1
|
Mendez-Dorantes C, Zeng X, Karlow JA, Schofield P, Turner S, Kalinowski J, Denisko D, Lee EA, Burns KH, Zhang CZ. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628481. [PMID: 39764018 PMCID: PMC11702581 DOI: 10.1101/2024.12.14.628481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xi Zeng
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | - Jennifer A Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Phillip Schofield
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Serafina Turner
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jupiter Kalinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
2
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
4
|
Cancila V, Morello G, Bertolazzi G, Chan ASY, Bastianello G, Paysan D, Jaynes PW, Schiavoni G, Mattei F, Piconese S, Revuelta MV, Noto F, De Ninno A, Cammarata I, Pagni F, Venkatachalapathy S, Sangaletti S, Di Napoli A, Vacca D, Lonardi S, Lorenzi L, Ferreri AJM, Belmonte B, Varano G, Colombo MP, Bicciato S, Inghirami G, Cerchietti L, Ponzoni M, Zappasodi R, Facchetti F, Foiani M, Casola S, Jeyasekharan AD, Tripodo C. Germinal Center Dark Zone harbors ATR-dependent determinants of T-cell exclusion that are also identified in aggressive lymphoma. RESEARCH SQUARE 2024:rs.3.rs-4093618. [PMID: 38562878 PMCID: PMC10984086 DOI: 10.21203/rs.3.rs-4093618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.
Collapse
Affiliation(s)
- Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- Department of Economics, Business, and Statistics, University of Palermo, Palermo, Italy
| | - Allison Si-Yu Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Daniel Paysan
- Laboratory for Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Maria V Revuelta
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Italy
| | | | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arianna Di Napoli
- Pathology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Silvia Lonardi
- Pathology Unit, ASST Spedali Civili di Brescia, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Pathology Unit, ASST Spedali Civili di Brescia, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrés J M Ferreri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Gabriele Varano
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Silvio Bicciato
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine and New York-Presbyterian Hospital, New York
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York
| | - Maurilio Ponzoni
- Vita-Salute San Raffaele University, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Fabio Facchetti
- Pathology Unit, ASST Spedali Civili di Brescia, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Foiani
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Casola
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
5
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Jiao J, Lv Z, Wang Y, Fan L, Yang A. The off-target effects of AID in carcinogenesis. Front Immunol 2023; 14:1221528. [PMID: 37600817 PMCID: PMC10436223 DOI: 10.3389/fimmu.2023.1221528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yurong Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liye Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Rokan A, Hernandez JC, Nitiyanandan R, Lin ZY, Chen CL, Machida T, Li M, Khanuja J, Chen ML, Tahara SM, Siddiqi I, Machida K. Gut-derived Endotoxin-TLR4 Signaling Drives MYC-Ig Translocation to Promote Lymphoproliferation through c-JUN and STAT3 Activation. Mol Cancer Res 2023; 21:155-169. [PMID: 36287175 PMCID: PMC9898117 DOI: 10.1158/1541-7786.mcr-19-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/14/2020] [Accepted: 10/19/2022] [Indexed: 02/06/2023]
Abstract
Synergism between obesity and virus infection promotes the development of B-cell lymphoma. In this study, we tested whether obesity-associated endotoxin release induced activation-induced cytidine deaminase (AID). TLR4 activation in turn caused c-JUN-dependent and STAT3-dependent translocations of MYC loci to suppress transactivation of CD95/FAS. We used viral nucleocapside Core transgenic (Tg) mice fed alcohol Western diet to determine whether oncogenesis arising from obesity and chronic virus infection occurred through TLR4-c-JUN-STAT3 pathways. Our results showed B cell-specific, c-Jun and/or Stat3 disruption reduced the incidence of splenomegaly in these mice. AID-dependent t(8;14) translocation was observed between the Ig promoter and MYC loci. Comparison with human B cells showed MYC-immunoglobulin (Ig) translocations after virus infection with lipopolysaccharide stimulation. Accordingly, human patients with lymphoma with virus infections and obesity showed a 40% incidence of MYC-Ig translocations. Thus, obesity and virus infection promote AID-mediated translocation between the Ig promoter and MYC through the TLR4-c-JUN axis, resulting in lymphoproliferation. Taken together, preventative treatment targeting either c-JUN and/or STAT3 may be effective strategies to prevent tumor development. IMPLICATIONS Obesity increases gut-derived endotoxin which induces Toll-like receptor-mediated MYC-Ig translocation via c-JUN-STAT3, leading to lymphoproliferation.
Collapse
Affiliation(s)
- Ahmed Rokan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Medical Laboratory Sciences (MLS), Prince Sattam Bin Abdulaziz University (PSAU)
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- California State University Channel Islands, Los Angeles, CA
| | - Rajeshwar Nitiyanandan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Zi-Ying Lin
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Tatsuya Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Jasleen Khanuja
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Mo Li Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Imran Siddiqi
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA
| |
Collapse
|
8
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
9
|
Menegatti J, Nakel J, Stepanov YK, Caban KM, Ludwig N, Nord R, Pfitzner T, Yazdani M, Vilimova M, Kehl T, Lenhof HP, Philipp SE, Meese E, Fröhlich T, Grässer FA, Hart M. Changes of Protein Expression after CRISPR/Cas9 Knockout of miRNA-142 in Cell Lines Derived from Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14205031. [PMID: 36291816 PMCID: PMC9600116 DOI: 10.3390/cancers14205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The gene of the human tumor suppressive microRNA-142 (miR-142) carries mutations in about 20% of cases of diffuse large B-cell lymphoma (DLBCL). Because microRNAs post-transcriptionally regulate the protein expression of their cognate messenger RNA (mRNAs) targets, we determined the effect of miR-142 knockout on protein expression in two cell lines derived from DLBCL. We found a significant up-regulation of 52 proteins but also a down-regulation of 41 proteins upon miR-142 deletion. Knockout of a miRNA may be used to identify novel targets, and seed-sequence mutants of a miRNA unable to bind to their targets can be used to confirm potential novel targets. With this approach, we identify AKT1S1, CCNB1, LIMA1 and TFRC as novel targets of miR-142. As miR-142 is highly present in the miRNA processing RISC complexes, the deletion of this miRNA might result in its replacement by other miRNAs, thus introducing an additional layer of complexity regarding gene regulation. Abstract Background: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. Methods: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. Results: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. Conclusions: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.
Collapse
Affiliation(s)
- Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Jacqueline Nakel
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Youli K. Stepanov
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Karolina M. Caban
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Ruth Nord
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Thomas Pfitzner
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Maryam Yazdani
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Monika Vilimova
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University Medical School, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Friedrich A. Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| |
Collapse
|
10
|
Peycheva M, Neumann T, Malzl D, Nazarova M, Schoeberl UE, Pavri R. DNA replication timing directly regulates the frequency of oncogenic chromosomal translocations. Science 2022; 377:eabj5502. [DOI: 10.1126/science.abj5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosomal translocations result from the joining of DNA double-strand breaks (DSBs) and frequently cause cancer. However, the steps linking DSB formation to DSB ligation remain undeciphered. We report that DNA replication timing (RT) directly regulates lymphomagenic
Myc
translocations during antibody maturation in B cells downstream of DSBs and independently of DSB frequency. Depletion of minichromosome maintenance complexes alters replication origin activity, decreases translocations, and deregulates global RT. Ablating a single origin at
Myc
causes an early-to-late RT switch, loss of translocations, and reduced proximity with the immunoglobulin heavy chain (
Igh
) gene, its major translocation partner. These phenotypes were reversed by restoring early RT. Disruption of early RT also reduced tumorigenic translocations in human leukemic cells. Thus, RT constitutes a general mechanism in translocation biogenesis linking DSB formation to DSB ligation.
Collapse
Affiliation(s)
- Mihaela Peycheva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Daniel Malzl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Mariia Nazarova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Ursula E. Schoeberl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
11
|
Dermenci H, Daglar Aday A, Akadam Teker AB, Hancer VS, Gelmez MY, Nalcaci M, Yavuz AS. Aberrant Activation-Induced Cytidine Deaminase Gene Expression Links BCR/ABL1-Negative Classical Myeloproliferative Neoplasms. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
13
|
The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J 2021; 479:39-55. [PMID: 34870314 DOI: 10.1042/bcj20210529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.
Collapse
|
14
|
Weisenburger DD. A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:621-630. [PMID: 34052177 DOI: 10.1016/j.clml.2021.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/26/2023]
Abstract
Glyphosate-based formulations (GBFs), such as Roundup, are the most heavily used herbicides in the world. In 2015, the International Agency for Research on Cancer (IARC) concluded that glyphosate and GBFs are probably carcinogenic to humans (group 2A), mainly for non-Hodgkin lymphoma (NHL). However, this finding has been controversial, and most pesticide regulatory agencies have not followed their lead. The purpose of this review was to examine the scientific literature linking exposure to glyphosate and GBFs to the development of NHL, with emphasis on new findings since publication of the IARC report. The epidemiologic studies provide ample evidence for an association between exposure to GBFs and an increased risk of NHL. Animal studies have shown that glyphosate is carcinogenic in rodents and causes NHL in mice. Mechanistic studies have demonstrated that glyphosate and GBFs are genotoxic to human lymphocytes, the normal cell of origin of NHL, both in vitro and in vivo. Genotoxic and other biological effects have also been shown in various animal and cell models with these agents even at low doses. A novel mechanism underlying the specificity of glyphosate for NHL, that is upregulation of the B-cell genome mutator enzyme activation-induced cytidine deaminase, has recently been demonstrated. These findings were evaluated holistically using the guidelines for evaluation of general causation set forth by Bradford Hill. This evaluation provides coherent and compelling evidence that glyphosate and GBFs are a cause of NHL in humans exposed to these agents. These findings should prompt new reviews by pesticide regulatory agencies around the world.
Collapse
|
15
|
Hodgkin Lymphoma in People Living with HIV. Cancers (Basel) 2021; 13:cancers13174366. [PMID: 34503176 PMCID: PMC8430611 DOI: 10.3390/cancers13174366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a non-AIDS defining neoplasm, but people living with HIV (PLWH) have between a 5- and 26-fold higher risk of developing it than the general population. Epstein-Barr virus is present in almost all HIV-related HL cases, and plays an important role in its etiopathogenesis. Despite the aggressive characteristics, the prognosis of HL affecting PLWH is similar to that of the general population if patients are treated following the same recommendations. Administration of cART concomitantly with chemotherapy is highly recommended. However, this combination may be challenging due to drug–drug interactions and overlapping toxicity. Thus, interdisciplinary collaboration between hemato-oncologists and HIV specialists is crucial for the optimal treatment of both lymphoma and HIV infection. Abstract Despite widespread use of combined antiretroviral therapy (cART) and increased life expectancy in people living with HIV (PLWH), HIV-related lymphomas (HRL) remain a leading cause of cancer morbidity and mortality for PLWH, even in patients optimally treated with cART. While the incidence of aggressive forms of non-Hodgkin lymphoma decreased after the advent of cART, incidence of Hodgkin lymphoma (HL) has increased among PLWH in recent decades. The coinfection of Epstein–Barr virus plays a crucial role in the pathogenesis of HL in the HIV setting. Currently, PLWH with HRL, including HL, are treated similarly to HIV-negative patients and, importantly, the prognosis of HL in PLWH is approaching that of the general population. In this regard, effective cART during chemotherapy is strongly recommended since it has been shown to improve survival rates in all lymphoma subtypes, including HL. As a consequence, interdisciplinary collaboration between HIV specialists and hemato-oncologists for the management of potential drug–drug interactions and overlapping toxicities between antiretroviral and antineoplastic drugs is crucial for the optimal treatment of PLWH with HL. In this article the authors review and update the epidemiological, clinical and biological aspects of HL presenting in PLWH with special emphasis on advances in prognosis and the factors that have contributed to it.
Collapse
|
16
|
King JJ, Borzooee F, Im J, Asgharpour M, Ghorbani A, Diamond CP, Fifield H, Berghuis L, Larijani M. Structure-Based Design of First-Generation Small Molecule Inhibitors Targeting the Catalytic Pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol Transl Sci 2021; 4:1390-1407. [PMID: 34423273 PMCID: PMC8369683 DOI: 10.1021/acsptsci.1c00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/12/2022]
Abstract
![]()
Activation-induced
cytidine deaminase (AID) initiates antibody
diversification by mutating immunoglobulin loci in B lymphocytes.
AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations
and lesions implicated in tumorigenesis and tumor progression. The
most prevalent mutation signatures across diverse tumor genomes are
attributable to the mistargeted mutagenic activities of AID/A3s. Thus,
inhibiting AID/A3s has been suggested to be of therapeutic benefit.
We previously used a computational-biochemical approach to gain insight
into the structure of AID’s catalytic pocket, which resulted
in the discovery of a novel type of regulatory catalytic pocket closure
that regulates AID/A3s that we termed the “Schrodinger’s
CATalytic pocket”. Our findings were subsequently confirmed
by direct structural studies. Here, we describe our search for small
molecules that target the catalytic pocket of AID. We identified small
molecules that inhibit purified AID, AID in cell extracts, and endogenous
AID of lymphoma cells. Analogue expansion yielded derivatives with
improved potencies. These were found to also inhibit A3A and A3B,
the two most tumorigenic siblings of AID. Two compounds exhibit low
micromolar IC50 inhibition of AID and A3A, exhibiting the
strongest potency for A3A. Docking suggests key interactions between
their warheads and residues lining the catalytic pockets of AID, A3A,
and A3B and between the tails and DNA-interacting residues on the
surface proximal to the catalytic pocket opening. Accordingly, mutants
of these residues decreased inhibition potency. The chemistry and
abundance of key stabilizing interactions between the small molecules
and residues within and immediately outside the catalytic pockets
are promising for therapeutic development.
Collapse
Affiliation(s)
- Justin J King
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Faezeh Borzooee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Junbum Im
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada.,BC Cancer Research/Terry Fox Labs, University of British Columbia, Vancouver, British Columbia BC V5Z 1L3, Canada
| | - Mahdi Asgharpour
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Atefeh Ghorbani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Cody P Diamond
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| |
Collapse
|
17
|
Morande PE, Yan XJ, Sepulveda J, Seija N, Marquez ME, Sotelo N, Abreu C, Crispo M, Fernández-Graña G, Rego N, Bois T, Methot SP, Palacios F, Remedi V, Rai KR, Buschiazzo A, Di Noia JM, Navarrete MA, Chiorazzi N, Oppezzo P. AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood 2021; 138:246-258. [PMID: 34292322 DOI: 10.1182/blood.2020008654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.
Collapse
MESH Headings
- Animals
- Cytidine Deaminase/genetics
- Disease Models, Animal
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Up-Regulation
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xiao-Jie Yan
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Julieta Sepulveda
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Elena Marquez
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Sotelo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | | | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Therence Bois
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
| | - Stephen P Methot
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Florencia Palacios
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Victoria Remedi
- Hospital Maciel, Administración de los Servicios de Salud del Estado (ASSE), Ministerio de Salud, Montevideo, Uruguay
| | - Kanti R Rai
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; and
- Integrative Microbiology of Zoonotic Agents-International Joint Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montreal, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marcelo A Navarrete
- Laboratory of Molecular Medicine, Centro Asistencial Docente e Investigación de la Universidad de Magallanes (CADI-UMAG), School of Medicine, University of Magallanes, Punta Arenas, Chile
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
18
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
19
|
Zheng S, Matthews AJ, Rahman N, Herrick-Reynolds K, Sible E, Choi JE, Wishnie A, Ng YK, Rhodes D, Elledge SJ, Vuong BQ. The uncharacterized SANT and BTB domain-containing protein SANBR inhibits class switch recombination. J Biol Chem 2021; 296:100625. [PMID: 33831416 PMCID: PMC8141524 DOI: 10.1016/j.jbc.2021.100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Class switch recombination (CSR) is the process by which B cells switch production from IgM/IgD to other immunoglobulin isotypes, enabling them to mount an effective immune response against pathogens. Timely resolution of CSR prevents damage due to an uncontrolled and prolonged immune response. While many positive regulators of CSR have been described, negative regulators of CSR are relatively unknown. Using an shRNA library screen targeting more than 28,000 genes in a mouse B cell line, we have identified a novel, uncharacterized protein of 82kD (KIAA1841, NM_027860), which we have named SANBR (SANT and BTB domain regulator of CSR), as a negative regulator of CSR. The purified, recombinant BTB domain of SANBR exhibited characteristic properties such as homodimerization and interaction with corepressor proteins, including HDAC and SMRT. Overexpression of SANBR inhibited CSR in primary mouse splenic B cells, and inhibition of CSR is dependent on the BTB domain while the SANT domain is largely dispensable. Thus, we have identified a new member of the BTB family that serves as a negative regulator of CSR. Future investigations to identify transcriptional targets of SANBR in B cells will reveal further insights into the specific mechanisms by which SANBR regulates CSR as well as fundamental gene regulatory activities of this protein.
Collapse
Affiliation(s)
- Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Allysia J Matthews
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Numa Rahman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Emily Sible
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Jee Eun Choi
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Alec Wishnie
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Yan Kee Ng
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Daniela Rhodes
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Stephen J Elledge
- Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bao Q Vuong
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA.
| |
Collapse
|
20
|
Safavi S, Larouche A, Zahn A, Patenaude AM, Domanska D, Dionne K, Rognes T, Dingler F, Kang SK, Liu Y, Johnson N, Hébert J, Verdun RE, Rada CA, Vega F, Nilsen H, Di Noia JM. The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID. NAR Cancer 2021; 2:zcaa019. [PMID: 33554121 PMCID: PMC7848951 DOI: 10.1093/narcan/zcaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung−/− mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung−/− mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.
Collapse
Affiliation(s)
- Shiva Safavi
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Ariane Larouche
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Anne-Marie Patenaude
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Kiersten Dionne
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, 0316 Oslo, Norway
| | - Felix Dingler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Seong-Kwi Kang
- ITR Laboratories Canada, Inc., 19601 Clark Graham Ave, Baie-D'Urfe, QC H9X 3T1, Canada
| | - Yan Liu
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Nathalie Johnson
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, C.P. 6128, Montreal, QC H3C 3J7, Canada
| | - Ramiro E Verdun
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | | | - Francisco Vega
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Hilde Nilsen
- Section for Clinical Molecular Biology, Akershus University Hospital, PO 1000, 1478 Lørenskog, Norway
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
21
|
Luong TMH, Matsuda K, Niino D, Kurohama H, Ito M, Nakashima M. Significance of abnormal 53BP1 expression as a novel molecular pathologic parameter of follicular-shaped B-cell lymphoid lesions in human digestive tract. Sci Rep 2021; 11:3074. [PMID: 33542453 PMCID: PMC7862599 DOI: 10.1038/s41598-021-82867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
The digestive tract is a common site of extranodal malignant lymphomas (MLs) and benign lymphoid lesions (BLs). TP53-binding protein 1 (53BP1) expression has been widely investigated in class switch recombination but rarely in human lymphoid tissues with respect to tumorigenesis. We previously reported that immunofluorescence (IF) analysis of 53BP1 nuclear foci (NF), reflecting DNA double strand breaks, is useful for estimating genomic instability in different tumor types. In this study, we evaluated the potential of IF-based analysis of 53BP1 expression in differentiating MLs from BLs. We examined 231 biopsied tissue samples of primary MLs and BLs in the digestive tract. The 53BP1 immunoreactivity pattern was determined by multicolor IF. Compared to BLs, MLs showed a high frequency of abnormal 53BP1 expression (p < 0.0001). Statistically, abnormal 53BP1 expression is an effective test for distinguishing follicular lymphomas from BLs (specificity 98.6%, sensitivity 86.8%) and for distinguishing small B-cell lymphomas from BLs (specificity 98.3%, sensitivity 77.6%). Furthermore, a high frequency of abnormal 53BP1 expression was associated with "high-risk" MALT lymphomas, which exhibited t(11;18)(q21;21) (p = 0.0145). Collectively, these results suggest that IF-based analysis of 53BP1 expression in biopsy samples is a promising technique for diagnosing MLs in the digestive system.
Collapse
Affiliation(s)
- Thi My Hanh Luong
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Daisuke Niino
- Department of Pathology, Local Incorporated Administrative Agency Sasebo City General Hospital, Sasebo, Japan
| | - Hirokazu Kurohama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Masahiro Ito
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
22
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
23
|
Epigenetic suppression of SLFN11 in germinal center B-cells during B-cell development. PLoS One 2021; 16:e0237554. [PMID: 33513156 PMCID: PMC7846023 DOI: 10.1371/journal.pone.0237554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background SLFN11 has recently been reported to execute cancer cells harboring replicative stress induced by DNA damaging agents. However, the roles of SLFN11 under physiological conditions remain poorly understood. Germinal center B-cells (GCBs) undergo somatic hypermutations and class-switch recombination, which can cause physiological genotoxic stress. Hence, we tested whether SLFN11 expression needs to be suppressed in GCBs during B-cell development. Objective To clarify the expression profile of SLFN11 in different developmental stages of B-cells and B-cell-derived cancers. Methods We analyzed the expression of SLFN11 by mining cell line databases for different stages of normal B-cells and various types of B-cell-derived cancer cell lines. We performed dual immunohistochemical staining for SLFN11 and B-cell specific markers in normal human lymphatic tissues. We tested the effects of two epigenetic modifiers, an EZH2 inhibitor, tazemetostat (EPZ6438) and a histone deacetylase inhibitor, panobinostat (LBH589) on SLFN11 expression in GCB-derived lymphoma cell lines. We also examined the therapeutic efficacy of these drugs in combination with cytosine arabinoside and the effects of SLFN11 on the efficacy of cytosine arabinoside in SLFN11-overexpressing cells. Results SLFN11 mRNA level was found low in both normal GCBs and GCB-DLBCL (GCB like-diffuse large B-cell lymphoma). Immunohistochemical staining showed low SLFN11 expression in GCBs and high SLFN11 expression in plasmablasts and plasmacytes. The EZH2 and HDAC epigenetic modifiers upregulated SLFN11 expression in GCB-derived lymphoma cells and made them more susceptible to cytosine arabinoside. SLFN11 overexpression further sensitized GCB-derived lymphoma cells to cytosine arabinoside. Conclusions The expression of SLFN11 is epigenetically suppressed in normal GCBs and GCB-derived lymphomas. GCB-derived lymphomas with low SLFN11 expression can be treated by the combination of epigenetic modifiers and cytosine arabinoside.
Collapse
|
24
|
Delgado P, Álvarez-Prado ÁF, Marina-Zárate E, Sernandez IV, Mur SM, de la Barrera J, Sanchez-Cabo F, Cañamero M, de Molina A, Belver L, de Yébenes VG, Ramiro AR. Interplay between UNG and AID governs intratumoral heterogeneity in mature B cell lymphoma. PLoS Genet 2020; 16:e1008960. [PMID: 33362210 PMCID: PMC7790409 DOI: 10.1371/journal.pgen.1008960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/07/2021] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.
Collapse
Affiliation(s)
- Pilar Delgado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ángel F. Álvarez-Prado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ester Marina-Zárate
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Isora V. Sernandez
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sonia M. Mur
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sanchez-Cabo
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Antonio de Molina
- Comparative Medicine Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Laura Belver
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G. de Yébenes
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Almudena R. Ramiro
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
25
|
Oster S, Aqeilan RI. Programmed DNA Damage and Physiological DSBs: Mapping, Biological Significance and Perturbations in Disease States. Cells 2020; 9:cells9081870. [PMID: 32785139 PMCID: PMC7463922 DOI: 10.3390/cells9081870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are known to be the most toxic and threatening of the various types of breaks that may occur to the DNA. However, growing evidence continuously sheds light on the regulatory roles of programmed DSBs. Emerging studies demonstrate the roles of DSBs in processes such as T and B cell development, meiosis, transcription and replication. A significant recent progress in the last few years has contributed to our advanced knowledge regarding the functions of DSBs is the development of many next generation sequencing (NGS) methods, which have considerably advanced our capabilities. Other studies have focused on the implications of programmed DSBs on chromosomal aberrations and tumorigenesis. This review aims to summarize what is known about DNA damage in its physiological context. In addition, we will examine the advancements of the past several years, which have made an impact on the study of genome landscape and its organization.
Collapse
Affiliation(s)
- Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
26
|
Yen WF, Sharma R, Cols M, Lau CM, Chaudhry A, Chowdhury P, Yewdell WT, Vaidyanathan B, Sun A, Coffre M, Pucella JN, Chen CC, Jasin M, Sun JC, Rudensky AY, Koralov SB, Chaudhuri J. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep 2020; 27:1472-1486.e5. [PMID: 31042474 PMCID: PMC6527137 DOI: 10.1016/j.celrep.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
The immunoglobulin heavy chain (Igh) locus features a dynamic chromatin landscape to promote class switch recombination (CSR), yet the mechanisms that regulate this landscape remain poorly understood. CHD4, a component of the chromatin remodeling NuRD complex, directly binds H3K9me3, an epigenetic mark present at the Igh locus during CSR. We find that CHD4 is essential for early B cell development but is dispensable for the homeostatic maintenance of mature, naive B cells. However, loss of CHD4 in mature B cells impairs CSR because of suboptimal targeting of AID to the Igh locus. Additionally, we find that CHD4 represses p53 expression to promote B cell proliferation. This work reveals distinct roles for CHD4 in B cell development and CSR and links the H3K9me3 epigenetic mark with AID recruitment to the Igh locus. Yen et al. demonstrate that CHD4, a component of the NuRD remodeling complex, is essential for early B cell development, represses p53 expression in mature B cells, and influences the recruitment of AID to DNA during class switch recombination.
Collapse
Affiliation(s)
- Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Joseph N Pucella
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Chun-Chin Chen
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
27
|
Chen Z, Krinsky A, Woolaver RA, Wang X, Chen SMY, Popolizio V, Xie P, Wang JH. TRAF3 Acts as a Checkpoint of B Cell Receptor Signaling to Control Antibody Class Switch Recombination and Anergy. THE JOURNAL OF IMMUNOLOGY 2020; 205:830-841. [PMID: 32591397 DOI: 10.4049/jimmunol.2000322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
The BCR recognizes foreign Ags to initiate humoral immunity that needs isotype-switched Abs generated via class switch recombination (CSR); however, stimulating the BCR in the absence of costimulation (e.g., CD40) does not induce CSR; thus, it remains elusive whether and how the BCR induces CSR mechanistically. Autoreactive B cells can maintain anergy via unresponsiveness of their BCRs to self-antigens. However, it remains unknown what molecule(s) restrict BCR signaling strength for licensing BCR-induced CSR and whether deficiency of such molecule(s) disrupts autoreactive B cell anergy and causes B cell-mediated diseases by modulating BCR signaling. In this study, we employ mouse models to show that the BCR's capacity to induce CSR is restrained by B cell-intrinsic checkpoints TRAF3 and TRAF2, whose deletion in B cells enables the BCR to induce CSR in the absence of costimulation. TRAF3 deficiency permits BCR-induced CSR by elevating BCR-proximal signaling intensity. Furthermore, NF-κB2 is required for BCR-induced CSR in TRAF3-deficient B cells but not for CD40-induced or LPS-induced CSR, suggesting that TRAF3 restricts NF-κB2 activation to specifically limit the BCR's ability to induce CSR. TRAF3 deficiency also disrupts autoreactive B cell anergy by elevating calcium influx in response to BCR stimulation, leading to lymphoid organ disorders and autoimmune manifestations. We showed that TRAF3 deficiency-associated autoimmune phenotypes can be rectified by limiting BCR repertoires or attenuating BCR signaling strength. Thus, our studies highlight the importance of TRAF3-mediated restraint on BCR signaling strength for controlling CSR, B cell homeostasis, and B cell-mediated disorders.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Alexandra Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
28
|
Che Z, Fan J, Zhou Z, Li Q, Ma Z, Hu Z, Wu Y, Jin Y, Su Y, Liang P, Li H. Activation-Induced Cytidine Deaminase Expression Facilitates the Malignant Phenotype and Epithelial-to-Mesenchymal Transition in Clear Cell Renal Cell Carcinoma. DNA Cell Biol 2020; 39:1299-1312. [PMID: 32551879 DOI: 10.1089/dna.2019.5119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although advances have been made in the development of antiangiogenesis targeted therapy and surgery, metastatic clear cell renal cell carcinoma (ccRCC) is still incurable. Activation-induced cytidine deaminase (AID) is mainly expressed in a variety of germ and somatic cells, and induces somatic hypermutation and class-switch recombination, playing a vital role in antibody diversification. We confirmed that AID was expressed at a higher level in ccRCC tissues than in the corresponding nontumor renal tissues. We explored the impact of AID on ccRCC proliferation, invasion, and migration. In 769-p and 786-0 cells, expression of an AID-specific short hairpin RNA significantly reduced AID expression, which markedly inhibited tumor cell invasion, proliferation, and migration. Previous studies showed that AID is associated with Wnt ligand secretion mediator (WLS/GPR177), cyclin-dependent kinase 4 (CDK4), and stromal cell-derived factor-1 (SDF-1/CXCL12) regulation, which was further confirmed in human ccRCC tissues. Therefore, we studied the relationship between AID and these three molecules, and the impact of AID on epithelial-to-mesenchymal transition in ccRCC. WLS/GPR177, SDF-1/CXCL12, and CDK4 were sensitive to 5-azacytidine (a DNA demethylation agent), which reverted the inhibition of carcinogenesis caused by AID repression. In summary, AID is an oncogene that might induce tumorigenesis through DNA demethylation. Targeting AID may represent a novel therapeutic approach to treat metastatic ccRCC.
Collapse
Affiliation(s)
- Zhifei Che
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinfeng Fan
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhiyan Zhou
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Ma
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhanhao Hu
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yaoxi Wu
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yingxia Jin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiyu Liang
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Branton SA, Ghorbani A, Bolt BN, Fifield H, Berghuis LM, Larijani M. Activation-induced cytidine deaminase can target multiple topologies of double-stranded DNA in a transcription-independent manner. FASEB J 2020; 34:9245-9268. [PMID: 32437054 DOI: 10.1096/fj.201903036rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) mutates immunoglobulin genes and acts genome-wide. AID targets robustly transcribed genes, and purified AID acts on single-stranded (ss) but not double-stranded (ds) DNA oligonucleotides. Thus, it is believed that transcription is the generator of ssDNA for AID. Previous cell-free studies examining the relationship between transcription and AID targeting have employed a bacterial colony count assay wherein AID reverts an antibiotic resistance stop codon in plasmid substrates, leading to colony formation. Here, we established a novel assay where kb-long dsDNA of varying topologies is incubated with AID, with or without transcription, followed by direct sequencing. This assay allows for an unselected and in-depth comparison of mutation frequency and pattern of AID targeting in the absence of transcription or across a range of transcription dynamics. We found that without transcription, AID targets breathing ssDNA in supercoiled and, to a lesser extent, in relaxed dsDNA. The most optimal transcription only modestly enhanced AID action on supercoiled dsDNA in a manner dependent on RNA polymerase speed. These data suggest that the correlation between transcription and AID targeting may reflect transcription leading to AID-accessible breathing ssDNA patches naturally occurring in de-chromatinized dsDNA, as much as being due to transcription directly generating ssDNA.
Collapse
Affiliation(s)
- Sarah A Branton
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Brittany N Bolt
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Heather Fifield
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lesley M Berghuis
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
30
|
Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, Tiao G, Hornshøj H, Hess JM, Juul RI, Lin Z, Feuerbach L, Sabarinathan R, Madsen T, Kim J, Mularoni L, Shuai S, Lanzós A, Herrmann C, Maruvka YE, Shen C, Amin SB, Bandopadhayay P, Bertl J, Boroevich KA, Busanovich J, Carlevaro-Fita J, Chakravarty D, Chan CWY, Craft D, Dhingra P, Diamanti K, Fonseca NA, Gonzalez-Perez A, Guo Q, Hamilton MP, Haradhvala NJ, Hong C, Isaev K, Johnson TA, Juul M, Kahles A, Kahraman A, Kim Y, Komorowski J, Kumar K, Kumar S, Lee D, Lehmann KV, Li Y, Liu EM, Lochovsky L, Park K, Pich O, Roberts ND, Saksena G, Schumacher SE, Sidiropoulos N, Sieverling L, Sinnott-Armstrong N, Stewart C, Tamborero D, Tubio JMC, Umer HM, Uusküla-Reimand L, Wadelius C, Wadi L, Yao X, Zhang CZ, Zhang J, Haber JE, Hobolth A, Imielinski M, Kellis M, Lawrence MS, von Mering C, Nakagawa H, Raphael BJ, Rubin MA, Sander C, Stein LD, Stuart JM, Tsunoda T, Wheeler DA, Johnson R, Reimand J, Gerstein M, Khurana E, Campbell PJ, López-Bigas N, Weischenfeldt J, Beroukhim R, Martincorena I, Pedersen JS, Getz G. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 2020; 578:102-111. [PMID: 32025015 PMCID: PMC7054214 DOI: 10.1038/s41586-020-1965-x] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 12/02/2019] [Indexed: 01/28/2023]
Abstract
The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
Collapse
Affiliation(s)
- Esther Rheinbay
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | | | - Jeremiah A Wala
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
| | - Ofer Shapira
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Grace Tiao
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henrik Hornshøj
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Julian M Hess
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Randi Istrup Juul
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Ziao Lin
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard University, Cambridge, MA, USA
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhakrishnan Sabarinathan
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tobias Madsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Jaegil Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Shimin Shuai
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Andrés Lanzós
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bioquant Center, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Yosef E Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ciyue Shen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Samirkumar B Amin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Pratiti Bandopadhayay
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Bertl
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - John Busanovich
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joana Carlevaro-Fita
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dimple Chakravarty
- Department of Genitourinary Medical Oncology - Research, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Urology, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Calvin Wing Yiu Chan
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David Craft
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Priyanka Dhingra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Klev Diamanti
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nuno A Fonseca
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Qianyun Guo
- Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicholas J Haradhvala
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chen Hong
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Keren Isaev
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Todd A Johnson
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Malene Juul
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | - Andre Kahles
- Division of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abdullah Kahraman
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Youngwook Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
| | - Kiran Kumar
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sushant Kumar
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Kjong-Van Lehmann
- Division of Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilong Li
- SBGD Inc, Cambridge, MA, USA
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eric Minwei Liu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lucas Lochovsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicola D Roberts
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gordon Saksena
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven E Schumacher
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nikos Sidiropoulos
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lina Sieverling
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Chip Stewart
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Tamborero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose M C Tubio
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Husen M Umer
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lina Wadi
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Cheng-Zhong Zhang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Asger Hobolth
- Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark
| | - Marcin Imielinski
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, and Englander Institute for Precision Medicine, and Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Michael S Lawrence
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lincoln D Stein
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Joshua M Stuart
- Center for Biomolecular Science and Engineering, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Rory Johnson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Ekta Khurana
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joachim Weischenfeldt
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Rameen Beroukhim
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, Denmark.
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Zhu J, Hay AN, Potter AA, Richwine MW, Sproule T, LeRoith T, Wilson J, Hasham MG, Roopenian DC, Leeth CM. Abrogated AID Function Prolongs Survival and Diminishes Renal Pathology in the BXSB Mouse Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1091-1100. [PMID: 31988182 DOI: 10.4049/jimmunol.1900501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Almost a decade has passed since the approval of belimumab, an mAb directed against B lymphocyte stimulation and the first targeted therapy approved for systemic lupus erythematous (SLE) in over 50 y. Although well tolerated, the efficacy of belimumab remains limited and is not labeled for patients suffering from nephritis, the leading cause of patient mortality. We sought to explore alternative targets of autoreactive B lymphocytes through manipulation of affinity maturation. The BXSB/MpJ mouse, a well-established model of human SLE, develops elevated antinuclear Abs and immune complex-mediated nephritis along with other manifestations of SLE-like disease. To limit interfering with critical background genetics, we used CRISPR-Cas9 to disrupt activation-induced cytidine deaminase (AID; Aicda) directly in BXSB zygotes. Homozygous null mice demonstrated significantly prolonged survival compared with wild-type. Although mice continued to develop plasma cells, splenic follicular structure was restored, and renal pathology was reduced. Mice developed expanded germinal center B lymphocyte populations as in other models of AID deficiency as well as increased populations of CD73+ B lymphocytes. Treatment with the small molecule inhibitor of RAD51, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, resulted in minimal changes in disease markers in BXSB mice. The prolonged survival in AID-deficient BXSB mice appears attributed primarily to the reduced renal pathology, warranting further exploration, as current therapeutics targeting lupus nephritis are limited and, thus, in great demand.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Alayna N Hay
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Ashley A Potter
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Madison W Richwine
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - John Wilson
- The Jackson Laboratory, Bar Harbor, ME 04609; and
| | | | | | - Caroline M Leeth
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
| |
Collapse
|
32
|
Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nat Commun 2019; 10:5563. [PMID: 31804490 PMCID: PMC6895129 DOI: 10.1038/s41467-019-13570-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
The prerequisite to prevent childhood B-cell acute lymphoblastic leukemia (B-ALL) is to decipher its etiology. The current model suggests that infection triggers B-ALL development through induction of activation-induced cytidine deaminase (AID; also known as AICDA) in precursor B-cells. This evidence has been largely acquired through the use of ex vivo functional studies. However, whether this mechanism governs native non-transplant B-ALL development is unknown. Here we show that, surprisingly, AID genetic deletion does not affect B-ALL development in Pax5-haploinsufficient mice prone to B-ALL upon natural infection exposure. We next test the effect of premature AID expression from earliest pro-B-cell stages in B-cell transformation. The generation of AID off-target mutagenic activity in precursor B-cells does not promote B-ALL. Likewise, known drivers of human B-ALL are not preferentially targeted by AID. Overall these results suggest that infections promote B-ALL through AID-independent mechanisms, providing evidence for a new model of childhood B-ALL development. Infection or chronic inflammation is a risk factor for childhood B-cell precursor acute lymphoblastic leukemia. Here, the authors show that the DNA editing enzyme AID is expressed in infected B cells but using genetic mouse models show that it does not contribute to leukemia pathogenesis.
Collapse
|
33
|
Sall FB, El Amine R, Markozashvili D, Tsfasman T, Oksenhendler E, Lipinski M, Vassetzky Y, Germini D. HIV-1 Tat protein induces aberrant activation of AICDA in human B-lymphocytes from peripheral blood. J Cell Physiol 2019; 234:15678-15685. [PMID: 30701532 DOI: 10.1002/jcp.28219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.
Collapse
Affiliation(s)
- Fatimata Bintou Sall
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Rawan El Amine
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Diana Markozashvili
- Laboratory of Synthetic Biology, Peter the Great St. Petersburg Polytechnic University, St.Petersburg, Russia
| | - Tatyana Tsfasman
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Paris, France
| | - Marc Lipinski
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| | - Yegor Vassetzky
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Diego Germini
- Department of UMR8126, Institut Gustave Roussy, Villejuif, France.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France
| |
Collapse
|
34
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
35
|
Morande PE, Sivina M, Uriepero A, Seija N, Berca C, Fresia P, Landoni AI, Di Noia JM, Burger JA, Oppezzo P. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood 2019; 133:2056-2068. [PMID: 30814061 PMCID: PMC7022232 DOI: 10.1182/blood-2018-09-876292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Angimar Uriepero
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Catalina Berca
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Inés Landoni
- Hospital Maciel, Administración de los Servicios de Salud del Estado, Ministerio de Salud, Montevideo, Uruguay
| | - Javier M Di Noia
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
36
|
PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood 2019; 133:2401-2412. [PMID: 30975638 DOI: 10.1182/blood.2018889931] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.
Collapse
|
37
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
38
|
Jiao J, Jin Y, Zheng M, Zhang H, Yuan M, Lv Z, Odhiambo W, Yu X, Zhang P, Li C, Ma Y, Ji Y. AID and TET2 co-operation modulates FANCA expression by active demethylation in diffuse large B cell lymphoma. Clin Exp Immunol 2018; 195:190-201. [PMID: 30357811 DOI: 10.1111/cei.13227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2018] [Indexed: 01/06/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is traced to a mature B malignance carrying abnormal activation-induced cytidine deaminase (AID) expression. AID activity initially focuses on deamination of cytidine to uracil to generate somatic hypermutation and class-switch recombination of the immunoglobulin (Ig), but recently it has been implicated in DNA demethylation of genes required for B cell development and proliferation in the germinal centre (GC). However, whether AID activity on mutation or demethylation of genes involves oncogenesis of DLBCL has not been well characterized. Our data demonstrate that the proto-oncogene Fanconi anaemia complementation group A (FANCA) is highly expressed in DLBCL patients and cell lines, respectively. AID recruits demethylation enzyme ten eleven translocation family member (TET2) to bind the FANCA promoter. As a result, FANCA is demethylated and its expression increases in DLBCL. On the basis of our findings, we have developed a new therapeutic strategy to significantly inhibit DLBCL cell growth by combination of the proteasome inhibitor bortezomib with AID and TET2 depletion. These findings support a novel mechanism that AID has a crucial role in active demethylation for oncogene activation in DLBCL.
Collapse
Affiliation(s)
- J Jiao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Y Jin
- Department of Pathology, the 2nd Affiliated hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - M Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - H Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - M Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Z Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - W Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - X Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - P Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - C Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Y Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Y Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| |
Collapse
|
39
|
Zaprazna K, Reblova K, Svobodova V, Radova L, Bystry V, Baloun J, Durechova K, Tom N, Loja T, Buresova M, Stranska K, Oltova A, Doubek M, Atchison ML, Trbusek M, Malcikova J, Pospisilova S. Activation-induced deaminase and its splice variants associate with trisomy 12 in chronic lymphocytic leukemia. Ann Hematol 2018; 98:423-435. [PMID: 30368590 DOI: 10.1007/s00277-018-3520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme essential for somatic hypermutation (SHM) and class switch recombination (CSR) during effective adaptive immune responses. Its aberrant expression and activity have been detected in lymphomas, leukemias, and solid tumors. In chronic lymphocytic leukemia (CLL) increased expression of alternatively spliced AID variants has been documented. We used real-time RT-PCR to quantify the expression of AID and its alternatively spliced transcripts (AIDΔE4a, AIDΔE4, AIDivs3, and AIDΔE3E4) in 149 CLL patients and correlated this expression to prognostic markers including recurrent chromosomal aberrations, the presence of complex karyotype, mutation status of the immunoglobulin heavy chain variable gene, and recurrent mutations. We report a previously unappreciated association between higher AID transcript levels and trisomy of chromosome 12. Functional analysis of AID splice variants revealed loss of their activity with respect to SHM, CSR, and induction of double-strand DNA breaks. In silico modeling provided insight into the molecular interactions and structural dynamics of wild-type AID and a shortened AID variant closely resembling AIDΔE4, confirming its loss-of-function phenotype.
Collapse
MESH Headings
- Aged
- Alternative Splicing
- Animals
- Chromosomes, Human, Pair 12/enzymology
- Chromosomes, Human, Pair 12/genetics
- Computer Simulation
- Cytidine Deaminase/biosynthesis
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Models, Biological
- Molecular Dynamics Simulation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Trisomy/genetics
- Trisomy/pathology
Collapse
Affiliation(s)
- Kristina Zaprazna
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
| | - Kamila Reblova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Veronika Svobodova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Vojtech Bystry
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Jiri Baloun
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Kristina Durechova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Martina Buresova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Kamila Stranska
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael L Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Center of Molecular Medicine, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic.
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
40
|
Patel B, Banerjee R, Samanta M, Das S. Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish. Mol Biotechnol 2018; 60:435-453. [PMID: 29704159 DOI: 10.1007/s12033-018-0081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The disparate diversity in immunoglobulin (Ig) repertoire has been a subject of fascination since the emergence of prototypic adaptive immune system in vertebrates. The carboxy terminus region of activation-induced cytidine deaminase (AID) has been well established in tetrapod lineage and is crucial for its function in class switch recombination (CSR) event of Ig diversification. The absence of CSR in the paraphyletic group of fish is probably due to changes in catalytic domain of AID and lack of cis-elements in IgH locus. Therefore, understanding the arrangement of Ig genes in IgH locus and functional facets of fish AID opens up new realms of unravelling the alternative mechanisms of isotype switching and antibody diversity. Further, the teleost AID has been recently reported to have potential of catalyzing CSR in mammalian B cells by complementing AID deficiency in them. In that context, the present review focuses on the recent advances regarding the generation of diversity in Ig repertoire in the absence of AID-regulated class switching in teleosts and the possible role of T cell-independent pathway involving B cell activating factor and a proliferation-inducing ligand in activation of CSR machinery.
Collapse
Affiliation(s)
- Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751 002, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
41
|
Wilson JJ, Chow KH, Labrie NJ, Branca JA, Sproule TJ, Perkins BRA, Wolf EE, Costa M, Stafford G, Rosales C, Mills KD, Roopenian DC, Hasham MG. Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition. Cancer Biol Ther 2018; 20:169-182. [PMID: 30183475 PMCID: PMC6343731 DOI: 10.1080/15384047.2018.1507666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models – spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells – can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4ʹ-Diisothiocyano-2,2ʹ-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. Implications: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias.
Collapse
Affiliation(s)
- John J Wilson
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Kin-Hoe Chow
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Nathan J Labrie
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Jane A Branca
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Thomas J Sproule
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Bryant R A Perkins
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Elise E Wolf
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Mauro Costa
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Grace Stafford
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Christine Rosales
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | | | - Derry C Roopenian
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Muneer G Hasham
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| |
Collapse
|
42
|
Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, Hu X, Wang L, Su R, Wang D, Wang L, Yao Y, Ye R, Hou B, Yu Y, Yu S, Li J, Xue Y. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res 2018; 28:981-995. [PMID: 30143796 PMCID: PMC6170407 DOI: 10.1038/s41422-018-0076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) mediates class switching by binding to a small fraction of single-stranded DNA (ssDNA) to diversify the antibody repertoire. The precise mechanism for highly selective AID targeting in the genome has remained elusive. Here, we report an RNA-binding protein, ROD1 (also known as PTBP3), that is both required and sufficient to define AID-binding sites genome-wide in activated B cells. ROD1 interacts with AID via an ultraconserved loop, which proves to be critical for the recruitment of AID to ssDNA using bi-directionally transcribed nascent RNAs as stepping stones. Strikingly, AID-specific mutations identified in human patients with hyper-IgM syndrome type 2 (HIGM2) completely disrupt the AID interacting surface with ROD1, thereby abolishing the recruitment of AID to immunoglobulin (Ig) loci. Together, our results suggest that bi-directionally transcribed RNA traps the RNA-binding protein ROD1, which serves as a guiding system for AID to load onto specific genomic loci to induce DNA rearrangement during immune responses.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meizhu Bai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Xiaohua Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xihao Hu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, 464000, Xinyang, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Rong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
43
|
Wing JB, Tekgüç M, Sakaguchi S. Control of Germinal Center Responses by T-Follicular Regulatory Cells. Front Immunol 2018; 9:1910. [PMID: 30197643 PMCID: PMC6117393 DOI: 10.3389/fimmu.2018.01910] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Regulatory T-cells (Treg cells), expressing the transcription factor Foxp3, have an essential role in the control of immune homeostasis. In order to control diverse types of immune responses Treg cells must themselves show functional heterogeneity to control different types of immune responses. Recent advances have made it clear that Treg cells are able to mirror the homing capabilities of known T-helper subtypes such as Th1, Th2, Th17, and T-follicular helper cells (Tfh), allowing them to travel to the sites of inflammation and deliver suppression in situ. One of the more recent discoveries in this category is the description of T-follicular regulatory (Tfr) cells, a specialized subset of Treg cells that control Tfh and resulting antibody responses. In this review we will discuss recent advances in our understanding of Tfr biology and the role of both Tfr and activated extra-follicular Tregs (eTreg) in the control of humoral immunity.
Collapse
Affiliation(s)
- James B Wing
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Murat Tekgüç
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Recaldin T, Hobson PS, Mann EH, Ramadani F, Cousins DJ, Lavender P, Fear DJ. miR-29b directly targets activation-induced cytidine deaminase in human B cells and can limit its inappropriate expression in naïve B cells. Mol Immunol 2018; 101:419-428. [PMID: 30081328 DOI: 10.1016/j.molimm.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
Class-switch recombination (CSR) is an essential B cell process that alters the isotype of antibody produced by the B cell, tailoring the immune response to the nature of the invading pathogen. CSR requires the activity of the mutagenic enzyme AID (encoded by AICDA) to generate chromosomal lesions within the immunoglobulin genes that initiate the class switching recombination event. These AID-mediated mutations also participate in somatic-hypermutation of the immunoglobulin variable region, driving affinity maturation. As such, AID poses a significant oncogenic threat if it functions outside of the immunoglobulin locus. We found that expression of the microRNA, miR-29b, was repressed in B cells isolated from tonsil tissue, relative to circulating naïve B cells. Further investigation revealed that miR-29b was able to directly initiate the degradation of AID mRNA. Enforced overexpression of miR-29b in human B cells precipitated a reduction in overall AID protein and a corresponding diminution in CSR to IgE. Given miR-29b's ability to potently target AID, a mutagenic molecule that can initiate chromosomal translocations and "off-target" mutations, we propose that miR-29b acts to silence premature AID expression in naïve B cells, thus reducing the likelihood of inappropriate and potentially dangerous deamination activity.
Collapse
Affiliation(s)
- Timothy Recaldin
- School of Immunology & Microbial Sciences, King's College London, UK; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK
| | - Philip S Hobson
- Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK
| | - Elizabeth H Mann
- Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK
| | - Faruk Ramadani
- Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK; School of Basic & Medical Biosciences, King's College London, UK
| | - David J Cousins
- Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK; Leicester Respiratory Biomedical Research Unit, Leicester University, UK
| | - Paul Lavender
- School of Immunology & Microbial Sciences, King's College London, UK; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK
| | - David J Fear
- School of Immunology & Microbial Sciences, King's College London, UK; Medical Research Council and Asthma UK Centre, Allergic Mechanisms in Asthma, London, UK.
| |
Collapse
|
45
|
Bilal S, Lie KK, Sæle Ø, Hordvik I. T Cell Receptor Alpha Chain Genes in the Teleost Ballan Wrasse (Labrus bergylta) Are Subjected to Somatic Hypermutation. Front Immunol 2018; 9:1101. [PMID: 29872436 PMCID: PMC5972329 DOI: 10.3389/fimmu.2018.01101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Previously, somatic hypermutation (SHM) was considered to be exclusively associated with affinity maturation of antibodies, although it also occurred in T cells under certain conditions. More recently, it has been shown that SHM generates diversity in the variable domain of T cell receptor (TCR) in camel and shark. Here, we report somatic mutations in TCR alpha chain genes of the teleost fish, Ballan wrasse (Labrus bergylta), and show that this mechanism adds extra diversity to the polymorphic constant (C) region as well. The organization of the TCR alpha/delta locus in Ballan wrasse was obtained from a scaffold covering a single copy C alpha gene, 65 putative J alpha segments, a single copy C delta gene, 1 J delta segment, and 2 D delta segments. Analysis of 37 fish revealed 6 allotypes of the C alpha gene, each with 1-3 replacement substitutions. Somatic mutations were analyzed by molecular cloning of TCR alpha chain cDNA. Initially, 79 unique clones comprising four families of variable (V) alpha genes were characterized. Subsequently, a more restricted PCR was performed to focus on a specific V gene. Comparison of 48 clones indicated that the frequency of somatic mutations in the VJ region was 4.5/1,000 base pairs (bps), and most prevalent in complementary determining region 2 (CDR2). In total, 45 different J segments were identified among the 127 cDNA clones, counting for most of the CDR3 diversity. The number of mutations in the C alpha chain gene was 1.76 mutations/1,000 bps and A nucleotides were most frequently targeted, in contrast to the VJ region, where G nucleotides appeared to be mutational hotspots. The replacement/synonymous ratios in the VJ and C regions were 2.5 and 1.85, respectively. Only 7% of the mutations were found to be linked to the activation-induced cytidine deaminase hotspot motif (RGYW/WRCY).
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Øystein Sæle
- Institute of Marine Research (IMR), Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Victora GD, Mouquet H. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Lessons from the Antibody Response to HIV-1. Cold Spring Harb Perspect Biol 2018. [PMID: 28630079 DOI: 10.1101/cshperspect.a029389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Most broadly neutralizing antibodies to HIV-1 have in common an extreme degree of somatic hypermutation (SHM), which correlates with their ability to neutralize multiple viral strains. However, achieving such extreme SHM by immunization remains a challenge. Here, we discuss how antigenic variation during HIV-1 infection may work to exacerbate SHM by permitting multiple iterative cycles of affinity maturation in germinal centers, and speculate on how this could be recapitulated through vaccination.
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, New York 10065
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Institut Pasteur, Paris 75015, France.,INSERM, U1222, Paris 75015, France
| |
Collapse
|
47
|
Sall FB, Germini D, Kovina AP, Ribrag V, Wiels J, Toure AO, Iarovaia OV, Lipinski M, Vassetzky Y. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. BIOCHEMISTRY (MOSCOW) 2018; 83:402-410. [DOI: 10.1134/s0006297918040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Iarovaia OV, Ioudinkova ES, Razin SV, Vassetzky YS. Role of the Nucleolus in Rearrangements of the IGH Locus. Mol Biol 2018. [DOI: 10.1134/s0026893317050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, Ramiro AR. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018; 215:761-771. [PMID: 29374026 PMCID: PMC5839764 DOI: 10.1084/jem.20171738] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) initiates antibody diversification in germinal center (GC) B cells through the deamination of cytosines on immunoglobulin genes. AID can also target other regions in the genome, triggering mutations or chromosome translocations, with major implications for oncogenic transformation. However, understanding the specificity of AID has proved extremely challenging. We have sequenced at very high depth >1,500 genomic regions from GC B cells and identified 275 genes targeted by AID, including 30 of the previously known 35 AID targets. We have also identified the most highly mutated hotspot for AID activity described to date. Furthermore, integrative analysis of the molecular features of mutated genes coupled to machine learning has produced a powerful predictive tool for AID targets. We also have found that base excision repair and mismatch repair back up each other to faithfully repair AID-induced lesions. Finally, our data establish a novel link between AID mutagenic activity and lymphomagenesis.
Collapse
Affiliation(s)
- Ángel F Álvarez-Prado
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
50
|
DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner. Cell Rep 2017; 17:2927-2942. [PMID: 27974207 DOI: 10.1016/j.celrep.2016.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division.
Collapse
|