1
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Vogelsang TLR, Kast V, Bagnjuk K, Eubler K, Jeevanandan SP, Schmoeckel E, Trebo A, Topalov NE, Mahner S, Mayr D, Mayerhofer A, Jeschke U, Vattai A. RIPK1 and RIPK3 are positive prognosticators for cervical cancer patients and C2 ceramide can inhibit tumor cell proliferation in vitro. Front Oncol 2023; 13:1110939. [PMID: 37197430 PMCID: PMC10183606 DOI: 10.3389/fonc.2023.1110939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction The enzymes Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) und 3 (RIPK3) as well as the protein Mixed lineage kinase domain like pseudokinase (pMLKL) play a role in the signaling cascade of necroptosis. This is a form of programmed cell death which is caspase-independent. High-risk human papilloma virus infection can inhibit necroptosis. Thereby, a persistent infection and consequently the development of cervical cancer can be triggered. Aim of this study was the analysis of the expression of RIPK1, RIPK3 and pMLKL in cervical cancer tissue and the evaluation of its prognostic value on overall survival, progression-free survival and additional clinical parameters. Methods The expression of RIPK1, RIPK3, and pMLKL in cervical cancer tissue microarrays of n = 250 patients was analyzed immunohistochemically. Further, the effect of C2 ceramide on several cervical cancer cell lines (CaSki, HeLa, SiHa) was examined. C2 ceramide is a biologically active short-chain ceramide that induces necroptosis in human luteal granulosa cells. Results Significantly longer overall survival and progression-free survival rates could be detected in cervical cancer patients expressing nuclear RIPK1 or RIPK3 alone or simultaneously (RIPK1 and RIPK3). Cell viability and proliferation was reduced through C2 ceramide stimulation of cervical cancer cells. Simultaneous stimulation of C2 ceramide and the pan-caspase inhibitor Z-VAD-fmk, or the RIPK1-inhibitor necrostatin-1, partly reversed the negative effect of C2 ceramide on cell viability. This observation could imply that caspase-dependent and -independent forms of cell death, including necroptosis, can occur. AnnexinV-FITC apoptosis staining induced a significant increase in apoptotic cells in CaSki and SiHa cells. The stimulation of CaSki cells with C2 ceramide led to a significant percentual increase in necrotic/intermediate (dying) cells after stimulation with C2 ceramide. In addition, after stimulation with C2 ceramide, CaSki and HeLa cells live cell imaging showed morphological changes which are common for necroptosis. Discussion In conclusion, RIPK1 and RIPK3 are independent positive predictors for overall survival and progression-free survival in cervical cancer patients. C2 ceramide can reduce cell viability and proliferation in cervical cancer cells by inducing most likely both apoptosis and necroptosis.
Collapse
Affiliation(s)
- Tilman L. R. Vogelsang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Verena Kast
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Konstantin Bagnjuk
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Sree Priyanka Jeevanandan
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Trebo
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nicole Elisabeth Topalov
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
- *Correspondence: Udo Jeschke,
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
3
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
4
|
Zhu T, Xu L, Peng J, Chen M, Xu H. Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 121:295-304. [PMID: 35032678 DOI: 10.1016/j.fsi.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3) is a deubiquitinating enzyme involved in the repair mechanism of homologous recombinations of DNA double strand breaks (DBS). However, the role of UCHL3 in crustacean immune regulation has not been studied. In this experiment, we cloned and analyzed the expression profile of the UCHL3 gene from Macrobrachium nipponense (MnUCHL3). The obtained full-length cDNA of the MnUCHL3 transcript was 1192 bp, and it had a 687 bp open reading frame encoding a 228 amino acid protein, and the structure of UCHL3 is highly similar to that of other invertebrates. Real-time PCR results indicated that MnUCHL3 was expressed in all detected tissues, with the highest expression levels in the hepatopancreas, and the expression of MnUCHL3 in the gill and hepatopancreas was downregulated to different degrees within 48 h after the infection of viruses and bacteria. Furthermore, knockdown of MnUCHL3 expression by double-stranded RNA (dsRNA) injection in Aeromonas hydrophila-infected prawns increased prawn mortality and bacterial growth. In addition, overexpression of MnUCHL3 in HEK293T cells in vitro suggested that MnUCHL3 could activate the NF-κB signal path and the expression levels of NF-κB signaling cascade members and AMPs, exhibiting remarkable downregulation in the MnUCHL3-silenced group. The above experimental conclusions revealed that UCHL3 gene might be involved in the innate immune response to bacterial infection by regulating the synthesis of a series of AMPs, and these results might provide new insights into UCHL3 in invertebrates.
Collapse
Affiliation(s)
- Tingyao Zhu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jiacheng Peng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China; South Taihu Lake Modern Agricultural Science and Technology Extension Center of Huzhou, Zhejiang University, 768, Luwang Road, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
5
|
Patel S, Wadhwa M. Therapeutic use of specific tumour necrosis factor inhibitors in inflammatory diseases including COVID-19. Biomed Pharmacother 2021; 140:111785. [PMID: 34126316 PMCID: PMC8162906 DOI: 10.1016/j.biopha.2021.111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused significant devastation globally. Despite the development of several vaccines, with uncertainty around global uptake and vaccine efficacy, the need for effective therapeutic agents remains. Increased levels of cytokines including tumour necrosis factor are significant in the pathogenesis of COVID-19 and associated with poor outcomes including ventilator requirement and mortality. Repurposing tumour necrosis factor blocker therapy used in conditions such as rheumatoid arthritis and inflammatory bowel disease seems promising, with early feasibility data showing a reduction in circulation of pro-inflammatory cytokines and encouraging the evaluation of such interventions in preventing disease progression and clinical deterioration in patients with COVID-19. Here, we examine the biological activities of tumour necrosis factor inhibitors indicative of their potential in COVID-19 and briefly outline the randomised control trials assessing their benefit-risk profile in COVID-19 therapy.
Collapse
Affiliation(s)
- Serena Patel
- Downing College, Regent Street, Cambridge CB2 1DQ, UK; Ipswich Hospital, Heath Road, Ipswich IP4 5PD, UK
| | - Meenu Wadhwa
- NIBSC, MHRA, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
6
|
Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, Ke M, Yan W, Zheng L, Zhang Y, Huang K. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287:3165-3183. [PMID: 31903660 DOI: 10.1111/febs.15202] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα)- and interleukin 1β (IL-1β)-induced nuclear factor-κB (NF-κB) activation play key roles in inflammation, immunity, and cancer development. Here, we identified one of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 15 (USP15), as a positive regulator in both TNFα- and IL-1β-induced NF-κB activation. Overexpression of USP15 potentiated TNFα- or IL-1β-triggered NF-κB activation and downstream gene transcription, whereas knockdown of USP15 had opposite effects. Mechanistically, upon TNFα stimulation, USP15 showed an enhanced interaction with transforming growth factor-β activated kinase-1 (TAK1)-TAK1 binding protein (TAB) complex to inhibit the proteolysis of TAB2/3 by different pathways. Apart from deubiquitination dependently inducing cleavage of lysine 48-linked TAB2 ubiquitination, USP15 also DUB independently inhibited lysosome-associated TAB2 degradation, thus enhanced TAB2 stabilization. For TAB3, USP15 inhibited NBR1-mediated selective autophagic TAB3 degradation independent of its deubiquitinating activity. Together, our results reveal a novel USP15-mediated mechanism through which efficient NF-κB activation is achieved by differentially maintaining the TAB2/3 stability.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cheng Cheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanzhu Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyi Song
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxiang Ke
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanyao Yan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
7
|
Molecular Simulation Elaborating the Mechanism of 1β-Hydroxy Alantolactone Inhibiting Ubiquitin-Conjugating Enzyme UbcH5s. Sci Rep 2020; 10:141. [PMID: 31924820 PMCID: PMC6954291 DOI: 10.1038/s41598-019-57104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
1β-hydroxy alantolactone, a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. Recently, it has been found to target UbcH5s by covalently bonding with Cys85 specifically, but the exact molecular basis remains unclear. Here, we analyzed the structural specificity of the catalytic site of UbcH5s by comparing them with other E2 proteins. Molecular dynamics was performed to detect the structural stability of the catalytic site. Docking method was then used to predict conformations of ligand docked at the catalytic site of UbcH5s. The electrostatic surface and charge distribution of ligand and proteins were analyzed by quantitative calculation. Molecular dynamics was used to detect the stability of docking complexes of 1β-hydroxy alantolactone and UbcH5s, the covalently bonded intermediates and the products. The QM/MM methodology was used to calculate the free energy barrier of hydrogen transfer and formation of covalent bond between 15-position carbon of ligand and Cys85. Results revealed that the structure of the catalytic site is stable, and 1β-hydroxy alantolactone can dock at the catalytic site with correct conformation. Molecular dynamics further demonstrates that 1β-hydroxy alantolactone can steadily combine with UbcH5s. Intermediate and product of catalytic reaction are also certified to be stable. Besides, Asp112 and Asn114 function as anchors to fix ligand, ensuring it steadily docked at catalytic site to complete covalent reaction. More importantly, we have found that Cys85 of UbcH5c is more efficient to form a covalent bond with the ligand in comparison with UbcH5a and UbcH5b. Our results successfully explained the mechanism of 1β-hydroxy alantolactone covalently bonding with UbcH5s. Such molecular mechanism may provide a better insight into the molecular development or modification for ubiquitin-related drugs.
Collapse
|
8
|
Abstract
The antiviral innate immune and inflammatory responses are critical for host defense against viral infection. How these antiviral responses are initiated and regulated has been intensively investigated. Viral nucleic acids are sensed by pattern-recognition receptors (PRRs), which trigger various signaling pathways by utilizing distinct adaptor proteins, kinases and regulatory proteins. These pathways lead to activation of the transcriptional factors NF-κB and IRF3 and ultimate induction of antiviral effector proteins including type I interferons (IFNs), TNF and IL-1β, which are critical mediators of antiviral innate immune and inflammatory responses. For the past 20 years, our groups at Peking University and Wuhan University have made restless efforts in deciphering the molecular mechanisms of antiviral innate immune and inflammatory responses. Here, we summarize the major discoveries from our groups, including the identifications of the critical adaptors VISA/MAVS and MITA/STING, regulatory mechanisms of these adapter-mediated signaling, and regulation of TNF- and IL1β-triggered inflammatory responses.
Collapse
Affiliation(s)
- Qing Yang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Imai J, Koganezawa Y, Tuzuki H, Ishikawa I, Sakai T. An optical and non-invasive method to detect the accumulation of ubiquitin chains. Cell Biol Int 2019; 43:1393-1406. [PMID: 31136031 DOI: 10.1002/cbin.11186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/25/2019] [Indexed: 01/24/2023]
Abstract
The accumulations of excess amounts of polyubiquitinated proteins are cytotoxic and frequently observed in pathologic tissue from patients of neurodegenerative diseases. Therefore, optical and non-invasive methods to detect the increase of the amounts of polyubiquitinated proteins in living cells is a promising strategy to find out symptoms and environmental cause of neurodegenerative diseases, also for identifying compounds that could inhibit gathering of polyubiquitinated proteins. Therefore, we generated a pair of fluorescent protein [Azamigreen (Azg) and Kusabiraorange (Kuo)] tagged ubiquitin on its N-terminus (Azg-Ub and Kuo-Ub) and developed an Azg/Kuo-based Fluorescence Resonance Energy Transfer (FRET) assay to estimate the amount of polyubiquitin chains in vitro and in vivo. The FRET intensity was attenuated in the presence of ubiquitin-activating enzyme inhibitor, PYR-41, indicating that both fluorescent ubiquitin is incorporated into ubiquitin chains likewise normal ubiquitin. The FRET intensity was enhanced by the addition of the proteasome inhibitor, MG-132, and was reduced in the presence of the autophagy activator Rapamycin, designating that ubiquitin chains with fluorescent ubiquitin act as the degradation signal equally with normal ubiquitin chains. In summary, the above optical methods provide powerful research tools to estimate the amounts of polyubiquitin chains in vitro and in vivo, especially non-invasively in living cells.
Collapse
Affiliation(s)
- Jun Imai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Yuuta Koganezawa
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Haruka Tuzuki
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Ikumi Ishikawa
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Takahiro Sakai
- Laboratory of Physiological Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
10
|
Natural modulators of the hallmarks of immunogenic cell death. Biochem Pharmacol 2019; 162:55-70. [PMID: 30615863 DOI: 10.1016/j.bcp.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Natural compounds act as immunoadjuvants as their therapeutic effects trigger cancer stress response and release of damage-associated molecular patterns (DAMPs). These reactions occur through an increase in the immunogenicity of cancer cells that undergo stress followed by immunogenic cell death (ICD). These processes result in a chemotherapeutic response with a potent immune-mediating reaction. Natural compounds that induce ICD may function as an interesting approach in converting cancer into its own vaccine. However, multiple parameters determine whether a compound can act as an ICD inducer, including the nature of the inducer, the premortem stress pathways, the cell death pathways, the intrinsic antigenicity of the cell, and the potency and availability of an immune cell response. Thus, the identification of hallmarks of ICD is important in determining the prognostic biomarkers for new therapeutic approaches and combination treatments.
Collapse
|
11
|
Pereira BJA, Oba-Shinjo SM, de Almeida AN, Marie SKN. Molecular alterations in meningiomas: Literature review. Clin Neurol Neurosurg 2018; 176:89-96. [PMID: 30553171 DOI: 10.1016/j.clineuro.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Meningiomas, tumors that originate from meningothelial cells, account for approximately 30% of all new diagnoses of central nervous system neoplasms. According to the 2016 WHO classification of central nervous system tumors meningiomas are classified into three grades: I, II, and III. Past studies have shown that the risk of meningiomas recurrence is strongly correlated with the molecular profile of the tumor. Extensive whole-exome or whole-genome sequencing has provided a large body of information about the mutational landscape of meningiomas. However, such a stratification of meningiomas based on mutational analysis alone has been proven not to satisfy the clinical need for distinction between patients who need (or do not need) an adjuvant treatment. Combined analysis of exome, transcriptome, methylome and future approaches for epigenetic aspects in meningiomas may allow researchers to unveil a more comprehensive understanding of tumor progression mechanisms and, consequently, a more personalized clinical approach for patients with meningioma. A better understanding of the genetics and clinical behavior of high-grade meningiomas is mandatory in order to better design future clinical trials. By studying the mechanisms underlying these new tumorigenesis pathways, we should be able to offer personalized chemotherapy to patients with surgery and radiation-refractory meningiomas in the near future. The purpose of this article is to accurately bring the compilation of this information, for a greater understanding of the subject.
Collapse
Affiliation(s)
- Benedito Jamilson Araújo Pereira
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Sueli Mieko Oba-Shinjo
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | | | - Suely Kazue Nagahashi Marie
- Departament of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
12
|
Abstract
PURPOSE OF THE REVIEW Proinflammatory cytokines are consistently elevated in congestive heart failure. In the current review, we provide an overview on the current understanding of how tumor necrosis factor-α (TNFα), a key proinflammatory cytokine, potentiates heart failure by overwhelming the anti-inflammatory responses disrupting the homeostasis. RECENT FINDINGS Studies have shown co-relationship between severity of heart failure and levels of the proinflammatory cytokine TNFα and one of its secondary mediators interleukin-6 (IL-6), suggesting their potential as biomarkers. Recent efforts have focused on understanding the mechanisms of how proinflammatory cytokines contribute towards cardiac dysfunction and failure. In addition, how unchecked proinflammatory cytokines and their cross-talk with sympathetic system overrides the anti-inflammatory response underlying failure. The review offers insights on how TNFα and IL-6 contribute to cardiac dysfunction and failure. Furthermore, this provides a forum to begin the discussion on the cross-talk between sympathetic drive and proinflammatory cytokines and its determinant role in deleterious outcomes.
Collapse
Affiliation(s)
- Sarah M Schumacher
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sathyamangla V Naga Prasad
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Abstract
Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as β-adrenergic receptor (βAR). Given that βARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating βAR function.
Collapse
Affiliation(s)
- Maradumane L Mohan
- *Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and †Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
14
|
Ehrlichia chaffeensis TRP120 Moonlights as a HECT E3 Ligase Involved in Self- and Host Ubiquitination To Influence Protein Interactions and Stability for Intracellular Survival. Infect Immun 2017. [PMID: 28630068 DOI: 10.1128/iai.00290-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ehrlichia chaffeensis secretes tandem repeat protein (TRP) effectors that are involved in a diverse array of host cell interactions, some of which directly activate cell signaling pathways and reprogram host gene transcription to promote survival in the mononuclear phagocyte. However, the molecular details of these effector-host interactions and roles in pathobiology are incompletely understood. In this study, we determined that the E. chaffeensis effector TRP120 is posttranslationally modified by ubiquitin (Ub) and that ubiquitination occurs through intrinsic and host-mediated HECT ligase activity. A functional HECT E3 ligase domain with a conserved catalytic site was identified in the C-terminal region of TRP120, and TRP120 autoubiquitination occurred in vitro in the presence of host UbcH5b/c E2 enzymes. TRP120 ubiquitination sites were mapped using a high-density microfluidic peptide array and confirmed by ectopic expression of TRP120 lysine mutants in cells. Moreover, we determined that the HECT E3 ubiquitin ligase, Nedd4L, interacts with TRP120 during infection and also mediates TRP120 ubiquitination. Nedd4L knockdown resulted in the reduction of TRP120-Ub, decreased ehrlichial infection, and reduced recruitment of a known TRP120-interacting host protein, PCGF5, to ehrlichial inclusions. TRP120-mediated PCGF5 polyubiquitination was associated with a reduction in PCGF5 levels. Inhibition of ubiquitination with small molecules also significantly decreased ehrlichial infection, indicating that the Ub pathway is critical for ehrlichial intracellular replication and survival. The current study identified a novel E. chaffeensis ubiquitin ligase and revealed an important role for the ubiquitin pathway in effector-host interactions and pathogen-mediated host protein stability in order to promote intracellular survival.
Collapse
|
15
|
Disruption of DNA repair in cancer cells by ubiquitination of a destabilising dimerization domain of nucleotide excision repair protein ERCC1. Oncotarget 2017; 8:55246-55264. [PMID: 28903417 PMCID: PMC5589656 DOI: 10.18632/oncotarget.19422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
DNA repair pathways present in all cells serve to preserve genome stability, but in cancer cells they also act reduce the efficacy of chemotherapy. The endonuclease ERCC1-XPF has an important role in the repair of DNA damage caused by a variety of chemotherapeutic agents and there has been intense interest in the use of ERCC1 as a predictive marker of therapeutic response in non-small cell lung carcinoma, squamous cell carcinoma and ovarian cancer. We have previously validated ERCC1 as a therapeutic target in melanoma, but all small molecule ERCC1-XPF inhibitors reported to date have lacked sufficient potency and specificity for clinical use. In an alternative approach to prevent the repair activity of ERCC1-XPF, we investigated the mechanism of ERCC1 ubiquitination and found that the key region was the C-terminal (HhH)2 domain which heterodimerizes with XPF. This ERCC1 region was modified by non-conventional lysine-independent, but proteasome-dependent polyubiquitination, involving Lys33 of ubiquitin and a linear ubiquitin chain. XPF was not polyubiquitinated and its expression was dependent on presence of ERCC1, but not vice versa. To our surprise we found that ERCC1 can also homodimerize through its C-terminal (HhH)2 domain. We exploited the ability of a peptide containing this C-terminal domain to destabilise both endogenous ERCC1 and XPF in human melanoma cells and fibroblasts, resulting in reductions of up to 85% in nucleotide excision repair and near two-fold increased sensitivity to DNA damaging agents. We suggest that the ERCC1 (HhH)2 domain could be used in an alternative strategy to treat cancer.
Collapse
|
16
|
Hermanns HM, Wohlfahrt J, Mais C, Hergovits S, Jahn D, Geier A. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction. Biol Chem 2017; 397:695-708. [PMID: 27071147 DOI: 10.1515/hsz-2015-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Collapse
|
17
|
Mohideen F, Paulo JA, Ordureau A, Gygi SP, Harper JW. Quantitative Phospho-proteomic Analysis of TNFα/NFκB Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death. Mol Cell Proteomics 2017; 16:1200-1216. [PMID: 28539327 DOI: 10.1074/mcp.m117.068189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
TNFα is a potent inducer of inflammation due to its ability to promote gene expression, in part via the NFκB pathway. Moreover, in some contexts, TNFα promotes Caspase-dependent apoptosis or RIPK1/RIPK3/MLKL-dependent necrosis. Engagement of the TNF Receptor Signaling Complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of several downstream components, including TAK1, IKKα/IKKβ, IκBα, and NFκB. However, immediate downstream phosphorylation events occurring in response to TNFα signaling are poorly understood at a proteome-wide level. Here we use Tandem Mass Tagging-based proteomics to quantitatively characterize acute TNFα-mediated alterations in the proteome and phosphoproteome with or without inhibition of the cIAP-dependent survival arm of the pathway with a SMAC mimetic. We identify and quantify over 8,000 phosphorylated peptides, among which are numerous known sites in the TNF-RSC, NFκB, and MAP kinase signaling systems, as well as numerous previously unrecognized phosphorylation events. Functional analysis of S320 phosphorylation in RIPK1 demonstrates a role for this event in suppressing its kinase activity, association with CASPASE-8 and FADD proteins, and subsequent necrotic cell death during inflammatory TNFα stimulation. This study provides a resource for further elucidation of TNFα-dependent signaling pathways.
Collapse
Affiliation(s)
- Firaz Mohideen
- From the ‡Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Joao A Paulo
- From the ‡Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Alban Ordureau
- From the ‡Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steve P Gygi
- From the ‡Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - J Wade Harper
- From the ‡Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
19
|
Abstract
Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
20
|
Chen PJ, Wang YL, Kuo LM, Lin CF, Chen CY, Tsai YF, Shen JJ, Hwang TL. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα. Sci Rep 2016; 6:26554. [PMID: 27212040 PMCID: PMC4876378 DOI: 10.1038/srep26554] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacological activities, including anti-inflammatory effects, yet the nature of honokiol targeting molecules remains to be revealed. Here, we investigated the inhibitory effect of honokiol on neutrophil adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression, which underlie its molecular target, and mechanisms for inactivating nuclear factor κ enhancer binding protein (NF-κB) in mouse cerebral ECs. Honokiol inhibited tumour necrosis factor-α (TNF-α)-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs. The inflammatory transcription factor NF-κB was downregulated by honokiol. Honokiol significantly blocked TNF-α-induced NF-κB p65 nuclear translocation and degradation of the proteasome-dependent inhibitor of NF-κB α (IκBα). From docking model prediction, honokiol directly targeted the ubiquitin-ubiquitin interface of Lys48-linked polychains. Moreover, honokiol prevented the TNF-α-induced Lys48-linked polyubiquitination, including IκBα-polyubiquitin interaction. Honokiol has protective anti-inflammatory effects on TNF-α-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs, at least in part by directly inhibiting ubiquitination-mediated IκBα degradation and then preventing NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Po-Jen Chen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Ling Wang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chwan-Fwu Lin
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jiann-Jong Shen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.,Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
21
|
TRIM5α-Mediated Ubiquitin Chain Conjugation Is Required for Inhibition of HIV-1 Reverse Transcription and Capsid Destabilization. J Virol 2015; 90:1849-57. [PMID: 26676782 DOI: 10.1128/jvi.01948-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Rhesus macaque TRIM5α (rhTRIM5α) is a retroviral restriction factor that inhibits HIV-1 infection. Previous studies have revealed that TRIM5α restriction occurs via a two-step process. The first step is restriction factor binding, which is sufficient to inhibit infection. The second step, which is sensitive to proteasome inhibition, prevents the accumulation of reverse transcription products in the target cell. However, because of the pleotropic effects of proteasome inhibitors, the molecular mechanisms underlying the individual steps in the restriction process have remained poorly understood. In this study, we have fused the small catalytic domain of herpes simplex virus UL36 deubiquitinase (DUb) to the N-terminal RING domain of rhTRIM5α, which results in a ubiquitination-resistant protein. Cell lines stably expressing this fusion protein inhibited HIV-1 infection to the same degree as a control fusion to a catalytically inactive DUb. However, reverse transcription products were substantially increased in the DUb-TRIM5α fusion relative to the catalytically inactive control or the wild-type (WT) TRIM5α. Similarly, expression of DUb-rhTRIM5α resulted in the accumulation of viral cores in target cells following infection, while the catalytically inactive control and WT rhTRIM5α induced the abortive disassembly of viral cores, indicating a role for ubiquitin conjugation in rhTRIM5α-mediated destabilization of HIV-1 cores. Finally, DUb-rhTRIM5α failed to activate NF-κB signaling pathways compared to controls, demonstrating that this ubiquitination-dependent activity is separable from the ability to restrict retroviral infection. IMPORTANCE These studies provide direct evidence that ubiquitin conjugation to rhTRIM5α-containing complexes is required for the second step of HIV-1 restriction. They also provide a novel tool by which the biological activities of TRIM family proteins might be dissected to better understand their function and underlying mechanisms of action.
Collapse
|
22
|
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2015; 12:49-62. [PMID: 26656660 DOI: 10.1038/nrrheum.2015.169] [Citation(s) in RCA: 892] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF is a pleiotropic cytokine with important functions in homeostasis and disease pathogenesis. Recent discoveries have provided insights into TNF biology that introduce new concepts for the development of therapeutics for TNF-mediated diseases. The model of TNF receptor signalling has been extended to include linear ubiquitination and the formation of distinct signalling complexes that are linked with different functional outcomes, such as inflammation, apoptosis and necroptosis. Our understanding of TNF-induced gene expression has been enriched by the discovery of epigenetic mechanisms and concepts related to cellular priming, tolerization and induction of 'short-term transcriptional memory'. Identification of distinct homeostatic or pathogenic TNF-induced signalling pathways has introduced the concept of selectively inhibiting the deleterious effects of TNF while preserving its homeostatic bioactivities for therapeutic purposes. In this Review, we present molecular mechanisms underlying the roles of TNF in homeostasis and inflammatory disease pathogenesis, and discuss novel strategies to advance therapeutic paradigms for the treatment of TNF-mediated diseases.
Collapse
Affiliation(s)
- George D Kalliolias
- Arthritis &Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, 535 E 70th Street, New York, New York 10021, USA
| | - Lionel B Ivashkiv
- Arthritis &Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, 535 E 70th Street, New York, New York 10021, USA
| |
Collapse
|
23
|
Yu X, Deng Q, Li W, Xiao L, Luo X, Liu X, Yang L, Peng S, Ding Z, Feng T, Zhou J, Fan J, Bode AM, Dong Z, Liu J, Cao Y. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget 2015; 6:1995-2008. [PMID: 25575821 PMCID: PMC4385831 DOI: 10.18632/oncotarget.3038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023] Open
Abstract
Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS.
Collapse
Affiliation(s)
- Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Qipan Deng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Wei Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lanbo Xiao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiangjian Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiaolan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Songling Peng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Zhihui Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Jian Zhou
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Jia Fan
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| |
Collapse
|
24
|
Hoseini SM, Kalantari A, Afarideh M, Noshad S, Behdadnia A, Nakhjavani M, Esteghamati A. Evaluation of plasma MMP-8, MMP-9 and TIMP-1 identifies candidate cardiometabolic risk marker in metabolic syndrome: results from double-blinded nested case-control study. Metabolism 2015; 64:527-38. [PMID: 25633268 DOI: 10.1016/j.metabol.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/11/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
AIMS Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are dysregulated in metabolic syndrome (MetS) and associated with atherosclerosis and cardiovascular disease (CVD). Previous studies on the association between MMPs/TIMPs and MetS are controversial. We aimed to evaluate circulating MMP-8, MMP-9 and TIMP-1 in a group of MetS individuals and healthy controls to find the potential marker associated with MetS and its components. METHODS 243 MetS individuals participated in a nested case-control design, of whom 63 were excluded (study subjects for analysis n=180; 87 MetS cases, 93 controls). We employed the International Diabetes Federation criteria using national waist circumference cutoffs for case definition. Anthropometric and biochemical measurements were done using standard methods. RESULTS Plasma MMP-8, TIMP-1, tumor necrosis factor-alpha (TNF-α), highly sensitive C-reactive protein (hs-CRP) and MMP-8/TIMP-1 ratio were significantly higher in MetS cases (P for all < 0.05). Each component of MetS except raised fasting plasma glucose positively correlated with MMP-8 and numbers of MetS components increased with higher MMP-8. In all regression models, MMP-8 was a significant predictor of MetS and in the final model the relationship persisted even after adjusting for pro-inflammatory cytokines hs-CRP and TNF-α (odds ratio=6.008, 95% confidence interval: 1.612-22.389, P=0.008). CONCLUSION Strong associations of MMP-8 with components of MetS in univariate, bivariate and multivariate models suggest plasma MMP-8 as a potential cardiometabolic risk marker for MetS. Higher MMP-8 in MetS is possibly mediated through mechanisms both dependent and independent of chronic low grade inflammation.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Kalantari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Afarideh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Noshad
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aram Behdadnia
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94:1-11. [PMID: 25562745 DOI: 10.1016/j.bcp.2014.12.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators. Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting. The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
26
|
Tumor necrosis factor-α promotes survival and phenotypic maturation of poly(I:C)-treated dendritic cells but impairs their Th1 and Th17 polarizing capability. Cytotherapy 2015; 17:633-46. [PMID: 25559144 DOI: 10.1016/j.jcyt.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND AIMS Toll-like receptor (TLR)-3 synthetic agonist polyinosinic-polycytidylic acid (poly(I:C)) is a promising agent for dendritic cell (DC)-based anti-tumor vaccines because of its ability to induce a strong maturation of DCs, but such an effect is followed by stimulation of DC apoptosis. Tumor necrosis factor (TNF)-α may promote the survival of poly(I:C)-stimulated DCs, but it is not known in detail how this combination affects the maturation and polarization capacity of monocyte-derived (Mo)DCs. METHODS Immature MoDCs, generated from human monocytes, were treated with different concentrations of poly(I:C) combined with TNF-α, and the effect on survival, phenotype, production of cytokines, allostimulatory and Th polarization capacity was assessed after 24 and 48 h. RESULTS We showed that TNF-α inhibited the dose-dependent pro-apoptotic effect of poly(I:C). However, TNF-α also decreased poly(I:C)-induced production of interleukin (IL)-12 and IL-23 by MoDCs, which correlated with their diminished capacity to stimulate cellular proliferation, interferon-γ and IL-17 production by allogeneic CD4(+)T cells in co-culture. Such an effect was more pronounced after 24 h and could not be restored by CD40 ligation. In the presence of CD40L, TNF-α even stimulated IL-10 production and immunoglobulin-like transcript 3 expression by poly(I:C)-matured DCs, which correlated with their increased capacity to induce IL-10 production by CD4(+)T cells. CONCLUSION Even though TNF-α could promote the survival of poly(I:C)-matured MoDCs, it also suppresses key anti-tumor functions of these cells, which could have important implications when considering this, already suggested, protocol for the DC-based anti-tumor therapy.
Collapse
|
27
|
Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. FEBS J 2014; 282:19-31. [PMID: 25327580 DOI: 10.1111/febs.13120] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
In recent years, the paradigm of cell death regulation has changed. Nowadays, not only apoptosis but also several forms of necrosis (e.g. necroptosis) are considered to be regulated. The central roles of receptor-interacting serine/threonine protein kinase1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein, and the molecular signalling platforms in which these molecules participate, are being intensively studied. In particular, the role of RIPK1, being both a kinase and a scaffold molecule, in different cell death regulatory complexes is of great relevance for the field. This minireview aims to introduce the emerging and dynamic field of necroptosis to the reader, with a specific focus on intracellular signalling pathways involved in this process.
Collapse
Affiliation(s)
- Maria Feoktistova
- Section of Molecular Dermatology, Department of Dermatology, Venereology and Allergology, Medical Faculty Mannheim, University Heidelberg, Germany
| | | |
Collapse
|
28
|
Liu L, Hua Y, Wang D, Shan L, Zhang Y, Zhu J, Jin H, Li H, Hu Z, Zhang W. A sesquiterpene lactone from a medicinal herb inhibits proinflammatory activity of TNF-α by inhibiting ubiquitin-conjugating enzyme UbcH5. ACTA ACUST UNITED AC 2014; 21:1341-1350. [PMID: 25200604 DOI: 10.1016/j.chembiol.2014.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023]
Abstract
UbcH5 is the key ubiquitin-conjugating enzyme catalyzing ubiquitination during TNF-α-triggered NF-κB activation. Here, we identified an herb-derived sesquiterpene lactone compound IJ-5 as a preferential inhibitor of UbcH5 and explored its therapeutic value in inflammatory and autoimmune disease models. IJ-5 suppresses TNF-α-induced NF-κB activation and inflammatory gene transcription by inhibiting the ubiquitination of receptor-interacting protein 1 and NF-κB essential modifier, which is essential to IκB kinase activation. Mechanistic investigations revealed that IJ-5 preferentially binds to and inactivates UbcH5 by forming a covalent adduct with its active site cysteine and thereby preventing ubiquitin conjugation to UbcH5. In preclinical models, pretreatment of IJ-5 exhibited potent anti-inflammatory activity against TNF-α- and D-galactosamine-induced hepatitis and collagen-induced arthritis. These findings highlight the potential of UbcH5 as a therapeutic target for anti-TNF-α interventions and provide an interesting lead compound for the development of new anti-inflammation agents.
Collapse
Affiliation(s)
- Li Liu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yaping Hua
- Department of Natural Medicinal Chemistry, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China
| | - Dan Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Shan
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junsheng Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huizi Jin
- Department of Natural Medicinal Chemistry, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenlin Hu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weidong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
29
|
Bielig H, Lautz K, Braun PR, Menning M, Machuy N, Brügmann C, Barisic S, Eisler SA, Andree M, Zurek B, Kashkar H, Sansonetti PJ, Hausser A, Meyer TF, Kufer TA. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog 2014; 10:e1004351. [PMID: 25187968 PMCID: PMC4154870 DOI: 10.1371/journal.ppat.1004351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023] Open
Abstract
NOD1 is an intracellular pathogen recognition receptor that contributes to anti-bacterial innate immune responses, adaptive immunity and tissue homeostasis. NOD1-induced signaling relies on actin remodeling, however, the details of the connection of NOD1 and the actin cytoskeleton remained elusive. Here, we identified in a druggable-genome wide siRNA screen the cofilin phosphatase SSH1 as a specific and essential component of the NOD1 pathway. We show that depletion of SSH1 impaired pathogen induced NOD1 signaling evident from diminished NF-κB activation and cytokine release. Chemical inhibition of actin polymerization using cytochalasin D rescued the loss of SSH1. We further demonstrate that NOD1 directly interacted with SSH1 at F-actin rich sites. Finally, we show that enhanced cofilin activity is intimately linked to NOD1 signaling. Our data thus provide evidence that NOD1 requires the SSH1/cofilin network for signaling and to detect bacterial induced changes in actin dynamics leading to NF-κB activation and innate immune responses.
Collapse
Affiliation(s)
- Harald Bielig
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Peter R. Braun
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis-Innovationszentrum Center for Systems Biomedicine, Falkensee, Germany
| | - Maureen Menning
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christine Brügmann
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Sandra Barisic
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A. Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maria Andree
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Birte Zurek
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Institut Pasteur, Paris, France
- Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas A. Kufer
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
30
|
Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2013; 588:356-67. [PMID: 24239534 PMCID: PMC7094371 DOI: 10.1016/j.febslet.2013.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein functions. It is therefore a fundamentally important regulatory mechanism that impacts most if not all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human diseases such as neurodegenerative and immunological disorders and many cancers. The success of proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination cascade would be clinically important for therapeutic benefits. In this review, we summarize advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that may shed light on innovative drug discovery in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| |
Collapse
|
31
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
32
|
Munir M, Zohari S, Iqbal M, Abbas M, Perez DR, Berg M. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1. Virulence 2013; 4:612-23. [PMID: 23959028 DOI: 10.4161/viru.26055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential.
Collapse
Affiliation(s)
- Muhammad Munir
- Avian Viral Diseases Programme; The Pirbright Institute; Compton Laboratory; Compton, Newbury, Berkshire UK
| | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Potter CS, Sundberg JP, Hogenesch H. SHARPIN is a key regulator of immune and inflammatory responses. J Cell Mol Med 2013; 16:2271-9. [PMID: 22452937 PMCID: PMC3402681 DOI: 10.1111/j.1582-4934.2012.01574.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mice with spontaneous mutations in the Sharpin gene develop chronic proliferative dermatitis that is characterized by eosinophilic inflammation of the skin and other organs with increased expression of type 2 cytokines and dysregulated development of lymphoid tissues. The mutant mice share phenotypic features with human hypereosinophilic syndromes. The biological function of SHARPIN and how its absence leads to such a complex inflammatory phenotype in mice are poorly understood. However, recent studies identified SHARPIN as a novel modulator of immune and inflammatory responses. The emerging mechanistic model suggests that SHARPIN functions as an important adaptor component of the linear ubiquitin chain assembly complex that modulates activation of NF-κB signalling pathway, thereby regulating cell survival and apoptosis, cytokine production and development of lymphoid tissues. In this review, we will summarize the current understanding of the ubiquitin-dependent regulatory mechanisms involved in NF-κB signalling, and incorporate the recently obtained molecular insights of SHARPIN into this pathway. Recent studies identified SHARPIN as an inhibitor of β1-integrin activation and signalling, and this may be another mechanism by which SHARPIN regulates inflammation. Furthermore, the disrupted lymphoid organogenesis in SHARPIN-deficient mice suggests that SHARPIN-mediated NF-κB regulation is important for de novo development of lymphoid tissues.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-1243, USA
| | | | | | | |
Collapse
|
34
|
Abstract
NF-κB (nuclear factor kappa B) family transcription factors are master regulators of immune and inflammatory processes in response to both injury and infection. In the latent state, NF-κBs are sequestered in the cytosol by their inhibitor IκB (inhibitor of NF-κB) proteins. Upon stimulations of innate immune receptors such as Toll-like receptors and cytokine receptors such as those in the TNF (tumor necrosis factor) receptor superfamily, a series of membrane proximal events lead to the activation of the IKK (IκB kinase). Phosphorylation of IκBs results in their proteasomal degradation and the release of NF-κB for nuclear translocation and activation of gene transcription. Here, we review the plethora of structural studies in these NF-κB activation pathways, including the TRAF (TNF receptor-associated factor) proteins, IKK, NF-κB, ubiquitin ligases, and deubiquitinating enzymes. Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coalesce into large oligomeric signaling complexes, or signalosomes, for signal propagation.
Collapse
Affiliation(s)
- Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA
| | | |
Collapse
|
35
|
Zhou AY, Shen RR, Kim E, Lock YJ, Xu M, Chen ZJ, Hahn WC. IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep 2013; 3:724-33. [PMID: 23453969 DOI: 10.1016/j.celrep.2013.01.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/19/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022] Open
Abstract
IκB kinase ε (IKKε, IKBKE) is a key regulator of innate immunity and a breast cancer oncogene, amplified in ~30% of breast cancers, that promotes malignant transformation through NF-κB activation. Here, we show that IKKε is modified and regulated by K63-linked polyubiquitination at lysine 30 and lysine 401. Tumor necrosis factor alpha and interleukin-1β stimulation induces IKKε K63-linked polyubiquitination over baseline levels in both macrophages and breast cancer cell lines, and this modification is essential for IKKε kinase activity, IKKε-mediated NF-κB activation, and IKKε-induced malignant transformation. Disruption of K63-linked ubiquitination of IKKε does not affect its overall structure but impairs the recruitment of canonical NF-κB proteins. A cIAP1/cIAP2/TRAF2 E3 ligase complex binds to and ubiquitinates IKKε. Altogether, these observations demonstrate that K63-linked polyubiquitination regulates IKKε activity in both inflammatory and oncogenic contexts and suggests an alternative approach to targeting this breast cancer oncogene.
Collapse
Affiliation(s)
- Alicia Y Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tu D, Zhu Z, Zhou AY, Yun CH, Lee KE, Toms AV, Li Y, Dunn GP, Chan E, Thai T, Yang S, Ficarro SB, Marto JA, Jeon H, Hahn WC, Barbie DA, Eck MJ. Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep 2013; 3:747-58. [PMID: 23453972 DOI: 10.1016/j.celrep.2013.01.033] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/05/2012] [Accepted: 01/28/2013] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.
Collapse
Affiliation(s)
- Daqi Tu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Long JS, Ryan KM. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 2012; 31:5045-60. [PMID: 22310284 DOI: 10.1038/onc.2012.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/24/2011] [Accepted: 12/24/2011] [Indexed: 12/12/2022]
Abstract
Cancer is a multifaceted disease comprising a combination of genetic, metabolic and signalling aberrations, which severely disrupt the normal homeostasis of cell growth and death. Many oncogenic events while promoting tumour development also increase the sensitivity of cells to cell death stimuli including chemotherapeutic drugs. As a result, tumour cells often acquire the ability to evade death by inactivating cell death pathways that normally function to eliminate damaged and harmful cells. The impairment of cell death function is also often the reason for the development of chemotherapeutic resistance encountered during treatment. It is therefore necessary to achieve a comprehensive understanding of existing cell death pathways and the relevant regulatory components involved, with the intention of identifying new strategies to kill cancer cells. This review provides an insightful overview of the common forms of cell death signalling pathways, the interactions between these pathways and the ways in which these pathways are deregulated in cancer. We also discuss the emerging therapies targeted at activating or restoring cell death pathways to induce tumour cell death, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- J S Long
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, UK
| | | |
Collapse
|
38
|
Tsou HK, Chen HT, Chang CH, Yang WY, Tang CH. Apoptosis signal-regulating kinase 1 is mediated in TNF-α-induced CCL2 expression in human synovial fibroblasts. J Cell Biochem 2012; 113:3509-3519. [PMID: 22711527 DOI: 10.1002/jcb.24227] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine with a critical role in osteoarthritis (OA), was primarily produced by monocytes/macrophages and plays a crucial role in the inflammatory response. Here, we investigated the intracellular signaling pathways involved in TNF-α-induced monocyte chemoattractant protein 1 (MCP-1)/CCL2 expression in human synovial fibroblast cells. Stimulation of synovial fibroblasts (OASF) with TNF-α induced concentration- and time-dependent increases in CCL2 expression. TNF-α-mediated CCL2 production was attenuated by TNFR1 monoclonal antibody (Ab). Pretreatment with an apoptosis signal-regulating kinase 1 (ASK1) inhibitor (thioredoxin), JNK inhibitor (SP600125), p38 inhibitor (SB203580), or AP-1 inhibitor (curcumin or tanshinone IIA) also blocked the potentiating action of TNF-α. Stimulation of cells with TNF-α enhanced ASK1, JNK, and p38 activation. Treatment of OASF with TNF-α also increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the CCL2 promoter. TNF-α-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element were inhibited by TNFR1 Ab, thioredoxin, SP600125, and SB203580. Our results suggest that the interaction between TNF-α and TNFR1 increases CCL2 expression in human synovial fibroblasts via the ASK1, JNK/p38, c-Jun, and AP-1 signaling pathway.
Collapse
Affiliation(s)
- Hsi-Kai Tsou
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Mandel I, Paperna T, Volkowich A, Merhav M, Glass-Marmor L, Miller A. The ubiquitin-proteasome pathway regulates claudin 5 degradation. J Cell Biochem 2012; 113:2415-23. [PMID: 22389112 DOI: 10.1002/jcb.24118] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The tight junctions (TJs) form continuous intracellular contacts, which help create selective barriers in epithelial and endothelial cell layers. The structures created by the TJs are very dynamic and can be rapidly remodeled in response to physiological and pathological signals. Claudin 5 is a membranal TJ protein which plays a critical role in determining the permeability of endothelial barriers. We describe the regulation of claudin 5 degradation by the ubiquitin-proteasome system (UPS). Our results indicate that claudin 5 has a relatively short half-life and can be polyubiquitinated on lysine 199. This ubiquitination appears to trigger the proteasome-dependent degradation of claudin 5. Other mechanisms also seem to be involved in the post-translational regulation of claudin 5, including a ubiquitin-independent and probably indirect lysosomal-dependent pathway. These findings provide evidence for the involvement of the UPS in the regulation of claudin 5 levels, and set the stage for further research to determine the involvement of this pathway in the modulation of the properties of TJs and cell-layer barriers.
Collapse
Affiliation(s)
- Ilana Mandel
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
41
|
Salt IP, Palmer TM. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin Investig Drugs 2012; 21:1155-67. [PMID: 22694351 DOI: 10.1517/13543784.2012.696609] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION AMP-activated protein kinase (AMPK) is the downstream component of a serine/threonine protein kinase cascade involved in the regulation of metabolism. Many studies have also revealed that AMPK activation can exert significant anti-inflammatory and immunosuppressive effects in a variety of cell types and models of inflammatory/autoimmune disease. Because metformin, an AMPK activator that is a favored first-line therapeutic option for type 2 diabetes, may confer benefits in chronic inflammatory diseases and cancers independent of its ability to normalize blood glucose, there is now considerable interest in identifying and exploiting AMPK's anti-inflammatory effects. AREAS COVERED The authors provide a background to AMPK signaling and describe the pro-inflammatory signaling pathways and processes shown to be regulated by AMPK activation. EXPERT OPINION Identification of AMPK subunits responsible for specific anti-inflammatory effects, and a molecular understanding of the mechanisms involved, will be necessary to exploit AMPK pathway activation in acute and chronic inflammatory disease settings while minimizing adverse reactions due to deregulation of AMPK's wide-ranging effects on metabolism.
Collapse
Affiliation(s)
- Ian P Salt
- University of Glasgow, Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, Glasgow G12 8QQ, Scotland, UK
| | | |
Collapse
|
42
|
van Wijk SJL, Fiskin E, Putyrski M, Pampaloni F, Hou J, Wild P, Kensche T, Grecco HE, Bastiaens P, Dikic I. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol Cell 2012; 47:797-809. [PMID: 22819327 DOI: 10.1016/j.molcel.2012.06.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/02/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Ubiquitin chains modify a major subset of the proteome, but detection of ubiquitin signaling dynamics and localization is limited due to a lack of appropriate tools. Here, we employ ubiquitin-binding domain (UBD)-based fluorescent sensors to monitor linear and K63-linked chains in vitro and in vivo. We utilize the UBD in NEMO and ABIN (UBAN) for detection of linear chains, and RAP80 ubiquitin-interacting motif (UIM) and TAB2 Npl4 zinc finger (NZF) domains to detect K63 chains. Linear and K63 sensors decorated the ubiquitin coat surrounding cytosolic Salmonella during bacterial autophagy, whereas K63 sensors selectively monitored Parkin-induced mitophagy and DNA damage responses in fixed and living cells. In addition, linear and K63 sensors could be used to monitor endogenous signaling pathways, as demonstrated by their ability to differentially interfere with TNF- and IL-1-induced NF-κB pathway. We propose that UBD-based biosensors could serve as prototypes to track and trace other chain types and ubiquitin-like signals in vivo.
Collapse
Affiliation(s)
- Sjoerd J L van Wijk
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. J Biol Chem 2012; 287:23626-34. [PMID: 22605335 DOI: 10.1074/jbc.m112.347195] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli.
Collapse
Affiliation(s)
- Tobias Kensche
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt, Main, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291-322. [PMID: 22482907 DOI: 10.1146/annurev-biochem-051810-094654] [Citation(s) in RCA: 603] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
45
|
A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2. Mol Cell 2012; 46:91-104. [PMID: 22424771 DOI: 10.1016/j.molcel.2012.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 09/07/2011] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
The association between hyperinflammatory states and numerous diseases is widely recognized, but our understanding of the molecular strategies that have evolved to prevent uncontrolled activation of inflammatory responses remains incomplete. Here, we report a critical, nontranscriptional role of GPS2 as a guardian against hyperstimulation of the TNF-α-induced gene program. GPS2 cytoplasmic actions are required to specifically modulate RIP1 ubiquitylation and JNK activation by inhibiting TRAF2/Ubc13 enzymatic activity. In vivo relevance of GPS2 anti-inflammatory role is confirmed by inhibition of TNF-α target genes in macrophages and by improved insulin signaling in the adipose tissue of aP2-GPS2 transgenic mice. As the nontranscriptional role is complemented by GPS2 functioning as positive and negative cofactor for nuclear receptors, in vivo overexpression also results in elevated circulating level of Resistin and development of hepatic steatosis. Together, these studies define GPS2 as a molecular guardian required for precise control of inflammatory responses involved in immunity and homeostasis.
Collapse
|
46
|
Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 2012; 44:559-71. [PMID: 22099304 DOI: 10.1016/j.molcel.2011.09.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/28/2011] [Accepted: 09/06/2011] [Indexed: 01/30/2023]
Abstract
A20 is a potent anti-inflammatory protein that inhibits NF-κB, and A20 dysfunction is associated with autoimmunity and B cell lymphoma. A20 harbors a deubiquitination enzyme domain and can employ multiple mechanisms to antagonize ubiquitination upstream of NEMO, a regulatory subunit of the IκB kinase complex (IKK). However, direct evidence of IKK inhibition by A20 is lacking, and the inhibitory mechanism remains poorly understood. Here we show that A20 can directly impair IKK activation without deubiquitination or impairment of ubiquitination enzymes. We find that polyubiquitin binding by A20, which is largely dependent on A20's seventh zinc-finger motif (ZnF7), induces specific binding to NEMO. Remarkably, this ubiquitin-induced recruitment of A20 to NEMO is sufficient to block IKK phosphorylation by its upstream kinase TAK1. Our results suggest a noncatalytic mechanism of IKK inhibition by A20 and a means by which polyubiquitin chains can specify a signaling outcome.
Collapse
Affiliation(s)
- Brian Skaug
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Deregulation of innate immune signalling and cell death form the basis of most human disease pathogenesis. Inhibitor of APoptosis (IAP) protein-family members are frequently overexpressed in cancer and contribute to tumour cell survival, chemo-resistance, disease progression and poor prognosis. Although best known for their ability to regulate caspases, IAPs also influence ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-κB. Recent advances in our understanding of the molecular mechanisms through which IAPs influence cell death and innate immune responses have provided new insights into novel strategies for treatment of cancer. In this review we discuss our current understanding of IAP-mediated NF-κB signalling, as well as elaborate on unexpected insights into the involvement of IAPs in regulating the 'Ripoptosome', a novel intrinsic cell death-inducing platform. We propose an evolutionarily conserved concept whereby IAPs function as guardians of killer platforms such as the apoptosome in Drosophila and the Ripoptosome in mammals.
Collapse
Affiliation(s)
- M Darding
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | | |
Collapse
|
48
|
Skokos EA, Charokopos A, Khan K, Wanjala J, Kyriakides TR. Lack of TNF-α-induced MMP-9 production and abnormal E-cadherin redistribution associated with compromised fusion in MCP-1-null macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2311-21. [PMID: 21514443 DOI: 10.1016/j.ajpath.2011.01.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 11/16/2022]
Abstract
Homotypic cell fusion occurs in several cell types including macrophages in the formation of foreign body giant cells. Previously, monocyte chemoattractant protein-1 (MCP-1) was demonstrated to be required for foreign body giant cell formation in the foreign body response. The present study investigated the fusion defect in MCP-1-null macrophages by implanting biomaterials intraperitoneally in wild-type and MCP-1-null mice and monitoring the macrophage response at 12 hours to 4 weeks. MCP-1-null mice exhibited reduced accumulation and fusion of macrophages on implants, which was associated with attenuation of the foreign body response. Consistent with previous in vitro findings, the level of matrix metalloproteinase-9 (MMP-9) was reduced in MCP-1-null macrophages adherent to implants. In contrast, CCR2 expression was unaffected. In vitro studies revealed reduced tumor necrosis factor-α (TNF-α) production and abnormal subcellular redistribution of E-cadherin and β-catenin during fusion in MCP-1-null macrophages. Exogenous TNF-α caused an increase in the production of MMP-9 and rescued the fusion defect. Addition of GM6001 (MMP inhibitor) or NSC23766 (Rac1 inhibitor) indicated two distinct induction pathways, one for E-cadherin/β-catenin and one for MCP-1, TNF-α, and MMP-9. Considered together, these observations demonstrate that induction of E-cadherin/β-catenin is not sufficient for fusion in the absence of MCP-1 or the downstream mediators TNF-α and MMP-9. Moreover, attenuation of the foreign body response in intraperitoneal implants in MCP-1-null mice demonstrates that the process depends on tissue-specific factors.
Collapse
Affiliation(s)
- Eleni A Skokos
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
49
|
Falvo JV, Ranjbar S, Jasenosky LD, Goldfeld AE. Arc of a vicious circle: pathways activated by Mycobacterium tuberculosis that target the HIV-1 long terminal repeat. Am J Respir Cell Mol Biol 2011; 45:1116-24. [PMID: 21852682 DOI: 10.1165/rcmb.2011-0186tr] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this review, we examine how a subset of signal transduction cascades initiated by Mycobacterium tuberculosis (Mtb) infection modulates transcription mediated by the human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR). We describe two distinct phases of signaling that target transcription factors known to bind the HIV-1 LTR, and thus drive viral transcription and replication, in cells of the Mtb-infected host. First, Mtb-derived molecules, including cell wall components and DNA, interact with a number of host pattern recognition receptors. Second, cytokines and chemokines secreted in response to Mtb infection initiate signal transduction cascades through their cognate receptors. Given the variation in cell wall components among distinct clinical Mtb strains, the initial pattern recognition receptor interaction leading to direct LTR activation and differential cytokine and chemokine production is likely to be an important aspect of Mtb strain-specific regulation of HIV-1 transcription and replication. Improved understanding of these molecular mechanisms in the context of bacterial and host genetics should provide key insights into the accelerated viral replication and disease progression characteristic of HIV/TB coinfection.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, MA, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.
Collapse
|