1
|
Le QD, Lewis A, Dix-Matthews A, Ringler P, Duff A, Whitten AE, Atkin R, Brunner M, Ho D, Iyer KS, Marshall AC, Fox AH, Bond CS. Structural Characteristics and Properties of the RNA-Binding Protein hnRNPK at Multiple Physical States. Int J Mol Sci 2025; 26:1356. [PMID: 39941124 PMCID: PMC11818384 DOI: 10.3390/ijms26031356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA-binding protein containing low-complexity domains (LCDs), which are known to regulate protein behavior under stress conditions. This study demonstrates the ability to control hnRNPK's transitions into four distinct material states-monomer, soluble aggregate, liquid droplet, and fibrillar hydrogel-by modulating environmental factors such as temperature and protein concentration. Importantly, the phase-separated and hydrogel states are newly identified for eGFP-hnRNPK, marking a significant advancement in understanding its material properties. A combination of biophysical techniques, including DLS and SEC-LS, were used to further characterize hnRNPK in monomeric and soluble aggregate states. Structural methods, such as SANS, SAXS, and TEM, revealed the elongated morphology of the hnRNPK monomer. Environmental perturbations, such as decreased temperature or crowding agents, drove hnRNPK into phase-separated or gel-like states, each with distinct biophysical characteristics. These novel states were further analyzed using SEM, X-ray diffraction, and fluorescence microscopy. Collectively, these results demonstrate the complex behaviors of hnRNPK under different conditions and illustrate the properties of the protein in each material state. Transitions of hnRNPK upon condition changes could potentially affect functions of hnRNPK, playing a significant role in regulation of hnRNPK-involved processes in the cell.
Collapse
Affiliation(s)
- Quang D. Le
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- Faculty of Biology, VNU University of Science, 334-Nguyen Trai Street, Ha Noi 100000, Vietnam
| | - Amanda Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Alice Dix-Matthews
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Anthony Duff
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Manuel Brunner
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Diwei Ho
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - K. Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Andrew C. Marshall
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Archa H. Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S. Bond
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| |
Collapse
|
2
|
Hoque MA, Gross RA, Koffas MAG. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes. Appl Environ Microbiol 2025; 91:e0211924. [PMID: 39589110 PMCID: PMC11784408 DOI: 10.1128/aem.02119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Difficulties exist in obtaining full-length, correctly folded, and soluble papain or papain-like proteases that necessitate the exploration of alternative strategies. This study describes the development of an Escherichia coli strain capable of producing soluble papain without the need for complex and time-consuming in vitro refolding steps. To enhance the production of soluble papain, engineered T7 promoters and a recombinant papain translationally fused with varying tags were constructed. The tags investigated include the maltose-binding protein, small ubiquitin modifier protein, and glutathione transferase. An E. coli SHuffle strain was engineered to accumulate hydrogen peroxide (H2O2) by disruption of the redox pathway. This was accomplished by co-expression of the fusion constructs with two human endoplasmic reticulum-resident proteins, thiol peroxidase glutathione peroxidase-7 (GPx7), and protein disulfide isomerase (PDI). The oxidizing capacity of H2O2 was used to improve disulfide bond formation in papain. The GPx7-PDI fusion dyad played a significant role in consuming harmful H2O2 generated by the SHuffle cells. This consumption of H2O2 helped provide the necessary oxidizing conditions for the efficient production of soluble papain. In shake-flask experiments, the recombinant strain produced ~110 mg/L of papain. Moreover, in batch fermentation, the volumetric yield reached ~349 mg/L. This work provides insights into recombinant papain microbial production that can lead to an industrial viable production strain. IMPORTANCE Papain, a cysteine-like protease, has extensive applications across various industries including food, chemical, pharmaceutical, drug, and polymer. However, the traditional isolation of papain from Carica papaya plants results in a complex mixture of proteases. Such protease mixtures result in an inability to understand which component enzyme contributed to substrate conversions. Concentrations of constituent enzymes likely differ based on the ripeness of the papaya fruit. Also, constituent enzymes from papaya differ in optimal activity as a function of temperature and pH. Thus, by using papain-like enzymes from papaya fruit, valuable information on component enzyme activity and specificity is lost. Numerous methods have been reported to purify papain and papain-like enzymes from the crude mixture. Often, methods involve at least three steps including column chromatography to separate five cysteine proteases. Such procedures represent tedious processes to manufacture the pure enzymes in Carica papaya extracts. The numerous uses of papain for industrial processes, as well as the probability that certain components of papain crude mixtures will be preferred for specific applications, necessitate alternative methods such as recombinant expression from microbial production systems to meet the high world demand for papain.
Collapse
Affiliation(s)
- Md Anarul Hoque
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
3
|
Beltran A, Jiang X, Shen Y, Lehner B. Site-saturation mutagenesis of 500 human protein domains. Nature 2025; 637:885-894. [PMID: 39779847 PMCID: PMC11754108 DOI: 10.1038/s41586-024-08370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Missense variants that change the amino acid sequences of proteins cause one-third of human genetic diseases1. Tens of millions of missense variants exist in the current human population, and the vast majority of these have unknown functional consequences. Here we present a large-scale experimental analysis of human missense variants across many different proteins. Using DNA synthesis and cellular selection experiments we quantify the effect of more than 500,000 variants on the abundance of more than 500 human protein domains. This dataset reveals that 60% of pathogenic missense variants reduce protein stability. The contribution of stability to protein fitness varies across proteins and diseases and is particularly important in recessive disorders. We combine stability measurements with protein language models to annotate functional sites across proteins. Mutational effects on stability are largely conserved in homologous domains, enabling accurate stability prediction across entire protein families using energy models. Our data demonstrate the feasibility of assaying human protein variants at scale and provides a large consistent reference dataset for clinical variant interpretation and training and benchmarking of computational methods.
Collapse
Affiliation(s)
- Antoni Beltran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xiang'er Jiang
- BGI Research, Changzhou, China
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, China
| | - Yue Shen
- BGI Research, Changzhou, China
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, China
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
4
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations. Cytoskeleton (Hoboken) 2024:10.1002/cm.21954. [PMID: 39503309 PMCID: PMC12074537 DOI: 10.1002/cm.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Cdt1 is a mixed folded protein critical for DNA replication licensing and it also has a "moonlighting" role at the kinetochore via direct binding to microtubules and the Ndc80 complex. However, it is unknown how the structure and conformations of Cdt1 could allow it to participate in these multiple, unique sets of protein complexes. While robust methods exist to study entirely folded or unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. In this work, we employ orthogonal biophysical and computational techniques to provide structural characterization of mitosis-competent human Cdt1. Thermal stability analyses shows that both folded winged helix domains1 are unstable. CD and NMR show that the N-terminal and linker regions are intrinsically disordered. DLS shows that Cdt1 is monomeric and polydisperse, while SEC-MALS confirms that it is monomeric at high concentrations, but without any apparent inter-molecular self-association. SEC-SAXS enabled computational modeling of the protein structures. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble of structures. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with SAXS. The best-fit models have the N-terminal and linker disordered regions extended into the solution and the two folded domains close to each other in apparent "folded over" conformations. We hypothesize the best-fit Cdt1 conformations could be consistent with a function as a scaffold protein that may be sterically blocked without binding partners. Our study also provides a template for combining experimental and computational techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen M. Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Arabela A. Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Tripp A, Braun M, Wieser F, Oberdorfer G, Lechner H. Click, Compute, Create: A Review of Web-based Tools for Enzyme Engineering. Chembiochem 2024; 25:e202400092. [PMID: 38634409 DOI: 10.1002/cbic.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Enzyme engineering, though pivotal across various biotechnological domains, is often plagued by its time-consuming and labor-intensive nature. This review aims to offer an overview of supportive in silico methodologies for this demanding endeavor. Starting from methods to predict protein structures, to classification of their activity and even the discovery of new enzymes we continue with describing tools used to increase thermostability and production yields of selected targets. Subsequently, we discuss computational methods to modulate both, the activity as well as selectivity of enzymes. Last, we present recent approaches based on cutting-edge machine learning methods to redesign enzymes. With exception of the last chapter, there is a strong focus on methods easily accessible via web-interfaces or simple Python-scripts, therefore readily useable for a diverse and broad community.
Collapse
Affiliation(s)
- Adrian Tripp
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Markus Braun
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Florian Wieser
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Horst Lechner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
7
|
Ononugbo CM, Shimura Y, Yamano-Adachi N, Omasa T, Koga Y. Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein. J Biosci Bioeng 2024; 138:271-282. [PMID: 39074993 DOI: 10.1016/j.jbiosc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Collapse
Affiliation(s)
- Chukwuebuka M Ononugbo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusaku Shimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
| |
Collapse
|
8
|
McNutt E, Ke N, Thurman A, Eaglesham JB, Berkmen M. SAS: Split antibiotic selection for identifying chaperones that improve protein solubility. Heliyon 2024; 10:e26996. [PMID: 38495176 PMCID: PMC10943334 DOI: 10.1016/j.heliyon.2024.e26996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Background Heterologous expression of active, native-folded protein in Escherichia coli is critical in both academic research and biotechnology settings. When expressing non-native recombinant proteins in E. coli, obtaining soluble and active protein can be challenging. Numerous techniques can be used to enhance a proteins solubility, and largely focus on either altering the expression strain, plasmid vector features, growth conditions, or the protein coding sequence itself. However, there is no one-size-fits-all approach for addressing issues with protein solubility, and it can be both time and labor intensive to find a solution. An alternative approach is to use the co-expression of chaperones to assist with increasing protein solubility. By designing a genetic system where protein solubility is linked to viability, the appropriate protein folding factor can be selected for any given protein of interest. To this end, we developed a Split Antibiotic Selection (SAS) whereby an insoluble protein is inserted in-frame within the coding sequence of the hygromycin B resistance protein, aminoglycoside 7″-phosphotransferase-Ia (APH(7″)), to generate a tripartite fusion. By creating this tripartite fusion with APH(7″), the solubility of the inserted protein can be assessed by measuring the level of hygromycin B resistance of the cells. Results We demonstrate the functionality of this system using a known protein and co-chaperone pair, the human mitochondrial Hsp70 ATPase domain (ATPase70) and its co-chaperone human escort protein (Hep). Insertion of the insoluble ATPase70 within APH(7'') renders the tripartite fusion insoluble and results in sensitivity to hygromycin B. Antibiotic resistance can be rescued by expression of the co-chaperone Hep which assists in the folding of the APH(7'')-ATPase70-APH(7'') tripartite fusion and find that cellular hygromycin B resistance correlates with the total soluble fusion protein. Finally, using a diverse chaperone library, we find that SAS can be used in a pooled genetic selection to identify chaperones capable of improving client protein solubility. Conclusions The tripartite APH(7'') fusion links the in vivo solubility of the inserted protein of interest to hygromycin B resistance. This construct can be used in conjunction with a chaperone library to select for chaperones that increase the solubility of the inserted protein. This selection system can be applied to a variety of client proteins and eliminates the need to individually test chaperone-protein pairs to identify those that increase solubility.
Collapse
Affiliation(s)
- Emily McNutt
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Na Ke
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | | | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
9
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SAXS/MC studies of the mixed-folded protein Cdt1 reveal monomeric, folded over conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573975. [PMID: 38260441 PMCID: PMC10802334 DOI: 10.1101/2024.01.03.573975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cdt1 is a protein critical for DNA replication licensing and is well-established to be a binding partner of the minichromosome maintenance (MCM) complex. Cdt1 has also been demonstrated to have an emerging, "moonlighting" role at the kinetochore via direct binding to microtubules and to the Ndc80 complex. However, it is not known how the structure and conformations of Cdt1 could allow for these multiple, completely unique sets of protein complexes. And while there exist multiple robust methods to study entirely folded or entirely unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. It this work, we employ multiple orthogonal biophysical and computational techniques to provide a detailed structural characterization of human Cdt1 92-546. DSF and DSCD show both folded winged helix (WH) domains of Cdt1 are relatively unstable. CD and NMR show the N-terminal and the linker regions are intrinsically disordered. Using DLS and SEC-MALS, we show that Cdt1 is polydisperse, monomeric at high concentrations, and without any apparent inter-molecular self-association. SEC-SAXS of the monomer in solution enabled computational modeling of the protein in silico. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble. Using experimental SAXS data, we filtered for conformations which did and did not fit our data. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with our SAXS data. The best fit models have the N-terminal and linker regions extended into solution and the two folded domains close to each other in apparent "folded over" conformations. The best fit Cdt1 conformations are consistent with a function as a scaffold protein which may be sterically blocked without the presence of binding partners. Our studies also provide a template for combining experimental and computational biophysical techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Present Address, Xylia Therapeutics, Waltham, MA, 02451, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kristen M. Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Arabela A. Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60201, USA
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD, 20899, United States
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
10
|
Li M, Yang R, Guo J, Liu M, Yang J. Optimization of IspS ib stability through directed evolution to improve isoprene production. Appl Environ Microbiol 2023; 89:e0121823. [PMID: 37815338 PMCID: PMC10617563 DOI: 10.1128/aem.01218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
Enzyme stability is often a limiting factor in the microbial production of high-value-added chemicals and commercial enzymes. A previous study by our research group revealed that the unstable isoprene synthase from Ipomoea batatas (IspSib) critically limits isoprene production in engineered Escherichia coli. Directed evolution was, therefore, performed in the present study to improve the thermostability of IspSib. First, a tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the high-throughput screening of variants. Directed evolution of IspSib was then performed through two rounds of random mutation and site-saturation mutation, which produced three variants with higher stability: IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C. The subsequent in vitro thermostability test confirmed the increased protein stability. The melting temperatures of the screened variants IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C were 45.1 ± 0.9°C, 46.1 ± 0.7°C, and 47.2 ± 0.3°C, respectively, each of which was higher than the melting temperature of wild-type IspSib (41.5 ± 0.4°C). The production of isoprene at the shake-flask fermentation level was increased by 1.94-folds, to 1,335 mg/L, when using IspSibN397V A476T. These findings provide insights into the optimization of the thermostability of terpene synthases, which are key enzymes for isoprenoid production in engineered microorganisms. In addition, the present study would serve as a successful example of improving enzyme stability without requiring detailed structural information or catalytic reaction mechanisms.IMPORTANCEThe poor thermostability of IspSib critically limits isoprene production in engineered Escherichia coli. A tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the first time. In order to improve the enzyme stability of IspSib, the directed evolution of IspSib was performed through error-PCR, and high-throughput screening was realized using the lac'-IspSib-'lac system. Three positive variants with increased thermostability were obtained. The thermostability test and the melting temperature analysis confirmed the increased stability of the enzyme. The production of isoprene was increased by 1.94-folds, to 1,335 mg/L, using IspSibN397V A476T. The directed evolution process reported here is also applicable to other terpene synthases key to isoprenoid production.
Collapse
Affiliation(s)
- Meijie Li
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Rumeng Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jing Guo
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jianming Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Stern JA, Free TJ, Stern KL, Gardiner S, Dalley NA, Bundy BC, Price JL, Wingate D, Della Corte D. A probabilistic view of protein stability, conformational specificity, and design. Sci Rep 2023; 13:15493. [PMID: 37726313 PMCID: PMC10509192 DOI: 10.1038/s41598-023-42032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Various approaches have used neural networks as probabilistic models for the design of protein sequences. These "inverse folding" models employ different objective functions, which come with trade-offs that have not been assessed in detail before. This study introduces probabilistic definitions of protein stability and conformational specificity and demonstrates the relationship between these chemical properties and the [Formula: see text] Boltzmann probability objective. This links the Boltzmann probability objective function to experimentally verifiable outcomes. We propose a novel sequence decoding algorithm, referred to as "BayesDesign", that leverages Bayes' Rule to maximize the [Formula: see text] objective instead of the [Formula: see text] objective common in inverse folding models. The efficacy of BayesDesign is evaluated in the context of two protein model systems, the NanoLuc enzyme and the WW structural motif. Both BayesDesign and the baseline ProteinMPNN algorithm increase the thermostability of NanoLuc and increase the conformational specificity of WW. The possible sources of error in the model are analyzed.
Collapse
Affiliation(s)
- Jacob A Stern
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Tyler J Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Kimberlee L Stern
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Spencer Gardiner
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA
| | - Nicholas A Dalley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David Wingate
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Dennis Della Corte
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
12
|
Quan N, Eguchi Y, Geiler-Samerotte K. Intra- FCY1: a novel system to identify mutations that cause protein misfolding. Front Genet 2023; 14:1198203. [PMID: 37745845 PMCID: PMC10512024 DOI: 10.3389/fgene.2023.1198203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novel in vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] in Saccharomyces cerevisiae. The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.
Collapse
Affiliation(s)
- N. Quan
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Y. Eguchi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - K. Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Norrild RK, Johansson KE, O’Shea C, Morth JP, Lindorff-Larsen K, Winther JR. Increasing protein stability by inferring substitution effects from high-throughput experiments. CELL REPORTS METHODS 2022; 2:100333. [PMID: 36452862 PMCID: PMC9701609 DOI: 10.1016/j.crmeth.2022.100333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
We apply a computational model, global multi-mutant analysis (GMMA), to inform on effects of most amino acid substitutions from a randomly mutated gene library. Using a high mutation frequency, the method can determine mutations that increase the stability of even very stable proteins for which conventional selection systems have reached their limit. As a demonstration of this, we screened a mutant library of a highly stable and computationally redesigned model protein using an in vivo genetic sensor for folding and assigned a stability effect to 374 of 912 possible single amino acid substitutions. Combining the top 9 substitutions increased the unfolding energy 47 to 69 kJ/mol in a single engineering step. Crystal structures of stabilized variants showed small perturbations in helices 1 and 2, which rendered them closer in structure to the redesign template. This case study illustrates the capability of the method, which is applicable to any screen for protein function.
Collapse
Affiliation(s)
- Rasmus Krogh Norrild
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kristoffer Enøe Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Charlotte O’Shea
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jakob Rahr Winther
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
14
|
Flores-León CD, Dominguez L, Aguayo-Ortiz R. Molecular basis of Toxoplasma gondii oryzalin resistance from a novel α-tubulin binding site model. Arch Biochem Biophys 2022; 730:109398. [PMID: 36116504 DOI: 10.1016/j.abb.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.
Collapse
Affiliation(s)
- Carlos D Flores-León
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
15
|
Guthertz N, van der Kant R, Martinez RM, Xu Y, Trinh C, Iorga BI, Rousseau F, Schymkowitz J, Brockwell DJ, Radford SE. The effect of mutation on an aggregation-prone protein: An in vivo, in vitro, and in silico analysis. Proc Natl Acad Sci U S A 2022; 119:e2200468119. [PMID: 35613051 PMCID: PMC9295795 DOI: 10.1073/pnas.2200468119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Aggregation of initially stably structured proteins is involved in more than 20 human amyloid diseases. Despite intense research, however, how this class of proteins assembles into amyloid fibrils remains poorly understood, principally because of the complex effects of amino acid substitutions on protein stability, solubility, and aggregation propensity. We address this question using β2-microglobulin (β2m) as a model system, focusing on D76N-β2m that is involved in hereditary amyloidosis. This amino acid substitution causes the aggregation-resilient wild-type protein to become highly aggregation prone in vitro, although the mechanism by which this occurs remained elusive. Here, we identify the residues key to protecting β2m from aggregation by coupling aggregation with antibiotic resistance in E. coli using a tripartite β-lactamase assay (TPBLA). By performing saturation mutagenesis at three different sites (D53X-, D76X-, and D98X-β2m) we show that residue 76 has a unique ability to drive β2m aggregation in vivo and in vitro. Using a randomly mutated D76N-β2m variant library, we show that all of the mutations found to improve protein behavior involve residues in a single aggregation-prone region (APR) (residues 60 to 66). Surprisingly, no correlation was found between protein stability and protein aggregation rate or yield, with several mutations in the APR decreasing aggregation without affecting stability. Together, the results demonstrate the power of the TPBLA to develop proteins that are resilient to aggregation and suggest a model for D76N-β2m aggregation involving the formation of long-range couplings between the APR and Asn76 in a nonnative state.
Collapse
Affiliation(s)
- N. Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - R. van der Kant
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - R. M. Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Y. Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C. Trinh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B. I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - F. Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - J. Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - D. J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - S. E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
16
|
Ahmed S, Manjunath K, Chattopadhyay G, Varadarajan R. Identification of stabilizing point mutations through mutagenesis of destabilized protein libraries. J Biol Chem 2022; 298:101785. [PMID: 35247389 PMCID: PMC8971944 DOI: 10.1016/j.jbc.2022.101785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 01/22/2023] Open
Abstract
Although there have been recent transformative advances in the area of protein structure prediction, prediction of point mutations that improve protein stability remains challenging. It is possible to construct and screen large mutant libraries for improved activity or ligand binding. However, reliable screens for mutants that improve protein stability do not yet exist, especially for proteins that are well folded and relatively stable. Here, we demonstrate that incorporation of a single, specific, destabilizing mutation termed parent inactivating mutation into each member of a single-site saturation mutagenesis library, followed by screening for suppressors, allows for robust and accurate identification of stabilizing mutations. We carried out fluorescence-activated cell sorting of such a yeast surface display, saturation suppressor library of the bacterial toxin CcdB, followed by deep sequencing of sorted populations. We found that multiple stabilizing mutations could be identified after a single round of sorting. In addition, multiple libraries with different parent inactivating mutations could be pooled and simultaneously screened to further enhance the accuracy of identification of stabilizing mutations. Finally, we show that individual stabilizing mutations could be combined to result in a multi-mutant that demonstrated an increase in thermal melting temperature of about 20 °C, and that displayed enhanced tolerance to high temperature exposure. We conclude that as this method is robust and employs small library sizes, it can be readily extended to other display and screening formats to rapidly isolate stabilized protein mutants.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology and Therapeutics, Institute of Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | | |
Collapse
|
17
|
McLure RJ, Radford SE, Brockwell DJ. High-throughput directed evolution: a golden era for protein science. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Liu S, Li S, Krezel AM, Li W. Stabilization and structure determination of integral membrane proteins by termini restraining. Nat Protoc 2022; 17:540-565. [PMID: 35039670 PMCID: PMC11649303 DOI: 10.1038/s41596-021-00656-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Integral membrane proteins isolated from cellular environment often lose activity and native conformation required for functional analyses and structural studies. Even in their native state, they lack sufficient surfaces to form crystal contacts. Furthermore, most of them are too small for cryogenic electron microscopy detection and too big for solution NMR. To overcome these difficulties, we recently developed a strategy to stabilize the folded state of membrane proteins by restraining their two termini with a self-assembling protein coupler. The termini-restrained membrane proteins from distinct functional families retain their activities and show increased stability and yield. This strategy enables their structure determination at near-atomic resolution by facilitating the entire pipeline from crystallization, crystal identification, diffraction enhancement and phase determination, to electron density improvement. Furthermore, stabilization of membrane proteins enables their biochemical and biophysical characterization. Here we present the protocol of membrane protein engineering (2 weeks), quality assessment (1-2 weeks), protein production (1-6 weeks), crystallization (1-2 weeks), diffraction improvement (1-3 months) and crystallographic data analysis (1 week). This protocol is intended not only for structural biologists, but also for biochemists, biophysicists and pharmaceutical scientists whose research focuses on membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
20
|
Zutz A, Hamborg L, Pedersen LE, Kassem MM, Papaleo E, Koza A, Herrgård MJ, Jensen SI, Teilum K, Lindorff-Larsen K, Nielsen AT. A dual-reporter system for investigating and optimizing protein translation and folding in E. coli. Nat Commun 2021; 12:6093. [PMID: 34667164 PMCID: PMC8526717 DOI: 10.1038/s41467-021-26337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2021] [Indexed: 01/29/2023] Open
Abstract
Strategies for investigating and optimizing the expression and folding of proteins for biotechnological and pharmaceutical purposes are in high demand. Here, we describe a dual-reporter biosensor system that simultaneously assesses in vivo protein translation and protein folding, thereby enabling rapid screening of mutant libraries. We have validated the dual-reporter system on five different proteins and find an excellent correlation between reporter signals and the levels of protein expression and solubility of the proteins. We further demonstrate the applicability of the dual-reporter system as a screening assay for deep mutational scanning experiments. The system enables high throughput selection of protein variants with high expression levels and altered protein stability. Next generation sequencing analysis of the resulting libraries of protein variants show a good correlation between computationally predicted and experimentally determined protein stabilities. We furthermore show that the mutational experimental data obtained using this system may be useful for protein structure calculations.
Collapse
Affiliation(s)
- Ariane Zutz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Louise Hamborg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Maher M Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
21
|
Hamborg L, Granata D, Olsen JG, Roche JV, Pedersen LE, Nielsen AT, Lindorff-Larsen K, Teilum K. Synergistic stabilization of a double mutant in chymotrypsin inhibitor 2 from a library screen in E. coli. Commun Biol 2021; 4:980. [PMID: 34408246 PMCID: PMC8373930 DOI: 10.1038/s42003-021-02490-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Most single point mutations destabilize folded proteins. Mutations that stabilize a protein typically only have a small effect and multiple mutations are often needed to substantially increase the stability. Multiple point mutations may act synergistically on the stability, and it is often not straightforward to predict their combined effect from the individual contributions. Here, we have applied an efficient in-cell assay in E. coli to select variants of the barley chymotrypsin inhibitor 2 with increased stability. We find two variants that are more than 3.8 kJ mol-1 more stable than the wild-type. In one case, the increased stability is the effect of the single substitution D55G. The other case is a double mutant, L49I/I57V, which is 5.1 kJ mol-1 more stable than the sum of the effects of the individual mutations. In addition to demonstrating the strength of our selection system for finding stabilizing mutations, our work also demonstrate how subtle conformational effects may modulate stability.
Collapse
Affiliation(s)
- Louise Hamborg
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Daniele Granata
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Johan G Olsen
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jennifer Virginia Roche
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
22
|
Suzuki H, Okumura Y, Mikawa Y, Takata M, Yoshimura S, Ohshiro T. Transcriptome and growth efficiency comparisons of recombinant thermophiles that produce thermolabile and thermostable proteins: implications for burden-based selection of thermostable proteins. Extremophiles 2021; 25:403-412. [PMID: 34191121 DOI: 10.1007/s00792-021-01237-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Geobacillus kaustophilus is a thermophilic bacterium that grows at temperatures ranging between 42 and 74 °C. Here, we modified this organism to produce the thermolabile protein (PyrFA) or its thermostable variant (PyrFV) and analyzed the transcriptome and growth efficiency profiles of the resultant strains. In the producer of PyrFA, the transcriptome profile was changed to facilitate ATP synthesis from NADH without pooling reduced quinones. This change implies that PyrFA production at elevated temperatures places an energy burden on cells potentially to maintain protein homeostasis. This was consistent with the observation that the PyrFA producer grew slower than the PyrFV producer at > 45 °C and had a lower cellular fitness. Similar growth profiles were also observed in the PyrFA and PyrFV producers derived from another thermophile (Geobacillus thermodenitrificans) but not in those from Escherichia coli at 30 °C. Thus, we suggest that the production of thermolabile proteins impairs host survival at higher temperatures; therefore, thermophiles are under evolutionary selection for thermostable proteins regardless of whether their functions are associated with survival advantages. This hypothesis provides new insights into evolutionary protein selection in thermophiles and suggests an engineering approach to select thermostable protein variants generated via random gene mutagenesis.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan. .,Center for Research On Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yui Mikawa
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Mao Takata
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Shunsuke Yoshimura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.,Center for Research On Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| |
Collapse
|
23
|
Golinski AW, Mischler KM, Laxminarayan S, Neurock NL, Fossing M, Pichman H, Martiniani S, Hackel BJ. High-throughput developability assays enable library-scale identification of producible protein scaffold variants. Proc Natl Acad Sci U S A 2021; 118:e2026658118. [PMID: 34078670 PMCID: PMC8201827 DOI: 10.1073/pnas.2026658118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteins require high developability-quantified by expression, solubility, and stability-for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 105 variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays' predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.
Collapse
Affiliation(s)
- Alexander W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Katelynn M Mischler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Sidharth Laxminarayan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Nicole L Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Fossing
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Hannah Pichman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Stefano Martiniani
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
24
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
25
|
Discovery of a microbial rhodopsin that is the most stable in extreme environments. iScience 2021; 24:102620. [PMID: 34151231 PMCID: PMC8188555 DOI: 10.1016/j.isci.2021.102620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Microbial rhodopsin is a retinal protein that functions as an ion pump, channel, and sensory transducer, as well as a light sensor, as in biosensors and biochips. Tara76 rhodopsin is a typical proton-pumping rhodopsin that exhibits strong stability against extreme pH, detergent, temperature, salt stress, and dehydration stress and even under dual and triple conditions. Tara76 rhodopsin has a thermal stability approximately 20 times higher than that of thermal rhodopsin at 80°C and is even stable at 85°C. Tara76 rhodopsin is also stable at pH 0.02 to 13 and exhibits strong resistance in detergent, including Triton X-100 and SDS. We tested the current flow that electrical current flow across dried proteins on the paper at high temperatures using an electrode device, which was measured stably from 25°C up to 120°C. These properties suggest that this Tara76 rhodopsin is suitable for many applications in the fields of bioengineering and biotechnology.
Collapse
|
26
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
27
|
Ren C, Wen X, Mencius J, Quan S. An enzyme-based biosensor for monitoring and engineering protein stability in vivo. Proc Natl Acad Sci U S A 2021; 118:e2101618118. [PMID: 33753520 PMCID: PMC8020752 DOI: 10.1073/pnas.2101618118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein stability affects the physiological functions of proteins and is also a desirable trait in many protein engineering tasks, yet improving protein stability is challenging because of limitations in methods for directly monitoring protein stability in cells. Here, we report an in vivo stability biosensor wherein a protein of interest (POI) is inserted into a microbial enzyme (CysGA) that catalyzes the formation of endogenous fluorescent compounds, thereby coupling POI stability to simple fluorescence readouts. We demonstrate the utility of the biosensor in directed evolution to obtain stabilized, less aggregation-prone variants of two POIs (including nonamyloidogenic variants of human islet amyloid polypeptide). Beyond engineering applications, we exploited our biosensor in deep mutational scanning for experimental delineation of the stability-related contributions of all residues throughout the catalytic domain of a histone H3K4 methyltransferase, thereby revealing its scientifically informative stability landscape. Thus, our highly accessible method for in vivo monitoring of the stability of diverse proteins will facilitate both basic research and applied protein engineering efforts.
Collapse
Affiliation(s)
- Chang Ren
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Wen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Romero-Suarez D, Wulff T, Rong Y, Jakočiu̅nas T, Yuzawa S, Keasling JD, Jensen MK. A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synth Biol 2021; 10:466-477. [PMID: 33577304 DOI: 10.1021/acssynbio.0c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein misfolding and aggregation are linked to neurodegenerative diseases of mammals and suboptimal protein expression within biotechnology. Tools for monitoring protein aggregates are therefore useful for studying disease-related aggregation and for improving soluble protein expression in heterologous hosts for biotechnology purposes. In this work, we developed a promoter-reporter system for aggregated protein on the basis of the yeast native response to misfolded protein. To this end, we first studied the proteome of yeast in response to the expression of folded soluble and aggregation-prone protein baits and identified genes encoding proteins related to protein folding and the response to heat stress as well as the ubiquitin-proteasome system that are over-represented in cells expressing an aggregation-prone protein. From these data, we created and validated promoter-reporter constructs and further engineered the best performing promoters by increasing the copy number of upstream activating sequences and optimization of culture conditions. Our best promoter-reporter has an output dynamic range of approximately 12-fold upon expression of the aggregation-prone protein and responded to increasing levels of aggregated protein. Finally, we demonstrate that the system can discriminate between yeast cells expressing different prion precursor proteins and select the cells expressing folded soluble protein from mixed populations. Our reporter system is thus a simple tool for diagnosing protein aggregates in living cells and should be applicable for the health and biotechnology industries.
Collapse
Affiliation(s)
- David Romero-Suarez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Yixin Rong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tadas Jakočiu̅nas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Satoshi Yuzawa
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, Guangdong 518055, China
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
29
|
He W, Zhang J, Sachsenhauser V, Wang L, Bardwell JCA, Quan S. Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity. J Biol Chem 2020; 295:14488-14500. [PMID: 32817055 PMCID: PMC7573262 DOI: 10.1074/jbc.ra119.012300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Jiayin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Veronika Sachsenhauser
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Wang
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|
30
|
Lénon M, Ke N, Szady C, Sakhtah H, Ren G, Manta B, Causey B, Berkmen M. Improved production of Humira antibody in the genetically engineered Escherichia coli SHuffle, by co-expression of human PDI-GPx7 fusions. Appl Microbiol Biotechnol 2020; 104:9693-9706. [PMID: 32997203 PMCID: PMC7595990 DOI: 10.1007/s00253-020-10920-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Abstract Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. Key points • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters. Electronic supplementary material The online version of this article (10.1007/s00253-020-10920-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marine Lénon
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Na Ke
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Cecily Szady
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Hassan Sakhtah
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Boston Institute of Biotechnology, LLC., Upstream Process Development, 225 Turnpike Road, Southborough, MA, 01772, USA
| | - Guoping Ren
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Bruno Manta
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Facultad de Medicina, Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Universidad de la República, CP 11800, Montevideo, Uruguay
| | - Bryce Causey
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
31
|
Lee C, Betschinger P, Wu K, Żyła DS, Glockshuber R, Bardwell JC. A metabolite binding protein moonlights as a bile-responsive chaperone. EMBO J 2020; 39:e104231. [PMID: 32882062 DOI: 10.15252/embj.2019104231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
Bile salts are secreted into the gastrointestinal tract to aid in the absorption of lipids. In addition, bile salts show potent antimicrobial activity in part by mediating bacterial protein unfolding and aggregation. Here, using a protein folding sensor, we made the surprising discovery that the Escherichia coli periplasmic glycerol-3-phosphate (G3P)-binding protein UgpB can serve, in the absence of its substrate, as a potent molecular chaperone that exhibits anti-aggregation activity against bile salt-induced protein aggregation. The substrate G3P, which is known to accumulate in the later compartments of the digestive system, triggers a functional switch between UgpB's activity as a molecular chaperone and its activity as a G3P transporter. A UgpB mutant unable to bind G3P is constitutively active as a chaperone, and its crystal structure shows that it contains a deep surface groove absent in the G3P-bound wild-type UgpB. Our work illustrates how evolution may be able to convert threats into signals that first activate and then inactivate a chaperone at the protein level in a manner that bypasses the need for ATP.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Patrick Betschinger
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Dawid S Żyła
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - James Ca Bardwell
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Verma V, Joshi G, Gupta A, Chaudhary VK. An efficient ORF selection system for DNA fragment libraries based on split beta-lactamase complementation. PLoS One 2020; 15:e0235853. [PMID: 32701967 PMCID: PMC7377443 DOI: 10.1371/journal.pone.0235853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
PCR-based amplification of annotated genes has allowed construction of expression clones at genome-scale using classical and recombination-based cloning technologies. However, genome-scale expression and purification of proteins for down-stream applications is often limited by challenges such as poor expression, low solubility, large size of multi-domain proteins, etc. Alternatively, DNA fragment libraries in expression vectors can serve as the source of protein fragments with each fragment encompassing a function of its whole protein counterpart. However, the random DNA fragmentation and cloning result in only 1 out of 18 clones being in the correct open-reading frame (ORF), thus, reducing the overall efficiency of the system. This necessitates the selection of correct ORF before expressing the protein fragments. This paper describes a highly efficient ORF selection system for DNA fragment libraries, which is based on split beta-lactamase protein fragment complementation. The system has been designed to allow seamless transfer of selected DNA fragment libraries into any downstream vector systems using a restriction enzyme-free cloning strategy. The strategy has been applied for the selection of ORF using model constructs to show near 100% selection of the clone encoding correct ORF. The system has been further validated by construction of an ORF-selected DNA fragment library of 30 genes of M. tuberculosis. Further, we have successfully demonstrated the cytosolic expression of ORF-selected protein fragments in E. coli.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Gopal Joshi
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
33
|
Miret J, Román R, Benito M, Casablancas A, Guillén M, Álvaro G, González G. Development of a highly efficient production process for recombinant protein expression in Escherichia coli NEB10β. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Broom A, Trainor K, Jacobi Z, Meiering EM. Computational Modeling of Protein Stability: Quantitative Analysis Reveals Solutions to Pervasive Problems. Structure 2020; 28:717-726.e3. [DOI: 10.1016/j.str.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
|
35
|
Zhang J, Wang Y, Chai B, Wang J, Li L, Liu M, Zhao G, Yao L, Gao X, Yin Y, Xu J. Efficient and Low-Cost Error Removal in DNA Synthesis by a High-Durability MutS. ACS Synth Biol 2020; 9:940-952. [PMID: 32135061 DOI: 10.1021/acssynbio.0c00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzyme-based error correction is a key step in de novo DNA synthesis, yet the inherent instability of error-correction enzymes such as MutS has hindered the throughput and efficiency of DNA synthesis workflows. Here we introduce a process called Improved MICC (iMICC), in which all error-correction steps of oligos and fragments within a complete gene-synthesis cycle are completed in a simple, efficient, and low-cost manner via a MutS protein engineered for high durability. By establishing a disulfide bond of L157C-G233C, full-activity shelf life of E. coli MutS (eMutS) was prolonged from 7 to 49 days and was further extended to 63 days via cellulose-bound 4 °C storage. In synthesis of 10 Cas9 homologues in-solution and 10 xylose reductase (XR) homologues on-chip, iMICC reduced error frequency to 0.64/Kb and 0.41/Kb, respectively, with 72.1% and 86.4% of assembled fragments being error-free. By elevating base accuracy by 37.6-fold while avoiding repetitive preparation of fresh enzymes, iMICC is more efficient and robust than the wild-type eMutS, and it is 6.6-fold more accurate and 26.7-fold cheaper than CorrectASE. These advantages promise its broad applications in industrial DNA synthesis.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Baihui Chai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichao Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Li
- LC-BIO Technologies CO., LTD., Hangzhou 310018, China
| | - Min Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolian Gao
- LC-BIO Technologies CO., LTD., Hangzhou 310018, China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004-5001, United States
| | - Yifeng Yin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Sachsenhauser V, Deng X, Kim HH, Jankovic M, Bardwell JC. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity. ACS Chem Biol 2020; 15:1078-1088. [PMID: 32105441 DOI: 10.1021/acschembio.0c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aβ42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
- Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Xiexiong Deng
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Hyun-hee Kim
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Maja Jankovic
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James C.A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| |
Collapse
|
37
|
Ebo JS, Saunders JC, Devine PWA, Gordon AM, Warwick AS, Schiffrin B, Chin SE, England E, Button JD, Lloyd C, Bond NJ, Ashcroft AE, Radford SE, Lowe DC, Brockwell DJ. An in vivo platform to select and evolve aggregation-resistant proteins. Nat Commun 2020; 11:1816. [PMID: 32286330 PMCID: PMC7156504 DOI: 10.1038/s41467-020-15667-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Protein biopharmaceuticals are highly successful, but their utility is compromised by their propensity to aggregate during manufacture and storage. As aggregation can be triggered by non-native states, whose population is not necessarily related to thermodynamic stability, prediction of poorly-behaving biologics is difficult, and searching for sequences with desired properties is labour-intensive and time-consuming. Here we show that an assay in the periplasm of E. coli linking aggregation directly to antibiotic resistance acts as a sensor for the innate (un-accelerated) aggregation of antibody fragments. Using this assay as a directed evolution screen, we demonstrate the generation of aggregation resistant scFv sequences when reformatted as IgGs. This powerful tool can thus screen and evolve ‘manufacturable’ biopharmaceuticals early in industrial development. By comparing the mutational profiles of three different immunoglobulin scaffolds, we show the applicability of this method to investigate protein aggregation mechanisms important to both industrial manufacture and amyloid disease. Protein aggregation remains a significant challenge for manufacturing of protein biopharmaceuticals. Here, the authors demonstrate the use of directed evolution and an assay for in vivo innate protein aggregation-propensity to generate aggregation-resistant scFv fragments.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Janet C Saunders
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Paul W A Devine
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Alice M Gordon
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy S Warwick
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Lowe
- AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK. .,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
38
|
Stimple SD, Smith MD, Tessier PM. Directed evolution methods for overcoming trade-offs between protein activity and stability. AIChE J 2020; 66. [PMID: 32719568 DOI: 10.1002/aic.16814] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered proteins are being widely developed and employed in applications ranging from enzyme catalysts to therapeutic antibodies. Directed evolution, an iterative experimental process composed of mutagenesis and library screening, is a powerful technique for enhancing existing protein activities and generating entirely new ones not observed in nature. However, the process of accumulating mutations for enhanced protein activity requires chemical and structural changes that are often destabilizing, and low protein stability is a significant barrier to achieving large enhancements in activity during multiple rounds of directed evolution. Here we highlight advances in understanding the origins of protein activity/stability trade-offs for two important classes of proteins (enzymes and antibodies) as well as innovative experimental and computational methods for overcoming such trade-offs. These advances hold great potential for improving the generation of highly active and stable proteins that are needed to address key challenges related to human health, energy and the environment.
Collapse
Affiliation(s)
- Samuel D. Stimple
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Matthew D. Smith
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Biomedical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| |
Collapse
|
39
|
Ebo JS, Guthertz N, Radford SE, Brockwell DJ. Using protein engineering to understand and modulate aggregation. Curr Opin Struct Biol 2020; 60:157-166. [PMID: 32087409 PMCID: PMC7132541 DOI: 10.1016/j.sbi.2020.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Protein aggregation occurs through a variety of mechanisms, initiated by the unfolded, non-native, or even the native state itself. Understanding the molecular mechanisms of protein aggregation is challenging, given the array of competing interactions that control solubility, stability, cooperativity and aggregation propensity. An array of methods have been developed to interrogate protein aggregation, spanning computational algorithms able to identify aggregation-prone regions, to deep mutational scanning to define the entire mutational landscape of a protein's sequence. Here, we review recent advances in this exciting and emerging field, focussing on protein engineering approaches that, together with improved computational methods, hold promise to predict and control protein aggregation linked to human disease, as well as facilitating the manufacture of protein-based therapeutics.
Collapse
Affiliation(s)
- Jessica S Ebo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
40
|
Wang T, Yang N, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Wang G, Nie L. Detecting Protein-Protein Interaction Based on Protein Fragment Complementation Assay. Curr Protein Pept Sci 2020; 21:598-610. [PMID: 32053071 DOI: 10.2174/1389203721666200213102829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
Abstract
Proteins are the most critical executive molecules by responding to the instructions stored in the genetic materials in any form of life. More frequently, proteins do their jobs by acting as a roleplayer that interacts with other protein(s), which is more evident when the function of a protein is examined in the real context of a cell. Identifying the interactions between (or amongst) proteins is very crucial for the biochemistry investigation of an individual protein and for the attempts aiming to draw a holo-picture for the interacting members at the scale of proteomics (or protein-protein interactions mapping). Here, we introduced the currently available reporting systems that can be used to probe the interaction between candidate protein pairs based on the fragment complementation of some particular proteins. Emphasis was put on the principles and details of experimental design. These systems are dihydrofolate reductase (DHFR), β-lactamase, tobacco etch virus (TEV) protease, luciferase, β- galactosidase, GAL4, horseradish peroxidase (HRP), focal adhesion kinase (FAK), green fluorescent protein (GFP), and ubiquitin.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Ningning Yang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lu Liu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Gaozhan Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
41
|
A Strategy for Combinatorial Cavity Design in De Novo Proteins. Life (Basel) 2020; 10:life10020009. [PMID: 31979320 PMCID: PMC7175167 DOI: 10.3390/life10020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Protein sequence space is vast; nature uses only an infinitesimal fraction of possible sequences to sustain life. Are there solutions to biological problems other than those provided by nature? Can we create artificial proteins that sustain life? To investigate these questions, we have created combinatorial collections, or libraries, of novel sequences with no homology to those found in living organisms. Previously designed libraries contained numerous functional proteins. However, they often formed dynamic, rather than well-ordered structures, which complicated structural and mechanistic characterization. To address this challenge, we describe the development of new libraries based on the de novo protein S-824, a 4-helix bundle with a very stable 3-dimensional structure. Distinct from previous libraries, we targeted variability to a specific region of the protein, seeking to create potential functional sites. By characterizing variant proteins from this library, we demonstrate that the S-824 scaffold tolerates diverse amino acid substitutions in a putative cavity, including buried polar residues suitable for catalysis. We designed and created a DNA library encoding 1.7 × 106 unique protein sequences. This new library of stable de novo α-helical proteins is well suited for screens and selections for a range of functional activities in vitro and in vivo.
Collapse
|
42
|
Nutschel C, Fulton A, Zimmermann O, Schwaneberg U, Jaeger KE, Gohlke H. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A. J Chem Inf Model 2020; 60:1568-1584. [PMID: 31905288 DOI: 10.1021/acs.jcim.9b00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Chandler PG, Broendum SS, Riley BT, Spence MA, Jackson CJ, McGowan S, Buckle AM. Strategies for Increasing Protein Stability. Methods Mol Biol 2020; 2073:163-181. [PMID: 31612442 DOI: 10.1007/978-1-4939-9869-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.
Collapse
Affiliation(s)
- Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian S Broendum
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew A Spence
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
44
|
Stiffler MA, Poelwijk FJ, Brock KP, Stein RR, Riesselman A, Teyra J, Sidhu SS, Marks DS, Gauthier NP, Sander C. Protein Structure from Experimental Evolution. Cell Syst 2020; 10:15-24.e5. [DOI: 10.1016/j.cels.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 11/27/2022]
|
45
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
46
|
Bjerre B, Nissen J, Madsen M, Fahrig-Kamarauskaitė J, Norrild RK, Holm PC, Nordentoft MK, O'Shea C, Willemoës M, Johansson KE, Winther JR. Improving folding properties of computationally designed proteins. Protein Eng Des Sel 2019; 32:145-151. [PMID: 31553452 DOI: 10.1093/protein/gzz025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/12/2022] Open
Abstract
While the field of computational protein design has witnessed amazing progression in recent years, folding properties still constitute a significant barrier towards designing new and larger proteins. In order to assess and improve folding properties of designed proteins, we have developed a genetics-based folding assay and selection system based on the essential enzyme, orotate phosphoribosyl transferase from Escherichia coli. This system allows for both screening of candidate designs with good folding properties and genetic selection of improved designs. Thus, we identified single amino acid substitutions in two failed designs that rescued poorly folding and unstable proteins. Furthermore, when these substitutions were transferred into a well-structured design featuring a complex folding profile, the resulting protein exhibited native-like cooperative folding with significantly improved stability. In protein design, a single amino acid can make the difference between folding and misfolding, and this approach provides a useful new platform to identify and improve candidate designs.
Collapse
Affiliation(s)
- Benjamin Bjerre
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jakob Nissen
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mikkel Madsen
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jūratė Fahrig-Kamarauskaitė
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Rasmus K Norrild
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter C Holm
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mathilde K Nordentoft
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Charlotte O'Shea
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin Willemoës
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kristoffer E Johansson
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jakob R Winther
- The Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular Sciences, Department of Biology, University for Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
47
|
Activity-stability trade-off in random mutant proteins. J Biosci Bioeng 2019; 128:405-409. [DOI: 10.1016/j.jbiosc.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
|
48
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
49
|
Li W, Ji Q, Wei Z, Chen YL, Zhang Z, Yin X, Aghmiuni SK, Liu M, Chen W, Shi L, Chen Q, Du X, Yu L, Cao MJ, Wang Z, Huang S, Jin T, Wang Q. Biochemical characterization of G64W mutant of acidic beta-crystallin 4. Exp Eye Res 2019; 186:107712. [PMID: 31254514 DOI: 10.1016/j.exer.2019.107712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023]
Abstract
Crystallins are structural proteins in the lens that last a lifetime with little turnover. Deviant in crystallins can cause rare but severe visual impairment, namely, congenital cataracts. It is reported that several mutations in the acidic β-crystallin 4 (CRYBA4) are related to congenital cataracts. However, the pathogenesis of these mutants is not well understood at molecular level. Here we evaluate the biochemical properties of wild type CRYBA4 (CRYBA4WT) and a pathogenic G64W mutant (CRYBA4G64W) including protein folding, polymerization state and protein stability. Furthermore, we explore the differences in their interactions with α-crystallin A (CRYAA) and basic β-crystallin 1 (CRYBB1) via yeast two-hybrid and pull-down assay in vitro, through which we find that G64W mutation leads to protein misfolding, decreases protein stability, blocks its interaction with CRYBB1 but maintains its interaction with CRYAA. Our results deepen our understanding of the pathogenesis of congenital cataracts.
Collapse
Affiliation(s)
- Wenqian Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Qingshan Ji
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjie Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhiyong Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xueying Yin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Samaneh Khodi Aghmiuni
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Muziying Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weirong Chen
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Lei Shi
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinzheng Du
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhulou Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaohui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tengchuan Jin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| | - Qiwei Wang
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Abstract
Cells under stress must adjust their physiology, metabolism, and architecture to adapt to the new conditions. Most importantly, they must down-regulate general gene expression, but at the same time induce synthesis of stress-protective factors, such as molecular chaperones. Here, we investigate how the process of phase separation is used by cells to ensure adaptation to stress. We summarize recent findings and propose that the solubility of important translation factors is specifically affected by changes in physical-chemical parameters such temperature or pH and modulated by intrinsically disordered prion-like domains. These stress-triggered changes in protein solubility induce phase separation into condensates that regulate the activity of the translation factors and promote cellular fitness. Prion-like domains play important roles in this process as environmentally regulated stress sensors and modifier sequences that determine protein solubility and phase behavior. We propose that protein phase separation is an evolutionary conserved feature of proteins that cells harness to regulate adaptive stress responses and ensure survival in extreme environmental conditions.
Collapse
Affiliation(s)
- Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|