRNAs. EMBO J 2019; 38:e99910. [PMID: 30858280 PMCID: PMC6484419 DOI: 10.15252/embj.201899910] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
The RNA-binding protein ALYREF plays key roles in nuclear export and also 3'-end processing of polyadenylated mRNAs, but whether such regulation also extends to non-polyadenylated RNAs is unknown. Replication-dependent (RD)-histone mRNAs are not polyadenylated, but instead end in a stem-loop (SL) structure. Here, we demonstrate that ALYREF prevalently binds a region next to the SL on RD-histone mRNAs. SL-binding protein (SLBP) directly interacts with ALYREF and promotes its recruitment. ALYREF promotes histone pre-mRNA 3'-end processing by facilitating U7-snRNP recruitment through physical interaction with the U7-snRNP-specific component Lsm11. Furthermore, ALYREF, together with other components of the TREX complex, enhances histone mRNA export. Moreover, we show that 3'-end processing promotes ALYREF recruitment and histone mRNA export. Together, our results point to an important role of ALYREF in coordinating 3'-end processing and nuclear export of non-polyadenylated mRNAs.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xian Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Changshou Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Wu X, Qu L, Li S, Guo Y, He J, Liu M, Liu X, Lin H. Molecular characterization and expression patterns of stem-loop binding protein (SLBP) genes in protogynous hermaphroditic grouper, Epinephelus coioides. Gene 2019; 700:120-130. [PMID: 30910559 DOI: 10.1016/j.gene.2019.02.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
Abstract
Stem-loop binding protein (SLBP) binds a stem-loop structure of the mRNA, which is important for the stability of histone mRNAs and translation process. In the present study, two slbp cDNAs (Ecslbp1 and Ecslbp2) were cloned from a protogynous hermaphroditic orange-spotted grouper, Epinephelus coioides. Ecslbp1 cDNA contained a 678 base pair (bp) open reading frame (ORF), encoding a predicted polypeptide of 225 amino acids. Ecslbp2 cDNA contained a 1041 bp, encoding a predicted protein of 346 amino acids. The result of real-time PCR revealed that Ecslbp2 mRNA was exclusively detected in the ovary. Moreover, it was found to be restricted to oocytes according to in situ hybridization (ISH) analysis. Ecslbp2 was found to be hardly detected in gonia and significantly increase in the cytoplasm of primary-growth stage oocytes, but decreased during the process of vitellogenesis. Interestingly, Ecslbp2 expression centralized as a perinuclear speckle in early-primary-growth stage oocytes, which appeared to form into the Balbiani body (Bb) in late-primary-growth stage oocytes. These data indicated that Ecslbp2 might play an important role in the process of oocyte development, and could serve as an oocyte-specific molecular marker for the study of ovary development and sex reversal in groupers.
Collapse
Affiliation(s)
- Xi Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Qu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Meifeng Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
45
|
Tanabe K, Awane R, Shoda T, Yamazoe K, Inoue YH. Mutations in mxc Tumor-Suppressor Gene Induce Chromosome Instability in Drosophila Male Meiosis. Cell Struct Funct 2019; 44:121-135. [DOI: 10.1247/csf.19022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Karin Tanabe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Rie Awane
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Tsuyoshi Shoda
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology
| |
Collapse
|
46
|
Ryu I, Park Y, Seo JW, Park OH, Ha H, Nam JW, Kim YK. HuR stabilizes a polyadenylated form of replication-dependent histone mRNAs under stress conditions. FASEB J 2018; 33:2680-2693. [PMID: 30303743 DOI: 10.1096/fj.201800431r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All metazoan mRNAs have a poly(A) tail at the 3' end with the exception of replication-dependent histone (RDH) mRNAs, which end in a highly conserved stem-loop (SL) structure. However, a subset of RDH mRNAs are reported to be polyadenylated under physiologic conditions. The molecular details of the biogenesis of polyadenylated RDH [poly(A)+ RDH] mRNAs remain unknown. In this study, our genome-wide analyses reveal that puromycin treatment or UVC irradiation stabilizes poly(A)+ RDH mRNAs, relative to canonical RDH mRNAs, which end in an SL structure. We demonstrate that the stabilization of poly(A)+ RDH mRNAs occurs in a translation-independent manner and is regulated via human antigen R (HuR) binding to the extended 3' UTR under stress conditions. Our data suggest that HuR regulates the expression of poly(A)+ RDH mRNAs.-Ryu, I., Park, Y., Seo, J.-W., Park, O. H., Ha, H., Nam, J.-W., Kim, Y. K. HuR stabilizes a polyadenylated form of replication-dependent histone mRNAs under stress conditions.
Collapse
Affiliation(s)
- Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jwa-Won Seo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea; and
| | - Ok Hyun Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hongseok Ha
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea; and.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, South Korea.,Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
47
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
48
|
Positive cofactor 4 (PC4) contributes to the regulation of replication-dependent canonical histone gene expression. BMC Mol Biol 2018; 19:9. [PMID: 30053800 PMCID: PMC6062981 DOI: 10.1186/s12867-018-0110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/18/2018] [Indexed: 12/04/2022] Open
Abstract
Background Core canonical histones are required in the S phase of the cell cycle to pack newly synthetized DNA, therefore the expression of their genes is highly activated during DNA replication. In mammalian cells, this increment is achieved by both enhanced transcription and 3′ end processing. In this paper, we described positive cofactor 4 (PC4) as a protein that contributes to the regulation of replication-dependent histone gene expression. Results We showed that PC4 influences RNA polymerase II recruitment to histone gene loci in a cell cycle-dependent manner. The most important effect was observed in S phase where PC4 knockdown leads to the elevated level of RNA polymerase II on histone genes, which corresponds to the increased total level of those gene transcripts. The opposite effect was caused by PC4 overexpression. Moreover, we found that PC4 has a negative effect on the unique 3′ end processing of histone pre-mRNAs that can be based on the interaction of PC4 with U7 snRNP and CstF64. Interestingly, this effect does not depend on the cell cycle. Conclusions We conclude that PC4 might repress RNA polymerase II recruitment and transcription of replication-dependent histone genes in order to maintain the very delicate balance between histone gene expression and DNA synthesis. It guards the cell from excess of histones in S phase. Moreover, PC4 might promote the interaction of cleavage and polyadenylation complex with histone pre-mRNAs, that might impede with the recruitment of histone cleavage complex. This in turn decreases the 3′ end processing efficiency of histone gene transcripts. Electronic supplementary material The online version of this article (10.1186/s12867-018-0110-y) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Izumikawa K, Ishikawa H, Simpson RJ, Takahashi N. Modulating the expression of Chtop, a versatile regulator of gene-specific transcription and mRNA export. RNA Biol 2018; 15:849-855. [PMID: 29683372 DOI: 10.1080/15476286.2018.1465795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chtop binds competitively to the arginine methyltransferases PRMT1 and PRMT5, thereby promoting the asymmetric or symmetric methylation of arginine residues, respectively. In cooperation with PRMT1, Chtop activates transcription of certain gene groups, such as the estrogen-inducible genes in breast cancer cells, the 5-hydroxymethylcytosine-modified genes involved in glioblastomagenesis, or the Zbp-89-dependent genes in erythroleukemia cells. Chtop also represses expression of the fetal γ-globin gene. In addition, Chtop is a component of the TREX complex that links transcription elongation to mRNA export. The regulation of Chtop expression is, therefore, a key process during the expression of certain gene groups and pathogenesis of certain diseases. Our recent study revealed that cellular levels of Chtop are strictly autoregulated by a mechanism involving intron retention and nonsense-mediated mRNA decay. Here, we summarize roles of Chtop in gene-specific expression and highlight our recent findings concerning the autoregulation of Chtop.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Hideaki Ishikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Richard J Simpson
- b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,c La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University , Bundoora Victoria , Australia
| | - Nobuhiro Takahashi
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
50
|
Liu FF, Wang KL, Deng LP, Liu X, Wu MY, Wang TY, Cui L, Li ZG. Transcription factor E2F3a regulates CASP8AP2 transcription and enhances sensitivity to chemotherapeutic drugs in acute lymphoblastic leukemia. Cancer Cell Int 2018; 18:40. [PMID: 29568235 PMCID: PMC5859744 DOI: 10.1186/s12935-018-0531-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/02/2018] [Indexed: 11/24/2022] Open
Abstract
Background Low expression of E2F3a and caspase 8 associated protein 2 (CASP8AP2) are associated with poor prognosis of childhood acute lymphoblastic leukemia (ALL). Methods Dual-luciferase reporter assay and wild type as well as four mutated types of reporter plasmids were used to demonstrate the activation of E2F3a on CASP8AP2 transcription. The direct binding of E2F3a with the promoter of CASP8AP2 was shown by Chromatin Immunoprecipitation (ChIP). Cell proliferation activity and cell cycle were determined by MTS and flow cytometry in leukemic cells after treating with common chemotherapeutic drugs vincristine and daunorubicin. Results In this study, we found that up-regulation of E2F3a in leukemic cells led to increased fraction of cells in S and G2/M phase, accelerated proliferation, and enhanced sensitivity to vincristine and daunorubicin. ChIP and luciferase assay indicated that E2F3a could directly bind to two fragments in the wild type of CASP8AP2 promotor (− 206 to − 69 and − 677 to − 507), and activate its transcription activity which was reduced in mutated promotors. The effect of E2F3a on chemotherapeutic sensitivity of leukemic cells could be reversed by down-regulating CASP8AP2. Conclusions E2F3a could promote transcription and expression of CASP8AP2. The effect of E2F3a on chemotherapeutic sensitivity of ALL cells was implemented by regulating CASP8AP2 expression to a great extent.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,3Present Address: Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603 Shandong Province China
| | - Kai-Ling Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China.,4Present Address: Department of Pediatrics, Beijing Luhe Hospital, Capital Medical University, 82 Xinhua Nan Road, Tongzhou District, Beijing, 101149 China
| | - Li-Ping Deng
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Xiao Liu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Min-Yuan Wu
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Tian-You Wang
- Hematology & Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Lei Cui
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| | - Zhi-Gang Li
- Hematology & Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health; Beijing Key Laboratory of Pediatric Hematology Oncology; Key Laboratory of Major Diseases in Children, Ministry of Education; National Key Discipline of Pediatrics, Ministry of Education, Beijing, China
| |
Collapse
|