1
|
Daupin K, Dubreuil V, Ahlskog JK, Verrico A, Sistonen L, Mezger V, de Thonel A. HDAC1 is involved in the destabilization of the HSF2 protein under nonstress and stress conditions. Cell Stress Chaperones 2025; 30:100079. [PMID: 40318841 DOI: 10.1016/j.cstres.2025.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025] Open
Abstract
Heat shock transcription factors 1 and 2 (HSF1 and HSF2) are the major regulators of the cellular response to stressors, notably to heat shock and to oxidative stress. HSF1 and HSF2 are also important contributors in devastating human pathologies like cancer, neurodegenerative disorders, and neurodevelopmental disorders. Under physiological conditions, nuclear HSF2 is detected in only a few cell types in human adult healthy tissues. In contrast, HSF2 protein levels are elevated at some embryonic stages, but greatly vary among cell types and fluctuate during the cell cycle in diverse cell lines. HSF2 is a short-lived protein whose rapid turnover is controlled by the components of the ubiquitin-proteasome degradation pathway, and the stabilization of HSF2 constitutes an important step that regulates its DNA-binding activity and mediates its roles in nonstress, physiological processes. The control of HSF2 abundancy is therefore critical for its regulatory roles in stress responses as well as under physiological conditions. In this regard, the fetal brain cortex is a singular context where HSF2 is strikingly abundant, exhibits constitutive DNA-binding activity and, by controlling a specific repertoire of target genes that play important roles at multiple steps of neurodevelopment. Recently, we showed that the lysine-acetyl-transferases CBP and EP300 stabilize the HSF2 protein under both unstressed and stressed conditions and that the integrity of the CBP/EP300-HSF2 pathway is important for neurodevelopment. Here, we identify the lysine-deacetylase histone-deacetylase 1 (HDAC1) as a novel HSF2-interacting protein partner and regulator, in an unbiased manner, and show that HSF2 and HDAC1 localize in the same cells in the developing mouse cortex and human cerebral organoids. We also demonstrate that HDAC1, through its catalytic activity, destabilizes the HSF2 protein, through HSF2 poly-ubiquitination and proteasomal degradation, under both normal and stress conditions.
Collapse
Affiliation(s)
- Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France; ED 562 BioSPC, Université Paris Cité, Paris, France
| | | | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Annalisa Verrico
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France.
| |
Collapse
|
2
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
3
|
Huang Z, Hu L, Liu Z, Wang S. The Functions and Regulatory Mechanisms of Histone Modifications in Skeletal Muscle Development and Disease. Int J Mol Sci 2025; 26:3644. [PMID: 40332229 PMCID: PMC12027200 DOI: 10.3390/ijms26083644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Skeletal muscle development is a complex biological process regulated by many factors, such as transcription factors, signaling pathways, and epigenetic modifications. Histone modifications are important epigenetic regulatory factors involved in various biological processes, including skeletal muscle development, and play a crucial role in the pathogenesis of skeletal muscle diseases. Histone modification regulators affect the expression of many genes involved in skeletal muscle development and disease by adding or removing certain chemical modifications. In this review, we comprehensively summarize the functions and regulatory activities of the histone modification regulators involved in skeletal muscle development, regeneration, and disease.
Collapse
Affiliation(s)
- Zining Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Linqing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Zhiwei Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| |
Collapse
|
4
|
Xie Q, Du Y, Ghosh S, Rajendran S, Cohen-Gadol AA, Baizabal JM, Nephew KP, Han L, Shen J. Multi-omics analysis identifies glioblastoma dependency on H3K9me3 methyltransferase activity. NPJ Precis Oncol 2025; 9:78. [PMID: 40113969 PMCID: PMC11926169 DOI: 10.1038/s41698-025-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/01/2025] [Indexed: 03/22/2025] Open
Abstract
Histone H3 lysine 9 dimethylation and trimethylation (H3K9me2/3) are prevalent in human genomes, especially in heterochromatin and specific euchromatic genes. Methylation of H3K9 is modulated by enzymes such as SUV39H1, SUV39H2, SETDB1, SETDB2, and EHMT1/2, which influence cancer progression. This study reveals differential expression of these six H3K9 methyltransferases in tumors, with SUV39H1, SUV39H2, and SETDB1 showing significant links to cancer phenotypes. We developed the "H3K9me3 MtSig" (H3K9me3 methyltransferases signature) based on these findings. H3K9me3 MtSig is unique to various tumors, with prognostic significance and associations with key signaling pathways, especially in glioblastoma (GBM). Elevated H3K9me3 MtSig was observed in GBM samples, correlating with the G2/M cell cycle and reduced immune responses. H3K9me3-mediated repetitive sequence silencing by H3K9me3 MtSig contributed to these phenotypes, and inhibiting H3K9me3 MtSig in patient-derived GBM cells suppressed proliferation and increased immune responses. H3K9me3 MtSig serves as an independent prognostic factor and potential therapeutic target.
Collapse
Affiliation(s)
- Qiqi Xie
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Yuanning Du
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Sugata Ghosh
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kenneth P Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leng Han
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
He H, Li X, Su F, Jin H, Zhang J, Wang Y. Current and Emerging Approaches Targeting G9a for the Treatment of Various Diseases. J Med Chem 2025; 68:1068-1089. [PMID: 39740072 DOI: 10.1021/acs.jmedchem.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
G9a, a histone lysine methyltransferase, is instrumental in regulating gene expression through epigenetic modifications. Its overexpression is closely linked to the progression of various human diseases, including cancers. Therefore, targeting G9a enzyme is a promising strategy for treating various diseases. Although no G9a inhibitors have yet reached clinical trials, several small molecule inhibitors have demonstrated strong preclinical efficacy. For instance, the orally available inhibitor 16 (DS79932728) shows significant potential for treating sickle cell disease, while 34 (compound 15h) has shown promising treatment of rhabdomyosarcoma. This Perspective summarizes the protein structure and biological functions of G9a, along with its association with various diseases. We highlight the design strategies, structure-activity relationships, and biological activity assessments of G9a inhibitors. Additionally, we discuss the unique advantages of the mechanisms of novel G9a inhibitors, offering insights for the future development of more effective drugs targeting G9a.
Collapse
Affiliation(s)
- Hua He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxue Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Jin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
7
|
Ohta S, Ohzeki JI, Sato N, Tanizawa H, Chung CL, Noma KI, Masumoto H. Novel role of zinc-finger protein 518 in heterochromatin formation on α-satellite DNA. Nucleic Acids Res 2025; 53:gkae1162. [PMID: 39673523 PMCID: PMC11754734 DOI: 10.1093/nar/gkae1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role. However, the mechanism targeting heterochromatin to pericentromeres remains elusive. This study identifies a novel mechanism involving two homologous zinc-finger proteins ZNF518A and ZNF518B in human pericentric heterochromatin formation. Our investigation demonstrated that ZNF518s localize to the centromere via centromere protein B (CENP-B). Moreover, ZNF518s interact with heterochromatin protein 1 (HP1) and H3K9 methyltransferase G9A, recruiting the heterochromatin components to pericentromeres. We found that centromeric histone H3K9 trimethylation was diminished in the absence of ZNF518s when another H3K9 methyltransferase, SUV39H1, was depleted. In somatic cells, the ZNF518s-G9a axis is not the principal pathway for heterochromatin formation but plays a supplementary role. Furthermore, ZNF518s are involved in histone H3K9 trimethylation at ectopic sites, indicating their broad role in heterochromatin establishment. Consequently, we propose that ZNF518s participate in the mechanism underlying heterochromatin establishment at pericentromeres. Our findings shed light on the novel mechanism underlying pericentromeric heterochromatin formation, highlighting the central role of ZNF518 in this process.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Nobuko Sato
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Hideki Tanizawa
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Claire Yik-Lok Chung
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ken-Ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| |
Collapse
|
8
|
Pollock TA, Margetts AV, Vilca SJ, Tuesta LM. Cocaine taking and craving produce distinct transcriptional profiles in dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617923. [PMID: 39416214 PMCID: PMC11482921 DOI: 10.1101/2024.10.11.617923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dopamine (DA) signaling plays an essential role in reward valence attribution and in encoding the reinforcing properties of natural and artificial rewards. The adaptive responses from midbrain dopamine neurons to artificial rewards such as drugs of abuse are therefore important for understanding the development of substance use disorders. Drug-induced changes in gene expression are one such adaptation that can determine the activity of dopamine signaling in projection regions of the brain reward system. One of the major challenges to obtaining this understanding involves the complex cellular makeup of the brain, where each neuron population can be defined by a distinct transcriptional profile. To bridge this gap, we have adapted a virus-based method for labeling and capture of dopamine nuclei, coupled with nuclear RNA-sequencing, to study the transcriptional adaptations, specifically, of dopamine neurons in the ventral tegmental area (VTA) during cocaine taking and cocaine craving, using a mouse model of cocaine intravenous self-administration (IVSA). Our results show significant changes in gene expression across non-drug operant training, cocaine taking, and cocaine craving, highlighted by an enrichment of repressive epigenetic modifying enzyme gene expression during cocaine craving. Immunohistochemical validation further revealed an increase of H3K9me3 deposition in DA neurons during cocaine craving. These results demonstrate that cocaine-induced transcriptional adaptations in dopamine neurons vary by phase of self-administration and underscore the utility of this approach for identifying relevant phase-specific molecular targets to study the behavioral course of substance use disorders.
Collapse
Affiliation(s)
- Tate A. Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
9
|
Matoba S, Shikata D, Shirai F, Tatebe T, Hirose M, Nakata A, Watanabe N, Hasegawa A, Ito A, Yoshida M, Ogura A. Reduction of H3K9 methylation by G9a inhibitors improves the development of mouse SCNT embryos. Stem Cell Reports 2024; 19:906-921. [PMID: 38729154 PMCID: PMC11390627 DOI: 10.1016/j.stemcr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.
Collapse
Affiliation(s)
- Shogo Matoba
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takaki Tatebe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Bioresource Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
11
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
12
|
Kim SH, Haynes KA. Reader-Effectors as Actuators of Epigenome Editing. Methods Mol Biol 2024; 2842:103-127. [PMID: 39012592 DOI: 10.1007/978-1-0716-4051-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.
Collapse
Affiliation(s)
- Seong Hu Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Luo H, Wu X, Zhu XH, Yi X, Du D, Jiang DS. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease. Epigenetics Chromatin 2023; 16:47. [PMID: 38057834 PMCID: PMC10702034 DOI: 10.1186/s13072-023-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023] Open
Abstract
Histone methyltransferase SETDB1 (SET domain bifurcated histone lysine methyltransferase 1, also known as ESET or KMT1E) is known to be involved in the deposition of the di- and tri-methyl marks on H3K9 (H3K9me2 and H3K9me3), which are associated with transcription repression. SETDB1 exerts an essential role in the silencing of endogenous retroviruses (ERVs) in embryonic stem cells (mESCs) by tri-methylating H3K9 (H3K9me3) and interacting with DNA methyltransferases (DNMTs). Additionally, SETDB1 is engaged in regulating multiple biological processes and diseases, such as ageing, tumors, and inflammatory bowel disease (IBD), by methylating both histones and non-histone proteins. In this review, we provide an overview of the complex biology of SETDB1, review the upstream regulatory mechanisms of SETDB1 and its partners, discuss the functions and molecular mechanisms of SETDB1 in cell fate determination and stem cell, as well as in tumors and other diseases. Finally, we discuss the current challenges and prospects of targeting SETDB1 for the treatment of different diseases, and we also suggest some future research directions in the field of SETDB1 research.
Collapse
Affiliation(s)
- Hanshen Luo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xingliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dunfeng Du
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Cui X, Shang X, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, Wang L, Huang L, Wan B, Roeder RG, Han ZG. Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett 2023; 575:216404. [PMID: 37739210 DOI: 10.1016/j.canlet.2023.216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.
Collapse
Affiliation(s)
- Xiaofang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenyi Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongchao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
16
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Fang Y, Zhang MC, He Y, Li C, Fang H, Xu PP, Cheng S, Zhao Y, Feng Y, Liu Q, Wang L, Zhao WL. Human endogenous retroviruses as epigenetic therapeutic targets in TP53-mutated diffuse large B-cell lymphoma. Signal Transduct Target Ther 2023; 8:381. [PMID: 37798292 PMCID: PMC10556001 DOI: 10.1038/s41392-023-01626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
TP53 mutation (TP53mut) occurs in 10-20% of diffuse large B-cell lymphoma (DLBCL) cases and serves as an unfavorable biomarker of DLBCL progression. It confers resistance to immunochemotherapy, high-dose chemotherapy, autologous stem cell transplantation, and anti-CD19 chimeric antigen receptor T-cell therapy. Therapeutic targeting of TP53mut remains a significant challenge in DLBCL treatment. Here we assessed TP53mut in 667 patients with newly diagnosed DLBCL, including 576 patients treated with immunochemotherapy rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 91 patients with decitabine plus R-CHOP (DR-CHOP, NCT02951728 and NCT04025593). TP53mut independently predicted an inferior prognosis in R-CHOP-treated DLBCL, although this could be mitigated by DR-CHOP treatment. In TP53mut patients, multiple viral regulation pathways were repressed, resulting in the inhibition of immune modulation, as revealed by gene set enrichment analysis. TP53mut DLBCL exhibited increased methyltransferase SUV39H1 expression and H3K9 trimethylation (H3K9me3), contributing to repression of endogenous retroviruses (ERVs) and immunosuppressive tumor microenvironment. In TP53mut DLBCL cell lines, decitabine down-regulated SUV39H1, inhibited H3K9me3 occupancy on ERVs, and triggered ERV expression, thereby unleashing interferons program and CD4+T/CD8+T cell activation. Molecular silencing of SUV39H1 significantly abrogated decitabine-induced H3K9me3 inhibition and ERV expression. In TP53mut patient-derived xenograft models and TP53mut patients, the anti-tumor effect was improved upon the use of combined treatment of decitabine and doxorubicin via SUV39H1-H3K9me3-ERVs axis. Collectively, our findings highlight an ERV regulatory circuitry in TP53mut DLBCL and the crucial roles ERVs for epigenetically reprogramming tumor microenvironment for treating TP53mut-driven cancers.
Collapse
Grants
- National Key R&D Program of China (2022YFC2502600), Chang Jiang Scholars Program, Shanghai Commission of Science and Technology (17PJ1405800), Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206, 20152208, and 20171902), Clinical Research Plan of Shanghai hospital development center (SHDC, 2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Samuel Waxman Cancer Research Foundation, and the Foundation of National Facility for Translational Medicine (Shanghai, TMSK-2020-115).
Collapse
Affiliation(s)
- Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu-Chen Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Network and Information Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Rapone R, Del Maestro L, Bouyioukos C, Albini S, Cruz-Tapias P, Joliot V, Cosson B, Ait-Si-Ali S. The cytoplasmic fraction of the histone lysine methyltransferase Setdb1 is essential for embryonic stem cells. iScience 2023; 26:107386. [PMID: 37559904 PMCID: PMC10407132 DOI: 10.1016/j.isci.2023.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
The major lysine methyltransferase (KMT) Setdb1 is essential for self-renewal and viability of mouse embryonic stem cells (mESCs). Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mESCs, where its role remains elusive. Here, we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Yeast two-hybrid analysis revealed that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. We found that cSetdb1 is required for the integrity of Trim71 complex(es) involved in mRNA metabolism and translation. cSetdb1 modulates the abundance of mRNAs and the rate of newly synthesized proteins. Altogether, our data uncovered the cytoplasmic post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.
Collapse
Affiliation(s)
- Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Paola Cruz-Tapias
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Bertrand Cosson
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| |
Collapse
|
19
|
Xu R, Zhu Q, Zhao Y, Chen M, Yang L, Shen S, Yang G, Shi Z, Zhang X, Shi Q, Kou X, Zhao Y, Wang H, Jiang C, Li C, Gao S, Liu X. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos. Nat Commun 2023; 14:4807. [PMID: 37558707 PMCID: PMC10412629 DOI: 10.1038/s41467-023-40496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) can be used to reprogram differentiated somatic cells to a totipotent state but has poor efficiency in supporting full-term development. H3K9me3 is considered to be an epigenetic barrier to zygotic genomic activation in 2-cell SCNT embryos. However, the mechanism underlying the failure of H3K9me3 reprogramming during SCNT embryo development remains elusive. Here, we perform genome-wide profiling of H3K9me3 in cumulus cell-derived SCNT embryos. We find redundant H3K9me3 marks are closely related to defective minor zygotic genome activation. Moreover, SCNT blastocysts show severely indistinct lineage-specific H3K9me3 deposition. We identify MAX and MCRS1 as potential H3K9me3-related transcription factors and are essential for early embryogenesis. Overexpression of Max and Mcrs1 significantly benefits SCNT embryo development. Notably, MCRS1 partially rescues lineage-specific H3K9me3 allocation, and further improves the efficiency of full-term development. Importantly, our data confirm the conservation of deficient H3K9me3 differentiation in Sertoli cell-derived SCNT embryos, which may be regulated by alternative mechanisms.
Collapse
Affiliation(s)
- Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Qianshu Zhu
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuyan Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Mo Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, 400013, Chongqing, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Shijun Shen
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhifei Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Xiaolei Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Qi Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
20
|
Okashita N, Maeda R, Tachibana M. CDYL reinforces male gonadal sex determination through epigenetically repressing Wnt4 transcription in mice. Proc Natl Acad Sci U S A 2023; 120:e2221499120. [PMID: 37155872 PMCID: PMC10193937 DOI: 10.1073/pnas.2221499120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
In mammals, male and female gonads initially develop from bipotential progenitor cells, which can differentiate into either testicular or ovarian cells. The decision to adopt a testicular or ovarian fate relies on robust genetic forces, i.e., activation of the testis-determining gene Sry, as well as a delicate balance of expression levels for pro-testis and pro-ovary factors. Recently, epigenetic regulation has been found to be a key element in activation of Sry. Nevertheless, the mechanism by which epigenetic regulation controls the expression balance of pro-testis and pro-ovary factors remains unclear. Chromodomain Y-like protein (CDYL) is a reader protein for repressive histone H3 methylation marks. We found that a subpopulation of Cdyl-deficient mice exhibited XY sex reversal. Gene expression analysis revealed that the testis-promoting gene Sox9 was downregulated in XY Cdyl-deficient gonads during the sex determination period without affecting Sry expression. Instead, we found that the ovary-promoting gene Wnt4 was derepressed in XY Cdyl-deficient gonads prior to and during the sex-determination period. Wnt4 heterozygous deficiency restored SOX9 expression in Cdyl-deficient XY gonads, indicating that derepressed Wnt4 is a cause of the repression of Sox9. We found that CDYL directly bound to the Wnt4 promoter and maintained its H3K27me3 levels during the sex-determination period. These findings indicate that CDYL reinforces male gonadal sex determination by repressing the ovary-promoting pathway in mice.
Collapse
Affiliation(s)
- Naoki Okashita
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Ryo Maeda
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
21
|
Able AA, Richard AJ, Stephens JM. TNFα Effects on Adipocytes Are Influenced by the Presence of Lysine Methyltransferases, G9a (EHMT2) and GLP (EHMT1). BIOLOGY 2023; 12:674. [PMID: 37237488 PMCID: PMC10215715 DOI: 10.3390/biology12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Impaired adipocyte function contributes to systemic metabolic dysregulation, and altered fat mass or function increases the risk of Type 2 diabetes. EHMTs 1 and 2 (euchromatic histone lysine methyltransferases 1 and 2), also known as the G9a-like protein (GLP) and G9a, respectively, catalyze the mono- and di-methylation of histone 3 lysine 9 (H3K9) and also methylate nonhistone substrates; in addition, they can act as transcriptional coactivators independent of their methyltransferase activity. These enzymes are known to contribute to adipocyte development and function, and in vivo data indicate a role for G9a and GLP in metabolic disease states; however, the mechanisms involved in the cell-autonomous functions of G9a and GLP in adipocytes are largely unknown. Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine typically induced in adipose tissue in conditions of insulin resistance and Type 2 diabetes. Using an siRNA approach, we have determined that the loss of G9a and GLP enhances TNFα-induced lipolysis and inflammatory gene expression in adipocytes. Furthermore, we show that G9a and GLP are present in a protein complex with nuclear factor kappa B (NF-κB) in TNFα-treated adipocytes. These novel observations provide mechanistic insights into the association between adipocyte G9a and GLP expression and systemic metabolic health.
Collapse
Affiliation(s)
- Ashley A. Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
22
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Ishii T, Akiyama Y, Shimada S, Kabashima A, Asano D, Watanabe S, Ishikawa Y, Ueda H, Akahoshi K, Ogawa K, Ono H, Kudo A, Tanabe M, Tanaka S. Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer. Cancer Sci 2023; 114:463-476. [PMID: 36271761 PMCID: PMC9899616 DOI: 10.1111/cas.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Although histone H3K4 methyltransferase SETD1A is overexpressed in various cancer types, the molecular mechanism underlying its overexpression and its target genes in pancreatic ductal adenocarcinoma (PDAC) remain unclarified. We conducted immunohistochemical staining for SETD1A in 105 human PDAC specimens to assess the relationship between SETD1A overexpression and clinicopathological features. The function and target genes of SETD1A were investigated using human pancreatic cancer cell lines. SETD1A expression was upregulated in 51.4% of patients with PDAC and was an independent prognostic factor associated with shorter disease-free survival after resection (p < 0.05). Knockdown and overexpression of SETD1A showed that SETD1A plays a crucial role in increasing the proliferation and motility of PDAC cells. SETD1A overexpression increased tumorigenicity. RNA sequencing of SETD1A-knockdown cells revealed downregulation of RUVBL1, an oncogenic protein ATP-dependent DNA helicase gene. ChIP analysis revealed that SETD1A binds to the RUVBL1 promoter region, resulting in increased H3K4me3 levels. Knockdown of RUVBL1 showed inhibition of cell proliferation, migration, and invasion of PDAC cells, which are similar biological effects to SETD1A knockdown. High expression of both SETD1A and RUVBL1 was an independent prognostic factor not only for disease-free survival but also for overall survival (p < 0.05). In conclusion, we identified RUVBL1 as a novel downstream target gene of the SETD1A-H3K4me3 pathway. Co-expression of SETD1A and RUVBL1 is an important factor for predicting the prognosis of patients with PDAC.
Collapse
Grants
- JP19cm0106540 Japan Agency for Medical Research and Development
- 19H01055 Ministry of Education, Culture, Sports, Science and Technology
- 20H03526 Ministry of Education, Culture, Sports, Science and Technology
- 20K21627 Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
Collapse
Affiliation(s)
- Takeshi Ishii
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Ayano Kabashima
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Daisuke Asano
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shuichi Watanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshiya Ishikawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroki Ueda
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Keiichi Akahoshi
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Kosuke Ogawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Ono
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Atsushi Kudo
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Minoru Tanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
24
|
Epigenetics in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:249-269. [DOI: 10.1016/bs.pmbts.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
25
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
26
|
Scott V, Dey D, Kuwik J, Hinkelman K, Waldman M, Islam K. Allele-Specific Chemical Rescue of Histone Demethylases Using Abiotic Cofactors. ACS Chem Biol 2022; 17:3321-3330. [PMID: 34496208 DOI: 10.1021/acschembio.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Closely related protein families evolved from common ancestral genes present a significant hurdle in developing member- and isoform-specific chemical probes, owing to their similarity in fold and function. In this piece of work, we explore an allele-specific chemical rescue strategy to activate a "dead" variant of a wildtype protein using synthetic cofactors and demonstrate its successful application to the members of the alpha-ketoglutarate (αKG)-dependent histone demethylase 4 (KDM4) family. We show that a mutation at a specific residue in the catalytic site renders the variant inactive toward the natural cosubstrate. In contrast, αKG derivatives bearing appropriate stereoelectronic features endowed the mutant with native-like demethylase activity while remaining refractory to a set of wild type dioxygenases. The orthogonal enzyme-cofactor pairs demonstrated site- and degree-specific lysine demethylation on a full-length chromosomal histone in the cellular milieu. Our work offers a strategy to modulate a specific histone demethylase by identifying and engineering a conserved phenylalanine residue, which acts as a gatekeeper in the KDM4 subfamily, to sensitize the enzyme toward a novel set of αKG derivatives. The orthogonal pairs developed herein will serve as probes to study the role of degree-specific lysine demethylation in mammalian gene expression. Furthermore, this approach to overcome active site degeneracy is expected to have general application among all human αKG-dependent dioxygenases.
Collapse
Affiliation(s)
- Valerie Scott
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Kuwik
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kathryn Hinkelman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Megan Waldman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
28
|
Hernandez‐Vicens R, Singh J, Pernicone N, Listovsky T, Gerlitz G. SETDB1 regulates microtubule dynamics. Cell Prolif 2022; 55:e13348. [DOI: 10.1111/cpr.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Jagreeti Singh
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
| | - Nomi Pernicone
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
| | - Tamar Listovsky
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
- Ariel Center for Applied Cancer Research Ariel University Ariel Israel
- Adelson School of Medicine Ariel University Ariel Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
- Ariel Center for Applied Cancer Research Ariel University Ariel Israel
| |
Collapse
|
29
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
30
|
Warrier T, El Farran C, Zeng Y, Ho B, Bao Q, Zheng Z, Bi X, Ng HH, Ong D, Chu J, Sanyal A, Fullwood MJ, Collins J, Li H, Xu J, Loh YH. SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Res 2022; 50:7326-7349. [PMID: 35776115 PMCID: PMC9303280 DOI: 10.1093/nar/gkac531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.
Collapse
Affiliation(s)
- Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chadi El Farran
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Benedict Shao Quan Ho
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Qiuye Bao
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zi Hao Zheng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Xuezhi Bi
- Proteomics Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore 117597, Singapore
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - James J Collins
- Howard Hughes Medical Institute, Boston, MA 02114, USA
- Institute for Medical Engineering and Science Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 MedicalDrive, Singapore 117456, Singapore
| |
Collapse
|
31
|
Demethylation of H3K9 and H3K27 Contributes to the Tubular Renal Damage Triggered by Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071355. [PMID: 35883846 PMCID: PMC9312208 DOI: 10.3390/antiox11071355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Loss of protein homeostasis (proteostasis) in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), restoring correct protein folding. Sustained ER stress exacerbates activation of the major UPR branches (IRE1α/XBP1, PERK/ATF4, ATF6), inducing expression of numerous genes involved in inflammation, cell death, autophagy, and oxidative stress. We investigated whether epigenetic dynamics mediated by histone H3K9 and H3K27 methylation might help to reduce or inhibit the exacerbated and maladaptive UPR triggered in tubular epithelial cells. Epigenetic treatments, specific silencing, and chromatin immunoprecipitation assays were performed in human proximal tubular cells subjected to ER stress. Pharmacological blockage of KDM4C and JMJD3 histone demethylases with SD-70 and GSKJ4, respectively, enhanced trimethylation of H3K9 and H3K27 in the ATF4 and XBP1 genes, inhibiting their expression and that of downstream genes. Conversely, specific G9a and EZH2 knockdown revealed increases in ATF4 and XBP1 expression. This is a consequence of the reduced recruitment of G9a and EZH2 histone methylases, diminished H3K9me3 and H3K27me3 levels, and enhanced histone acetylation at the ATF4 and XBP1 promoter region. G9a and EZH2 cooperate to maintain the repressive chromatin structure in both UPR-induced genes, ATF4 and XBP1. Therefore, preserving histone H3K9 and H3K27 methylation could ameliorate the ER stress, and consequently the oxidative stress and the triggered pathological processes that aggravate renal damage.
Collapse
|
32
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
33
|
Baratchian M, Tiwari R, Khalighi S, Chakravarthy A, Yuan W, Berk M, Li J, Guerinot A, de Bono J, Makarov V, Chan TA, Silverman RH, Stark GR, Varadan V, De Carvalho DD, Chakraborty AA, Sharifi N. H3K9 methylation drives resistance to androgen receptor-antagonist therapy in prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2114324119. [PMID: 35584120 PMCID: PMC9173765 DOI: 10.1073/pnas.2114324119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Antiandrogen strategies remain the prostate cancer treatment backbone, but drug resistance develops. We show that androgen blockade in prostate cancer leads to derepression of retroelements (REs) followed by a double-stranded RNA (dsRNA)-stimulated interferon response that blocks tumor growth. A forward genetic approach identified H3K9 trimethylation (H3K9me3) as an essential epigenetic adaptation to antiandrogens, which enabled transcriptional silencing of REs that otherwise stimulate interferon signaling and glucocorticoid receptor expression. Elevated expression of terminal H3K9me3 writers was associated with poor patient hormonal therapy outcomes. Forced expression of H3K9me3 writers conferred resistance, whereas inhibiting H3K9-trimethylation writers and readers restored RE expression, blocking antiandrogen resistance. Our work reveals a drug resistance axis that integrates multiple cellular signaling elements and identifies potential pharmacologic vulnerabilities.
Collapse
Affiliation(s)
- Mehdi Baratchian
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ritika Tiwari
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sirvan Khalighi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Wei Yuan
- Division of Clinical Studies, The Institute of Cancer Research and Royal Marsden Hospital, London SM2 5NG, United Kingdom
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jianneng Li
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Amy Guerinot
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Johann de Bono
- Division of Clinical Studies, The Institute of Cancer Research and Royal Marsden Hospital, London SM2 5NG, United Kingdom
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Timothy A. Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - George R. Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Abhishek A. Chakraborty
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44125
| |
Collapse
|
34
|
Schoelz JM, Riddle NC. Functions of HP1 proteins in transcriptional regulation. Epigenetics Chromatin 2022; 15:14. [PMID: 35526078 PMCID: PMC9078007 DOI: 10.1186/s13072-022-00453-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
In eukaryotes, DNA is packaged into chromatin, which presents significant barriers to transcription. Non-histone chromatin proteins such as the Heterochromatin Protein 1 (HP1) proteins are critical regulators of transcription, contributing to gene regulation through a variety of molecular mechanisms. HP1 proteins are highly conserved, and many eukaryotic genomes contain multiple HP1 genes. Given the presence of multiple HP1 family members within a genome, HP1 proteins can have unique as well as shared functions. Here, we review the mechanisms by which HP1 proteins contribute to the regulation of transcription. Focusing on the Drosophila melanogaster HP1 proteins, we examine the role of these proteins in regulating the transcription of genes, transposable elements, and piRNA clusters. In D. melanogaster, as in other species, HP1 proteins can act as transcriptional repressors and activators. The available data reveal that the precise impact of HP1 proteins on gene expression is highly context dependent, on the specific HP1 protein involved, on its protein partners present, and on the specific chromatin context the interaction occurs in. As a group, HP1 proteins utilize a variety of mechanisms to contribute to transcriptional regulation, including both transcriptional (i.e. chromatin-based) and post-transcriptional (i.e. RNA-based) processes. Despite extensive studies of this important protein family, open questions regarding their functions in gene regulation remain, specifically regarding the role of hetero- versus homodimerization and post-translational modifications of HP1 proteins.
Collapse
Affiliation(s)
- John M Schoelz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
35
|
Zakharova VV, Magnitov MD, Del Maestro L, Ulianov SV, Glentis A, Uyanik B, Williart A, Karpukhina A, Demidov O, Joliot V, Vassetzky Y, Mège RM, Piel M, Razin S, Ait-Si-Ali S. SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res 2022; 50:4389-4413. [PMID: 35474385 PMCID: PMC9071401 DOI: 10.1093/nar/gkac234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Laurence Del Maestro
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandros Glentis
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Burhan Uyanik
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Anna Karpukhina
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Oleg Demidov
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France,Institute of Cytology, RAS, 194064 St. Petersburg, Russia,NTU Sirius, 354340 Sochi, Russia
| | - Veronique Joliot
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Yegor S Vassetzky
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - René-Marc Mège
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Sergey V Razin
- Correspondence may also be addressed to Sergey V. Razin. Tel: +7 499 135 3092;
| | | |
Collapse
|
36
|
Tsai HI, Wu Y, Huang R, Su D, Wu Y, Liu X, Wang L, Xu Z, Pang Y, Sun C, He C, Shu F, Zhu H, Wang D, Cheng F, Huang L, Chen H. PHF6 functions as a tumor suppressor by recruiting methyltransferase SUV39H1 to nucleolar region and offers a novel therapeutic target for PHF6-muntant leukemia. Acta Pharm Sin B 2022; 12:1913-1927. [PMID: 35847518 PMCID: PMC9279718 DOI: 10.1016/j.apsb.2021.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in the plant homeodomain-like finger protein 6 (PHF6) gene are strongly associated with acute myeloid (AML) and T-cell acute lymphoblastic leukemia (T-ALL). In this study, we demonstrated that PHF6 can bind to H3K9me3 and H3K27me1 on the nucleolar chromatin and recruit histone methyltransferase SUV39H1 to the rDNA locus. The deletion of PHF6 caused a decrease in the recruitment of SUV39H1 to rDNA gene loci, resulting in a reduction in the level of H3K9me3 and the promotion of rDNA transcription. The knockdown of either SUV39H1 or PHF6 significantly attenuated the effects of increase in H3K9me3 and suppressed the transcription of rDNA induced by the overexpression of the other interacting partner, thereby establishing an interdependent relationship between PHF6 and SUV39H1 in their control of rRNA transcription. The PHF6 clinical mutants significantly impaired the ability to bind and recruit SUV39H1 to the rDNA loci, resulting in an increase in rDNA transcription activity, the proliferation of in vitro leukemia cells, and the growth of in vivo mouse xenografts. Importantly, significantly elevated levels of pre-rRNA were observed in clinical AML patients who possessed a mutated version of PHF6. The specific rDNA transcription inhibitor CX5461 significantly reduced the resistance of U937 AML cells deficient in PHF6 to cytarabine, the drug that is most commonly used to treat AML. Collectively, we revealed a novel molecular mechanism by which PHF6 recruits methyltransferase SUV39H1 to the nucleolar region in leukemia and provided a potential therapeutic target for PHF6-mutant leukemia.
Collapse
Affiliation(s)
- Hsiang-i Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yanping Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuxin Pang
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527322, China
| | - Chong Sun
- Immune Regulation in Cancer, German Cancer Research Center, Heidelberg 69120, Germany
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Haitao Zhu
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Corresponding authors.
| | - Laiqiang Huang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Corresponding authors.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Corresponding authors.
| |
Collapse
|
37
|
Lu C, Yang D, Klement JD, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Liu Z, Shi H, Ding HF, Liu K. H3K9me3 represses G6PD expression to suppress the pentose phosphate pathway and ROS production to promote human mesothelioma growth. Oncogene 2022; 41:2651-2662. [PMID: 35351997 PMCID: PMC9058223 DOI: 10.1038/s41388-022-02283-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
The role of glucose-6-phosphate dehydrogenase (G6PD) in human cancer is incompletely understood. In a metabolite screening, we observed that inhibition of H3K9 methylation suppressed aerobic glycolysis and enhances the PPP in human mesothelioma cells. Genome-wide screening identified G6PD as an H3K9me3 target gene whose expression is correlated with increased tumor cell apoptosis. Inhibition of aerobic glycolysis enzyme LDHA and G6PD had no significant effects on tumor cell survival. Ablation of G6PD had no significant effect on human mesothelioma and colon carcinoma xenograft growth in athymic mice. However, activation of G6PD with the G6PD-selective activator AG1 induced tumor cell death. AG1 increased tumor cell ROS production and the resultant extrinsic and intrinsic death pathways, mitochondrial processes, and unfolded protein response in tumor cells. Consistent with increased tumor cell death in vitro, AG1 suppressed human mesothelioma xenograft growth in a dose-dependent manner in vivo. Furthermore, AG1 treatment significantly increased tumor-bearing mouse survival in an intra-peritoneum xenograft athymic mouse model. Therefore, in human mesothelioma and colon carcinoma, G6PD is not essential for tumor growth. G6PD acts as a metabolic checkpoint to control metabolic flux towards the PPP to promote tumor cell apoptosis, and its expression is repressed by its promotor H3K9me3 deposition.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
38
|
Rushton MD, Saunderson EA, Patani H, Green MR, Ficz G. An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse embryonic stem cells. Epigenetics 2022; 17:1590-1607. [PMID: 35324392 DOI: 10.1080/15592294.2022.2044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Propagation of DNA methylation through cell division relies on the recognition of methylated cytosines by UHRF1. In reprogramming of mouse embryonic stem cells to naive pluripotency (also known as ground state), despite high levels of Uhrf1 transcript, the protein is targeted for degradation by the proteasome, leading to DNA methylation loss. We have undertaken an shRNA screen to identify the signalling pathways that converge upon UHRF1 and control its degradation, using UHRF1-GFP fluorescence as readout. Many candidates we identified are key enzymes in regulation of glucose metabolism, nucleotide metabolism and Pi3K/AKT/mTOR pathway. Unexpectedly, while downregulation of all candidates we selected for validation rescued UHRF1 protein levels, we found that in some of the cases this was not sufficient to maintain DNA methylation. This has implications for development, ageing and diseased conditions. Our study demonstrates two separate processes that regulate UHRF1 protein abundance and activity.
Collapse
Affiliation(s)
- Michael D Rushton
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Horizon Discovery, Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL
| | - Emily A Saunderson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemalvi Patani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.,Research And Development, CS Genetics Ltd, Cambridge, UK
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Hansen AM, Ge Y, Schuster MB, Pundhir S, Jakobsen JS, Kalvisa A, Tapia MC, Gordon S, Ambri F, Bagger FO, Pandey D, Helin K, Porse BT. H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway. SCIENCE ADVANCES 2022; 8:eabf8627. [PMID: 35302840 PMCID: PMC8932663 DOI: 10.1126/sciadv.abf8627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3-9 homolog 1 (SUV39H1) is required for the proliferation of acute myeloid leukemia (AML) and find that its loss leads to activation of the interferon pathway. Mechanistically, we show that this occurs via destabilization of a complex composed of SUV39H1 and the two H3K9me2 HMTs, G9A and GLP. Indeed, loss of H3K9me2 correlated with the activation of key interferon pathway genes, and interference with the activities of G9A/GLP largely phenocopied loss of SUV39H1. Last, we demonstrate that inhibition of G9A/GLP synergized with DNA demethylating agents and that SUV39H1 constitutes a potential biomarker for the response to hypomethylation treatment. Collectively, we uncovered a clinically relevant role for H3K9me2 in safeguarding cancer cells against activation of the interferon pathway.
Collapse
Affiliation(s)
- Anne Meldgaard Hansen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Adrija Kalvisa
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marta Cecylia Tapia
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sandra Gordon
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Francesca Ambri
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Deo Pandey
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Microbiology, Oslo University Hospital, NO-0373 Oslo, Norway
| | - Kristian Helin
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Center, New York, NY 10065, USA
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
40
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
41
|
Brändle F, Frühbauer B, Jagannathan M. Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Semin Cell Dev Biol 2022; 128:26-39. [PMID: 35144860 DOI: 10.1016/j.semcdb.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.
Collapse
Affiliation(s)
- Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Benjamin Frühbauer
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland.
| |
Collapse
|
42
|
Lamb KN, Dishman SN, Waybright JM, Engelberg IA, Rectenwald JM, Norris-Drouin JL, Cholensky SH, Pearce KH, James LI, Frye SV. Discovery of Potent Peptidomimetic Antagonists for Heterochromatin Protein 1 Family Proteins. ACS OMEGA 2022; 7:716-732. [PMID: 35036738 PMCID: PMC8757366 DOI: 10.1021/acsomega.1c05381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The heterochromatin protein 1 (HP1) sub-family of CBX chromodomains are responsible for the recognition of histone H3 lysine 9 tri-methyl (H3K9me3)-marked nucleosomal substrates through binding of the N-terminal chromodomain. These HP1 proteins, namely, CBX1 (HP1β), CBX3 (HP1γ), and CBX5 (HP1α), are commonly associated with regions of pericentric heterochromatin, but recent literature studies suggest that regulation by these proteins is likely more dynamic and includes other loci. Importantly, there are no chemical tools toward HP1 chromodomains to spatiotemporally explore the effects of HP1-mediated processes, underscoring the need for novel HP1 chemical probes. Here, we report the discovery of HP1 targeting peptidomimetic compounds, UNC7047 and UNC7560, and a biotinylated derivative tool compound, UNC7565. These compounds represent an important milestone, as they possess nanomolar affinity for the CBX5 chromodomain by isothermal titration calorimetry (ITC) and bind HP1-containing complexes in cell lysates. These chemical tools provide a starting point for further optimization and the study of CBX5-mediated processes.
Collapse
Affiliation(s)
- Kelsey N. Lamb
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah N. Dishman
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jarod M. Waybright
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Isabelle A. Engelberg
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Justin M. Rectenwald
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris-Drouin
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H. Cholensky
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- Center
for Integrative Chemical Biology and Drug Discovery, Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Mbadhi MN, Tang JM, Zhang JX. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration. Front Cell Dev Biol 2021; 9:759237. [PMID: 34926450 PMCID: PMC8678087 DOI: 10.3389/fcell.2021.759237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Satellite stem cell availability and high regenerative capacity have made them an ideal therapeutic approach for muscular dystrophies and neuromuscular diseases. Adult satellite stem cells remain in a quiescent state and become activated upon muscular injury. A series of molecular mechanisms succeed under the control of epigenetic regulation and various myogenic regulatory transcription factors myogenic regulatory factors, leading to their differentiation into skeletal muscles. The regulation of MRFs via various epigenetic factors, including DNA methylation, histone modification, and non-coding RNA, determine the fate of myogenesis. Furthermore, the development of histone deacetylation inhibitors (HDACi) has shown promising benefits in their use in clinical trials of muscular diseases. However, the complete application of using satellite stem cells in the clinic is still not achieved. While therapeutic advancements in the use of HDACi in clinical trials have emerged, histone methylation modulations and the long non-coding RNA (lncRNA) are still under study. A comprehensive understanding of these other significant epigenetic modulations is still incomplete. This review aims to discuss some of the current studies on these two significant epigenetic modulations, histone methylation and lncRNA, as potential epigenetic targets in skeletal muscle regeneration. Understanding the mechanisms that initiate myoblast differentiation from its proliferative state to generate new muscle fibres will provide valuable information to advance the field of regenerative medicine and stem cell transplant.
Collapse
Affiliation(s)
- Magdaleena Naemi Mbadhi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing-Xuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
44
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
45
|
Wakim JG, Sandholtz SH, Spakowitz AJ. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophys J 2021; 120:4932-4943. [PMID: 34687722 DOI: 10.1016/j.bpj.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
We examine the relationship between the size of domains of epigenetic marks and the stability of those domains using our theoretical model that captures the physical mechanisms governing the maintenance of epigenetic modifications. We focus our study on histone H3 lysine-9 trimethylation, one of the most common and consequential epigenetic marks with roles in chromatin compaction and gene repression. Our model combines the effects of methyl spreading by methyltransferases and chromatin segregation into heterochromatin and euchromatin because of preferential heterochromatin protein 1 (HP1) binding. Our model indicates that, although large methylated domains are passed successfully from one chromatin generation to the next, small alterations to the methylation sequence are not maintained during chromatin replication. Using our predictive model, we investigate the size required for an epigenetic domain to persist over chromatin generations while surrounded by a much larger domain of opposite methylation and compaction state. We find that there is a critical size threshold in the hundreds-of-nucleosomes scale above which an epigenetic domain will be reliably maintained over generations. The precise size of the threshold differs for heterochromatic and euchromatic domains. Our results are consistent with natural alterations to the epigenetic sequence occurring during embryonic development and due to age-related epigenetic drift.
Collapse
Affiliation(s)
- Joseph G Wakim
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
46
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
47
|
Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J Mol Cell Cardiol 2021; 162:119-129. [PMID: 34492228 DOI: 10.1016/j.yjmcc.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Histone deacetylase 4 (HDAC4) is a member of class IIa histone deacetylases (class IIa HDACs) and is believed to possess a low intrinsic deacetylase activity. However, HDAC4 sufficiently represses distinct transcription factors (TFs) such as the myocyte enhancer factor 2 (MEF2). Transcriptional repression by HDAC4 has been suggested to be mediated by the recruitment of other chromatin-modifying enzymes, such as methyltransferases or class I histone deacetylases. However, this concept has not been investigated by an unbiased approach. Therefore, we studied the histone modifications H3K4me3, H3K9ac, H3K27ac, H3K9me2 and H3K27me3 in a genome-wide approach using HDAC4-deficient cardiomyocytes. We identified a general epigenetic shift from a 'repressive' to an 'active' status, characterized by an increase of H3K4me3, H3K9ac and H3K27ac and a decrease of H3K9me2 and H3K27me3. In HDAC4-deficient cardiomyocytes, MEF2 binding sites were considerably overrepresented in upregulated promoter regions of H3K9ac and H3K4me3. For example, we identified the promoter of Adprhl1 as a new genomic target of HDAC4 and MEF2. Overexpression of HDAC4 in cardiomyocytes was able to repress the transcription of the Adprhl1 promoter in the presence of the methyltransferase SUV39H1. On a genome-wide level, the decrease of H3K9 methylation did not change baseline expression but was associated with exercise-induced gene expression. We conclude that HDAC4, on the one hand, associates with activating histone modifications, such as H3K4me3 and H3K9ac. A functional consequence, on the other hand, requires an indirect regulation of H3K9me2. H3K9 hypomethylation in HDAC4 target genes ('first hit') plus a 'second hit' (e.g., exercise) determines the transcriptional response.
Collapse
|
48
|
Langouët M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, Germain N, Crandall LJ, Cotney JL, Stoddard CE, Lalande M, Chamberlain SJ. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2021; 29:3285-3295. [PMID: 32977341 DOI: 10.1093/hmg/ddaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clarisse Orniacki
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clémence M Dupont-Thibert
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noelle Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leann J Crandall
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
49
|
Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front Cell Infect Microbiol 2021; 11:676456. [PMID: 34381738 PMCID: PMC8350138 DOI: 10.3389/fcimb.2021.676456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits autophagy to promote its survival in host cells. However, the molecular mechanisms by which Mtb inhibits autophagy are poorly understood. Here, we report a previously unknown mechanism in which Mtb phosphoribosyltransferase (MtbPRT) inhibits autophagy in an mTOR, negative regulator of autophagy, independent manner by inducing histone hypermethylation (H3K9me2/3) at the Atg5 and Atg7 promoters by activating p38-MAPK- and EHMT2 methyltransferase-dependent signaling pathways. Additionally, we find that MtbPRT induces EZH2 methyltransferase-dependent H3K27me3 hypermethylation and reduces histone acetylation modifications (H3K9ac and H3K27ac) by upregulating histone deacetylase 3 to inhibit autophagy. In summary, this is the first demonstration that Mtb inhibits autophagy by inducing histone hypermethylation in autophagy-related genes to promote intracellular bacterial survival.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Barsa Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Michael Meuli
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
50
|
Fonseca TL, Garcia T, Fernandes GW, Nair TM, Bianco AC. Neonatal thyroxine activation modifies epigenetic programming of the liver. Nat Commun 2021; 12:4446. [PMID: 34290257 PMCID: PMC8295303 DOI: 10.1038/s41467-021-24748-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
The type 2 deiodinase (D2) in the neonatal liver accelerates local thyroid hormone triiodothyronine (T3) production and expression of T3-responsive genes. Here we show that this surge in T3 permanently modifies hepatic gene expression. Liver-specific Dio2 inactivation (Alb-D2KO) transiently increases H3K9me3 levels during post-natal days 1-5 (P1-P5), and results in methylation of 1,508 DNA sites (H-sites) in the adult mouse liver. These sites are associated with 1,551 areas of reduced chromatin accessibility (RCA) within core promoters and 2,426 within intergenic regions, with reduction in the expression of 1,363 genes. There is strong spatial correlation between density of H-sites and RCA sites. Chromosome conformation capture (Hi-C) data reveals a set of 81 repressed genes with a promoter RCA in contact with an intergenic RCA ~300 Kbp apart, within the same topologically associating domain (χ2 = 777; p < 0.00001). These data explain how the systemic hormone T3 acts locally during development to define future expression of hepatic genes.
Collapse
Affiliation(s)
- Tatiana L Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA
| | - Tzintzuni Garcia
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Gustavo W Fernandes
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA
| | - T Murlidharan Nair
- Department of Biological Sciences and CS/Informatics, Indiana University South Bend, South Bend, IN, USA
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|