1
|
Zhang X, Zhao C, Liu T. Integrative analysis of the expression profile and prognostic values of SENP gene family in hepatocellular carcinoma. Discov Oncol 2025; 16:752. [PMID: 40358846 PMCID: PMC12075750 DOI: 10.1007/s12672-025-02598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) stands as the fourth leading cause of cancer-related deaths worldwide. SUMO-specific peptidases, known as SENPs, emerge as critical players, regulating tumorigenesis and progression of numerous cancer types. Despite this, the specific impact of SENPs in HCC remains unclear. Hence, our study aimed to reveal the immune and prognostic implications of SENPs in HCC. METHODS The gene expression of SENP in various cancers was examined using open-access databases including TCGA, GTEx, and CPTAC. In order to investigate the prognostic potential of the SENP family, Kaplan-Meier analysis was used. To clarify the underlying biological mechanisms, gene set enrichment analysis (GSEA) was carried out. cBioPortal database was used to evaluate genetic mutation profiles. For insight into the relationship between SENP genes and tumor immunity, various algorithms were used. RESULTS Our findings showed that SENP1, SENP2, SENP3, SENP5, SENP6, and SENP7 expression levels were significantly higher in HCC tumor tissues compared to normal tissues. In HCC patients, elevated SENP1 and SENP5 expression has been associated with tumor development and poor outcomes. Our immune infiltration patterns results also showed significant correlations between SENP5 expression and neutrophil (cor = 0.346, p < 0.001), myeloid dendritic cell (cor = 0.491, p < 0.001), macrophage (cor = 0.465, p < 0.001), and memory B cell (cor = 0.336, p < 0.001) infiltration in HCC, whereas SENP1 expression was associated with none of these infiltrations. CONCLUSIONS The prognostic and immunogenetic value of SENP1 and SENP5 in HCC was demonstrated in this study. Therefore, these two genes have the potential to function as separate prognostic biomarkers and offer promise as immunotherapeutic targets in the fight against HCC.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Chenglei Zhao
- Department of Computed Tomography, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Tianyi Liu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
2
|
Hu Q, Su L, Zhao W, Jin Y, Jin L, Yang Y, Zhang F. CBX4 regulation of senescence and associated diseases: Molecular pathways and mechanisms. Pharmacol Res 2025; 215:107705. [PMID: 40120729 DOI: 10.1016/j.phrs.2025.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Polycomb repressive complex 1 (PRC1) is a multisubunit, evolutionarily conserved epigenetic regulator critical to numerous biological processes. Being a core component of the canonical PRC1 subunit within the Polycomb group protein complex, Chromobox4 (CBX4), a SUMO E3 ligase, can bind to H3K27me3 and recruit PRC1. This ligase regulates the SUMOylation of various proteins and permits their post-translational modification under different physiological conditions. CBX4 has been reported to regulate the development of senescence and various diseases in vivo. This review delves into the physiological functions and action mechanisms of CBX4 across different tissues and cells, particularly focusing on its primarily roles in migration, cellular senescence, metabolic dysregulation, inflammation development, and tumor proliferation. Targeting CBX4 offers a therapeutic potential for delaying cell senescence and suppressing tumor growth.
Collapse
Affiliation(s)
- Qianxing Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China
| | - Linming Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China
| | - Wanli Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yinuo Jin
- Nanjing HanKai Academy, Jiangpu Street, Pukou District, Nanjing, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| |
Collapse
|
3
|
He Y, Yang Z, Guo D, Luo C, Liu Q, Xian L, Yang F, Huang C, Wei Q. The multifaceted nature of SUMOylation in heart disease and its therapeutic potential. Mol Cell Biochem 2025:10.1007/s11010-025-05286-z. [PMID: 40287894 DOI: 10.1007/s11010-025-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
SUMOylation (SUMO), a crucial post-translational modification, is implicated in the regulation of diverse biological processes and plays a pivotal role in both the maintenance of cardiac function and progression and treatment of heart disease. Here, we reviewed the mechanisms by which SUMO-related various aspects of cardiac function and disease, including cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and myocardial infarction. Furthermore, we highlight its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ying He
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijie Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Dan Guo
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Cheng Luo
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiaoqiao Liu
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Lei Xian
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
- Liuzhou Key Laboratory of Primary Cardiomyopathy in Prevention and Treatment, Liuzhou, Guangxi, China.
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qingjun Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Chen Y, Li J, Fu J, Xiao L, Chu J, Qin W, Xiao J, Feng H. SENP2 negatively regulates RIG-I/MDA5 mediated innate immunity in black carp. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110097. [PMID: 39724728 DOI: 10.1016/j.fsi.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Mammalian SUMO specific peptidase 2 (SENP2) plays vital roles in a variety of biological procedures including the immune response. However, the effects of teleost SENP2 are still mostly unexplored. In this study, the SENP2 of black carp (Mylopharyngodon piceus) was cloned and characterized. The open reading frame of black carp SENP2 (bcSENP2) consists of 1800 nucleotides, which encode 600 amino acids. The reporter assay results showed that over-expression of bcSENP2 alone had a weak effect on interferon (IFN) promoter transcription activity, whereas it significantly reduced bcMDA5/bcRIG-I mediated IFN promoter transcription activity. The interaction between bcSENP2 and bcMDA5 or bcRIG-I was detected by immunoprecipitation experiments. The plaque assay and qPCR results indicated that bcMDA5 or bcRIG-I mediated antiviral capacity was attenuated by bcSENP2, while knockdown of bcSENP2 led to enhanced antiviral resistance to SVCV in host cells. In addition, the expression level of bcMDA5/bcRIG-I protein was attenuated by co-expressed bcSENP2 and MG132 treatment rescued this attenuating effect. All of these data support the conclusion that bcSENP2 inhibits bcMDA5/bcRIG-I mediated antiviral signaling by enhancing ubiquitin-proteasome mediated degradation of bcMDA5/bcRIG-I in black carp.
Collapse
Affiliation(s)
- Yixia Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Jiaxin Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lili Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jixiang Chu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Chen X, Li D, Su Q, Ling X, Ding S, Xu R, Liu Z, Qin Y, Zhang J, Yang Z, Kang X, Qi Y, Wu H. MicroRNA-145-5p inhibits the tumorigenesis of breast cancer through SENP2-regulated ubiquitination of ERK2. Cell Mol Life Sci 2024; 81:461. [PMID: 39578257 PMCID: PMC11584840 DOI: 10.1007/s00018-024-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Breast carcinoma exhibits the highest incidence among various cancers and is the foremost cause of mortality in women. Increasing evidence shows that SUMOylation of proteins plays a critical role in the progression of breast cancer; however, the role of SENP2 and its molecular mechanism in breast cancer remain underexplored. Here, we discerned that SENP2 promoted the tumorigenesis of breast cancer both in vitro and in vivo. Furthermore, we identified that ERK2 was SUMOylated and that SENP2 played a role by deconjugating ERK2 SUMOylation in breast cancer. SUMOylation of ERK2 promoted its ubiquitin-proteasomal degradation, thus inhibiting the epithelial-to-mesenchymal transition in breast cancer cells. Furthermore, microRNA-145-5p (miR-145-5p) has emerged as a scarce commodity in breast cancer and binds to the 3'-untranslated region of SENP2 mRNA to govern the regulatory dynamics of SENP2 expression. Finally, miR-145-5p inhibits SENP2 transcription, enhances ERK2 SUMOylation, and ultimately suppresses the progression of breast cancer. These revelations suggest evolving ideas for the miR-145-5p-SENP2 axis in therapeutic intervention, thus heralding transformative prospects for the clinical management of breast cancer.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siyu Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoxia Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jinping Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Claessens LA, Vertegaal ACO. SUMO proteases: from cellular functions to disease. Trends Cell Biol 2024; 34:901-912. [PMID: 38326147 DOI: 10.1016/j.tcb.2024.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Posttranslational modification by small ubiquitin-like modifiers (SUMOs) is critical in regulating diverse cellular processes including gene expression, cell cycle progression, genome integrity, cellular metabolism, and inflammation and immunity. The covalent attachment of SUMOs to target proteins is highly dynamic and reversible through the concerted action of SUMO conjugating and deconjugating enzymes. In mammalian cells, sentrin-specific proteases (SENPs) are the most abundant family of deconjugating enzymes. This review highlights recent advances in our knowledge of the substrates and cellular and physiological processes controlled by SENPs. Notably, SENPs are emerging as significant players in cancer, as well as in other diseases, making them attractive targets for therapeutic intervention. Consequently, a growing amount of effort in the field is being directed towards the development of SENP inhibitors.
Collapse
Affiliation(s)
- Laura A Claessens
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
7
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Cheng Y, Hou W, Fang H, Yan Y, Lu Y, Meng T, Ma C, Liu Q, Zhou Z, Li H, Li H, Xiao N. SENP2-NDR2-p21 axis modulates lung cancer cell growth. Eur J Pharmacol 2024; 978:176761. [PMID: 38908669 DOI: 10.1016/j.ejphar.2024.176761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) perform pivotal roles in SUMO maturation and recycling, which modulate the balance of SUMOylation/de-SUMOylation and spatiotemporal functions of SUMOylation targets. The malfunction of SENPs often results in cellular dysfunction and various diseases. However, studies rarely investigated the correlation between SENP2 and lung cancer. This study revealed that SENP2 is a required contributor to lung cancer-cell growth and targets nuclear Dbf2-related 2 (NDR2, also known as serine/threonine kinase 38L or STK38L) for de-SUMOylation, which improves NDR2 kinase activity. This condition leads to the instability of downstream target p21 in accelerating the G1/S cell cycle transition and suggests SENP2 as a promising therapeutic target for lung cancer in the future. Specifically, astragaloside IV, an active ingredient of Jinfukang Oral Liquid (JOL, a clinical combination antilung cancer drug approved by the National Food and Drug Administration (FDA) of China), can repress lung cancer-cell growth via the SENP2-NDR2-p21 axis, which provides new insights into the molecular mechanism of JOL for lung cancer treatment.
Collapse
Affiliation(s)
- Yixuan Cheng
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Yan
- Department of Medical Affairs, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Lu
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Meng
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghai Liu
- Department of Performance Management, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Tianshan Hospital of Traditional Chinese Medicine in Changning District, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ning Xiao
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Wada H, Maruyama T, Niikura T. SUMO1 modification of 0N4R-tau is regulated by PIASx, SENP1, SENP2, and TRIM11. Biochem Biophys Rep 2024; 39:101800. [PMID: 39286522 PMCID: PMC11403297 DOI: 10.1016/j.bbrep.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified. SUMOylation is a reversible modification of lysine residues by a small ubiquitin-like modifier (SUMO). In this study, we examined the enzymes that regulate the SUMOylation and deSUMOylation of tau in an alternatively spliced form, 0N4R-tau. Among SUMO E3 ligases, we found protein inhibitor of activated STAT (PIAS)xα and PIASxβ increase the levels of SUMOylated tau. The deSUMOylation enzymes sentrin-specific protease (SENP)1 and SENP2 reduced the levels of SUMO-conjugated tau. SUMO1 modification increased the level of phosphorylated tau, which was suppressed in the presence of SENP1. Furthermore, we examined the effect of tripartite motif (TRIM)11, which was recently identified as an E3 ligase for SUMO2 modification of tau. We found that TRIM11 increased the modification of both 2N4R- and 0N4R-tau by SUMO1, which was attenuated by mutation of the target lysine residue to arginine. These findings suggest that the expression and activity of SUMOylation regulatory proteins modulate the physical properties of tau proteins and may contribute to the onset and/or progression of tau-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Harmony Wada
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takuma Maruyama
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| |
Collapse
|
10
|
Chen X, Su Q, Ling X, Yang Y, Liu Y, Zhu X, He A, Wu H, Qi Y. SENP3-regulated Nodal signaling plays a potential role in cardiac left-right asymmetry development. Int J Biol Macromol 2024; 274:133294. [PMID: 38925188 DOI: 10.1016/j.ijbiomac.2024.133294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Congenital heart disease (CHD) is a type of major defect that occurs during embryonic development. Although significant advances have been made in the treatment of CHD, its etiology and molecular mechanism remain unclear. To identify the critical role of SUMOylation in cardiac development, we generated SENP3 knockout mice and showed that SENP3 knockout mice die on embryonic day 8.5 with an open neural tube and reversed left-right cardiac asymmetry. Moreover, SENP3 knockout promoted apoptosis and senescence of H9C2 cells. Further studies showed that Nodal, a critical gene that forms left-right asymmetry, is regulated by SENP3 and that SENP3 regulates cell apoptosis and senescence in a Nodal-dependent manner. Furthermore, Nodal was hyper-SUMOylated after SENP3 knockout, and SUMOylation of Nodal inhibited its ubiquitination and ubiquitin-proteasome degradation pathway. Nodal overexpression enhanced cell apoptosis and senescence; however, the mutation at the SUMOylation site of Nodal reversed its effect on the apoptosis and senescence of H9C2 cells. More importantly, the SENP3-Nodal axis regulates cell senescence by inducing cell autophagy. These results suggest that the SENP3-Nodal signaling axis regulates cardiac senescence-autophagy homeostasis, which in turn affects cardiac development and results in the occurrence of CHD.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Zhao R, Guo Y, Zhang L, Huang Z, Li X, Lan B, Zhong D, Chen H, Xuan C. CBX4 plays a bidirectional role in transcriptional regulation and lung adenocarcinoma progression. Cell Death Dis 2024; 15:378. [PMID: 38816356 PMCID: PMC11140001 DOI: 10.1038/s41419-024-06745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality worldwide. Understanding the dysregulated epigenetics governing LUAD progression is pivotal for identifying therapeutic targets. CBX4, a chromobox protein, is reported to be upregulated in LUAD. This study highlights the dual impact of CBX4 on LUAD proliferation and metastasis through a series of rigorous in vitro and in vivo experiments. Further investigation into the underlying mechanism through high-throughput ChIP-seq and RNA-seq reveals that CBX4 functions in promoting LUAD proliferation via upregulating PHGDH expression and subsequent serine biosynthesis, while concurrently suppressing LUAD metastasis by inhibiting ZEB2 transcription. CBX4 facilitates PHGDH transcription through the interaction with GCN5, inducing heightened histone acetylation on the PHGDH promoter. Simultaneously, the inhibition of ZEB2 transcription involves CBX4-mediated recruitment of canonical PRC1 (cPRC1), establishing H2K119ub on the ZEB2 promoter. These findings underscore CBX4's pivotal role as a regulator of LUAD progression, emphasizing its diverse transcriptional regulatory functions contingent upon interactions with specific epigenetic partners. Understanding the nuanced interplay between CBX4 and epigenetic factors sheds light on potential therapeutic avenues in LUAD.
Collapse
Affiliation(s)
- Ran Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanxuan Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhiyong Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuanyuan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Bei Lan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Chenghao Xuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics; Department of Medical Oncology, Tianjin Medical University General Hospital; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
13
|
Dong Y, Lu Z, Gao T, Wei Z, Ou Z, Shi Z, Shen J. A polypeptide derived from pilose antler ameliorates CUMS-induced depression-like behavior by SENP2-PLCβ4 signaling axis. Eur J Pharmacol 2024; 963:176247. [PMID: 38056617 DOI: 10.1016/j.ejphar.2023.176247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Neurogenesis is known to be closely associated with depression. We aimed to investigate whether a polypeptide monomer derived from pilose antler (polypeptide sequence LSALEGVFYP, PAP) exerts an antidepressant effect by influencing neurogenesis, and to elucidate the mechanism of its antidepressant action. Behavioral tests were performed to observe the antidepressant effect of PAP. Neurogenesis in the dentate gyrus (DG) region of hippocampus was observed by immunofluorescence. The expression of key proteins of Sentrin/SUMO-specific proteases 2 (SENP2)- Phosphoinositide-specific phospholipase C beta 4 (PLCβ4) pathway was accessed by co-immunoprecipitation (Co-IP), and the calcium homeostasis associated proteins were observed via Western blot (WB). Subsequently, temozolomide (TMZ) pharmacologically blocked neurogenesis to verify the antidepressant effect of PAP on neurogenesis. The mechanism of PAP antidepressant effect was verified by constructing a sh-SENP2 virus vector to silence SENP2 protein. Finally, corticosterone (CORT)-induced PC12 cell model was used to verify whether PAP was involved in the process of deconjugated PLCβ4 SUMOylated. The results showed that PAP improved depression-like behavior and neurogenesis induced by chronic unpredictable mild stimulation (CUMS). In addition, PAP acted on SENP2-PLCβ4 pathway to deconjugate the SUMOylation of PLCβ4 and affect calcium homeostasis. Pharmacological blockade of neurogenesis by TMZ treatment impaired the antidepressant efficacy of PAP. Knockout of SENP2 in the CUMS model attenuated the antidepressant response of PAP, and the impaired neurogenesis was not ameliorated by PAP treatment. In summary, PAP acted on the SENP2-PLCβ4 signaling pathway to inhibit the SUMOylation of PLCβ4 and maintain calcium homeostasis, thereby protecting neurogenesis and playing an antidepressant role.
Collapse
Affiliation(s)
- Yu Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zihan Lu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China
| | - Tiantian Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhijie Ou
- Neurology Department, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, 215500, China.
| | - Zheng Shi
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Shen
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Su Q, Chen X, Ling X, Li D, Ren X, Zhao Y, Yang Y, Liu Y, He A, Zhu X, Yang X, Lu W, Wu H, Qi Y. SUMOylation of Smad2 mediates TGF-β-regulated endothelial-mesenchymal transition. J Biol Chem 2023; 299:105244. [PMID: 37690680 PMCID: PMC10570702 DOI: 10.1016/j.jbc.2023.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is a complex biological process in which endothelial cells are transformed into mesenchymal cells, and dysregulated EndoMT causes a variety of pathological processes. Transforming growth factor beta (TGF-β) signaling effectively induces the EndoMT process in endothelial cells, and Smad2 is the critical protein of the TGF-β signaling pathway. However, whether small ubiquitin-like modifier modification (SUMOylation) is involved in EndoMT remains unclear. Here, we show that Smad2 is predominantly modified by SUMO1 at two major SUMOylation sites with PIAS2α as the primary E3 ligase, whereas SENP1 (sentrin/SUMO-specific protease 1) mediates the deSUMOylation of Smad2. In addition, we identified that SUMOylation significantly enhances the transcriptional activity and protein stability of Smad2, regulating the expression of downstream target genes. SUMOylation increases the phosphorylation of Smad2 and the formation of the Smad2-Smad4 complex, thus promoting the nuclear translocation of Smad2. Ultimately, the wildtype, but not SUMOylation site mutant Smad2 facilitated the EndoMT process. More importantly, TGF-β enhances the nuclear translocation of Smad2 by enhancing its SUMOylation and promoting the EndoMT process. These results demonstrate that SUMOylation of Smad2 plays a critical role in the TGF-β-mediated EndoMT process, providing a new theoretical basis for the treatment and potential drug targets of EndoMT-related clinical diseases.
Collapse
Affiliation(s)
- Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Melo GA, Xu T, Calôba C, Schutte A, Passos TO, Neto MAN, Brum G, Vieira BM, Higa L, Monteiro FLL, Berbet L, Gonçalves AN, Tanuri A, Viola JP, Werneck MBF, Nakaya HI, Pipkin ME, Martinez GJ, Pereira RM. Cutting Edge: Polycomb Repressive Complex 1 Subunit Cbx4 Positively Regulates Effector Responses in CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:721-726. [PMID: 37486206 PMCID: PMC10528949 DOI: 10.4049/jimmunol.2200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.
Collapse
Affiliation(s)
- Guilherme A. Melo
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Tianhao Xu
- Center for Cancer Cell Biology, Immunology, and Infection; Discipline of Microbiology and Immunology. Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Carolina Calôba
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Alexander Schutte
- Center for Cancer Cell Biology, Immunology, and Infection; Discipline of Microbiology and Immunology. Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Thaís O. Passos
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Moisés A. N. Neto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Gabrielle Brum
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Bárbara M. Vieira
- Programa de Imunologia e Biologia Tumoral, Instituto Nacional do Câncer, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiza Higa
- Departamento de Genética. Instituto de Biologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Fábio L. L. Monteiro
- Departamento de Genética. Instituto de Biologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Luiz Berbet
- Coordenação de Atividade com Modelos Biológicos Experimentais (CAMBE), Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - André N.A. Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Amilcar Tanuri
- Departamento de Genética. Instituto de Biologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - João P.B. Viola
- Programa de Imunologia e Biologia Tumoral, Instituto Nacional do Câncer, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Miriam B. F. Werneck
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Helder I. Nakaya
- Hospital Israelita Albert Einstein, 05652-900, São Paulo, SP, Brazil
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology, and Infection; Discipline of Microbiology and Immunology. Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Renata M. Pereira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
17
|
Nguyen MTH, Imanishi M, Li S, Chau K, Banerjee P, Velatooru LR, Ko KA, Samanthapudi VSK, Gi YJ, Lee LL, Abe RJ, McBeath E, Deswal A, Lin SH, Palaskas NL, Dantzer R, Fujiwara K, Borchrdt MK, Turcios EB, Olmsted-Davis EA, Kotla S, Cooke JP, Wang G, Abe JI, Le NT. Endothelial activation and fibrotic changes are impeded by laminar flow-induced CHK1-SENP2 activity through mechanisms distinct from endothelial-to-mesenchymal cell transition. Front Cardiovasc Med 2023; 10:1187490. [PMID: 37711550 PMCID: PMC10499395 DOI: 10.3389/fcvm.2023.1187490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background The deSUMOylase sentrin-specific isopeptidase 2 (SENP2) plays a crucial role in atheroprotection. However, the phosphorylation of SENP2 at T368 under disturbed flow (D-flow) conditions hinders its nuclear function and promotes endothelial cell (EC) activation. SUMOylation has been implicated in D-flow-induced endothelial-to-mesenchymal transition (endoMT), but the precise role of SENP2 in counteracting this process remains unclear. Method We developed a phospho-specific SENP2 S344 antibody and generated knock-in (KI) mice with a phospho-site mutation of SENP2 S344A using CRISPR/Cas9 technology. We then investigated the effects of SENP2 S344 phosphorylation under two distinct flow patterns and during hypercholesteremia (HC)-mediated EC activation. Result Our findings demonstrate that laminar flow (L-flow) induces phosphorylation of SENP2 at S344 through the activation of checkpoint kinase 1 (CHK1), leading to the inhibition of ERK5 and p53 SUMOylation and subsequent suppression of EC activation. We observed a significant increase in lipid-laden lesions in both the aortic arch (under D-flow) and descending aorta (under L-flow) of female hypercholesterolemic SENP2 S344A KI mice. In male hypercholesterolemic SENP2 S344A KI mice, larger lipid-laden lesions were only observed in the aortic arch area, suggesting a weaker HC-mediated atherogenesis in male mice compared to females. Ionizing radiation (IR) reduced CHK1 expression and SENP2 S344 phosphorylation, attenuating the pro-atherosclerotic effects observed in female SENP2 S344A KI mice after bone marrow transplantation (BMT), particularly in L-flow areas. The phospho-site mutation SENP2 S344A upregulates processes associated with EC activation, including inflammation, migration, and proliferation. Additionally, fibrotic changes and up-regulated expression of EC marker genes were observed. Apoptosis was augmented in ECs derived from the lungs of SENP2 S344A KI mice, primarily through the inhibition of ERK5-mediated expression of DNA damage-induced apoptosis suppressor (DDIAS). Summary In this study, we have revealed a novel mechanism underlying the suppressive effects of L-flow on EC inflammation, migration, proliferation, apoptosis, and fibrotic changes through promoting CHK1-induced SENP2 S344 phosphorylation. The phospho-site mutation SENP2 S344A responds to L-flow through a distinct mechanism, which involves the upregulation of both mesenchymal and EC marker genes.
Collapse
Affiliation(s)
- Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Loka reddy Velatooru
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Young J. Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rei J. Abe
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elena McBeath
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mae K. Borchrdt
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
18
|
van de Vegte YJ, Eppinga RN, van der Ende MY, Hagemeijer YP, Mahendran Y, Salfati E, Smith AV, Tan VY, Arking DE, Ntalla I, Appel EV, Schurmann C, Brody JA, Rueedi R, Polasek O, Sveinbjornsson G, Lecoeur C, Ladenvall C, Zhao JH, Isaacs A, Wang L, Luan J, Hwang SJ, Mononen N, Auro K, Jackson AU, Bielak LF, Zeng L, Shah N, Nethander M, Campbell A, Rankinen T, Pechlivanis S, Qi L, Zhao W, Rizzi F, Tanaka T, Robino A, Cocca M, Lange L, Müller-Nurasyid M, Roselli C, Zhang W, Kleber ME, Guo X, Lin HJ, Pavani F, Galesloot TE, Noordam R, Milaneschi Y, Schraut KE, den Hoed M, Degenhardt F, Trompet S, van den Berg ME, Pistis G, Tham YC, Weiss S, Sim XS, Li HL, van der Most PJ, Nolte IM, Lyytikäinen LP, Said MA, Witte DR, Iribarren C, Launer L, Ring SM, de Vries PS, Sever P, Linneberg A, Bottinger EP, Padmanabhan S, Psaty BM, Sotoodehnia N, Kolcic I, Arnar DO, Gudbjartsson DF, Holm H, Balkau B, Silva CT, Newton-Cheh CH, Nikus K, Salo P, Mohlke KL, Peyser PA, Schunkert H, Lorentzon M, Lahti J, Rao DC, Cornelis MC, Faul JD, Smith JA, Stolarz-Skrzypek K, Bandinelli S, Concas MP, Sinagra G, Meitinger T, Waldenberger M, Sinner MF, et alvan de Vegte YJ, Eppinga RN, van der Ende MY, Hagemeijer YP, Mahendran Y, Salfati E, Smith AV, Tan VY, Arking DE, Ntalla I, Appel EV, Schurmann C, Brody JA, Rueedi R, Polasek O, Sveinbjornsson G, Lecoeur C, Ladenvall C, Zhao JH, Isaacs A, Wang L, Luan J, Hwang SJ, Mononen N, Auro K, Jackson AU, Bielak LF, Zeng L, Shah N, Nethander M, Campbell A, Rankinen T, Pechlivanis S, Qi L, Zhao W, Rizzi F, Tanaka T, Robino A, Cocca M, Lange L, Müller-Nurasyid M, Roselli C, Zhang W, Kleber ME, Guo X, Lin HJ, Pavani F, Galesloot TE, Noordam R, Milaneschi Y, Schraut KE, den Hoed M, Degenhardt F, Trompet S, van den Berg ME, Pistis G, Tham YC, Weiss S, Sim XS, Li HL, van der Most PJ, Nolte IM, Lyytikäinen LP, Said MA, Witte DR, Iribarren C, Launer L, Ring SM, de Vries PS, Sever P, Linneberg A, Bottinger EP, Padmanabhan S, Psaty BM, Sotoodehnia N, Kolcic I, Arnar DO, Gudbjartsson DF, Holm H, Balkau B, Silva CT, Newton-Cheh CH, Nikus K, Salo P, Mohlke KL, Peyser PA, Schunkert H, Lorentzon M, Lahti J, Rao DC, Cornelis MC, Faul JD, Smith JA, Stolarz-Skrzypek K, Bandinelli S, Concas MP, Sinagra G, Meitinger T, Waldenberger M, Sinner MF, Strauch K, Delgado GE, Taylor KD, Yao J, Foco L, Melander O, de Graaf J, de Mutsert R, de Geus EJC, Johansson Å, Joshi PK, Lind L, Franke A, Macfarlane PW, Tarasov KV, Tan N, Felix SB, Tai ES, Quek DQ, Snieder H, Ormel J, Ingelsson M, Lindgren C, Morris AP, Raitakari OT, Hansen T, Assimes T, Gudnason V, Timpson NJ, Morrison AC, Munroe PB, Strachan DP, Grarup N, Loos RJF, Heckbert SR, Vollenweider P, Hayward C, Stefansson K, Froguel P, Groop L, Wareham NJ, van Duijn CM, Feitosa MF, O'Donnell CJ, Kähönen M, Perola M, Boehnke M, Kardia SLR, Erdmann J, Palmer CNA, Ohlsson C, Porteous DJ, Eriksson JG, Bouchard C, Moebus S, Kraft P, Weir DR, Cusi D, Ferrucci L, Ulivi S, Girotto G, Correa A, Kääb S, Peters A, Chambers JC, Kooner JS, März W, Rotter JI, Hicks AA, Smith JG, Kiemeney LALM, Mook-Kanamori DO, Penninx BWJH, Gyllensten U, Wilson JF, Burgess S, Sundström J, Lieb W, Jukema JW, Eijgelsheim M, Lakatta ELM, Cheng CY, Dörr M, Wong TY, Sabanayagam C, Oldehinkel AJ, Riese H, Lehtimäki T, Verweij N, van der Harst P. Genetic insights into resting heart rate and its role in cardiovascular disease. Nat Commun 2023; 14:4646. [PMID: 37532724 PMCID: PMC10397318 DOI: 10.1038/s41467-023-39521-2] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
Collapse
Affiliation(s)
- Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Ruben N Eppinga
- Department of Cardiology, Isala Zwolle ziekenhuis, Zwolle, 8025 AB, the Netherlands
| | - M Yldau van der Ende
- Department of Cardiology, University medical Center Utrecht, Utrecht, 3584 Cx, the Netherlands
| | - Yanick P Hagemeijer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
- Analytical Biochemistry, University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Yuvaraj Mahendran
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Elias Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, USA
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI48109, USA
| | - Vanessa Y Tan
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, BS82BN, UK
- MRC Integrative Epidemiology, University of Bristol, Bristol, BS82BN, UK
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21215, USA
| | - Ioanna Ntalla
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emil V Appel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | | | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, 21000, Croatia
- Algebra LAB, Algebra University College, Zagreb, 10000, Croatia
| | | | - Cecile Lecoeur
- UMR 8199, University of Lille Nord de France, Lille, 59000, France
| | - Claes Ladenvall
- Clinial Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 75185, Sweden
- Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, 20502, Sweden
| | - Jing Hua Zhao
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Department of Physiology, Maastricht University, Maastricht, 6229ER, Netherlands
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-2212, Campus Box 8506, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Shih-Jen Hwang
- Division of Intramural Research, National Heart Lung and Blood Institute, NIH, USA, Framingham, 1702, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Kirsi Auro
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Linyao Zeng
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, 80636, Germany
| | - Nabi Shah
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Lu Qi
- Department of Epidemiology, Tulane University, New Orleans, LA, 70112, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Federica Rizzi
- Unit of Biomedicine, Bio4Dreams-Business Nursery for Life Sciences, Milano, 20121, Italy
| | - Toshiko Tanaka
- Longitudinal Study Section, National Institute on Aging, Baltimore, 21224, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Leslie Lange
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, USA
| | - Martina Müller-Nurasyid
- IBE, Ludwig-Maximilians-University Munich, LMU Munich, Munich, 81377, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, 55101, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Carolina Roselli
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, 68163, Germany
| | - Xiuqing Guo
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Henry J Lin
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Francesca Pavani
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | | | - Raymond Noordam
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, 1081 HL, the Netherlands
| | - Katharina E Schraut
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Marcel den Hoed
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, 75237, Sweden
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, 24105, Germany
| | - Stella Trompet
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
| | - Marten E van den Berg
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015GD, the Netherlands
| | - Giorgio Pistis
- Institute of Genetics and Biomedic Research (IRGB), Italian National Research Council (CNR), Monserrato, (CA), 9042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, USA
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
| | - Xueling S Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Hengtong L Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0SL, UK
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus C, 8000, Denmark
| | - Carlos Iribarren
- Division of Research, Kaiser Permenente of Northern California, Oakland, 94612, USA
- The Scripps Research Institute, La Jolla, 10550, USA
| | | | - Susan M Ring
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, BS82BN, UK
- MRC Integrative Epidemiology, University of Bristol, Bristol, BS82BN, UK
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, 77030, USA
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, 2400, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
- Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Bruce M Psaty
- Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, 98195, USA
| | - Nona Sotoodehnia
- Medicine and Epidemiology, University of Washington, Seattle, 98195, USA
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, 21000, Croatia
- Algebra LAB, Algebra University College, Zagreb, 10000, Croatia
| | - David O Arnar
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, 101, Iceland
- Department of Medicine, Landspitali-The National University Hospital of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Hilma Holm
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
| | - Beverley Balkau
- Centre for Research in Epidemiology and Population Health, Institut national de la santé et de la recherche médicale, Villejuif, 94800, France
- UMRS 1018, University Versailles Saint-Quentin-en-Yvelines, Versailles, 78035, France
- UMRS 1018, University Paris Sud, Villejuif, 94807, France
| | - Claudia T Silva
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000CA, Netherlands
| | | | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, FI-33521, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Perttu Salo
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, 80636, Germany
- Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich, 80636, Germany
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Mölndal, 43180, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, 00014, Finland
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Katarzyna Stolarz-Skrzypek
- Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, 31-008, Poland
| | - Stefania Bandinelli
- Geriatric Unit, Unità sanitaria locale Toscana Centro, Florence, 50142, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti and University of Trieste", Trieste, 34149, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
| | - Moritz F Sinner
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Department of Cardiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, 55101, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Kent D Taylor
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Jie Yao
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Malmo, 221 85, Sweden
- Lund University Diabetes Center, Lund University, Malmö, 221 85, Sweden
| | | | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Eco J C de Geus
- Biological Psychology, EMGO+ Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University, Amsterdam, 1081 BT, the Netherlands
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75108, Sweden
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, Scotland, UK
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, Uppsala, 75237, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, 24105, Germany
| | - Peter W Macfarlane
- Institute of Health and Wellbeing, Faculty of Medicine, University of Glasgow, Glasgow, G12 0XH, UK
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicholas Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | - E-Shyong Tai
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Debra Q Quek
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Johan Ormel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, 75237, Sweden
| | - Cecilia Lindgren
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew P Morris
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, FI-20521, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, FI-20521, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, FI-20521, Finland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Themistocles Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Icelandic Heart Association, Kopavogur, 201, Iceland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School,, University of Bristol, Bristol, BS8 2BN, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, 77030, USA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Biomedical Research Centre, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Ruth J F Loos
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, 98195, USA
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University hospital, Lausanne, 1015, Switzerland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland, UK
| | - Kari Stefansson
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Philippe Froguel
- Department of Metabolism, Imperial College London, London, W12 0HS, UK
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, Lille University Hospital, EGID, Lille, 59000, France
- University of Lille, Lille, 59000, France
| | - Leif Groop
- Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, 20502, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 00290, Finland
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000CA, Netherlands
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-2212, Campus Box 8506, USA
| | - Christopher J O'Donnell
- Cardiology Section, VA Boston Healthcare System, Harvard Medical School, Boston, MA, 02132, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, FI-33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33521, Finland
| | - Markus Perola
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, 41345, Sweden
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Johan G Eriksson
- Department of General practice and primary care, University of Helsinki, Helsinki, 00014, Finland
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, 119228, Singapore
- Public health Research Program, Folkhalsan Research Center, Helsinki, 000250, Finland
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
- Centre for Urban Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter Kraft
- Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02112, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Daniele Cusi
- Unit of Biomedicine, Bio4Dreams-Business Nursery for Life Sciences, Milano, 20121, Italy
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, (MI), 20090, Italy
| | - Luigi Ferrucci
- Longitudinal Study Section, National Institute on Aging, Baltimore, 21224, USA
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34149, Italy
| | - Adolfo Correa
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, 39216, USA
| | - Stefan Kääb
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Department of Cardiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, 68161, Germany
| | - Jerome I Rotter
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, 221 85, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, 221 84, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, 413 45, Sweden
| | | | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, 1081 HL, the Netherlands
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75108, Sweden
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, Scotland, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, Uppsala, 75237, Sweden
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, Kiel, 24105, Germany
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
- Netherlands Heart Institute, Utrecht, 3511 EP, the Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015GD, the Netherlands
- Department of Nephrology, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Edward L M Lakatta
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Harriette Riese
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands.
- Department of Cardiology, University medical Center Utrecht, Utrecht, 3584 Cx, the Netherlands.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands.
| |
Collapse
|
19
|
Li X, Li L, Xiong X, Kuang Q, Peng M, Zhu K, Luo P. Identification of the Prognostic Biomarkers CBX6 and CBX7 in Bladder Cancer. Diagnostics (Basel) 2023; 13:diagnostics13081393. [PMID: 37189494 DOI: 10.3390/diagnostics13081393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromobox (CBX) proteins are essential components of polycomb group proteins and perform essential functions in bladder cancer (BLCA). However, research on CBX proteins is still limited, and the function of CBXs in BLCA has not been well illustrated. METHODS AND RESULTS We analyzed the expression of CBX family members in BLCA patients from The Cancer Genome Atlas database. By Cox regression analysis and survival analysis, CBX6 and CBX7 were identified as potential prognostic factors. Subsequently, we identified genes associated with CBX6/7 and performed enrichment analysis, and they were enriched in urothelial carcinoma and transitional carcinoma. Mutation rates of TP53 and TTN correlate with expression of CBX6/7. In addition, differential analysis indicated that the roles played by CBX6 and CBX7 may be related to immune checkpoints. The CIBERSORT algorithm was used to screen out immune cells that play a role in the prognosis of bladder cancer patients. Multiplex immunohistochemistry staining confirmed a negative correlation between CBX6 and M1 macrophages, as well as a consistent alteration in CBX6 and regulatory T cells (Tregs), a positive correlation between CBX7 and resting mast cells, and a negative correlation between CBX7 and M0 macrophages. CONCLUSIONS CBX6 and CBX7 expression levels may assist in predicting the prognosis of BLCA patients. CBX6 may contribute to a poor prognosis in patients by inhibiting M1 polarization and promoting Treg recruitment in the tumor microenvironment, while CBX7 may contribute to a better prognosis in patients by increasing resting mast cell numbers and decreasing macrophage M0 content.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
20
|
Sun W, Liu H, Qiao A, Jiang T, Li J, Wang L, Yang L, Huang H, Yan X, Yan B. Transgenic RFP-RPS-30 UbL strain of the nematode Caenorhabditis elegans as a biomonitor for environmental pollutants. ENVIRONMENTAL TOXICOLOGY 2023; 38:770-782. [PMID: 36602409 DOI: 10.1002/tox.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental pollutants are recognized as one of the major concerns for public health. The free-living nematode Caenorhabditis elegans are widely used to evaluate the toxicity of environmental contaminants in biomonitoring researches. In the present study, a new transgenic strain, rps-30-/- ;RFP-RPS-30UbL was generated, with constitutively active rps-30 promoter used to control the expression of RFP-RPS-30UbL fusion protein. We found RFP-RPS-30UbL would accumulate to form 'rod-like' structures, when worms were exposed to environmental contaminants, including Cd, Hg, Pb, As, Paraquat and Dichlorvos. The number of the 'rod-like' structures was induced by environmental contaminants in a concentration- and time-dependent manner. The 'rod-like' structure formation could be detectable in response to the concentration of each contaminant as low as 24-h LC50 × 10-7 , and the detectable time could be within 2 h. Detecting the transcription and expression levels of RFP-RPS-30UbL in worms exposed to different kinds of environmental contaminants showed that the expression level of RFP-RPS-30UbL was not regulated by environmental contaminants, and the number differences of 'rod-like' structures were just due to the morphological change of RFP-RPS-30UbL from dispersion to accumulation induced by environmental contaminants. In addition, this transgenic strain was developed in rps-30-/- homozygous worm, which was a longevity strain. Detection of lifespan and brood size showed that rps-30-/- ;RFP-RPS-30UbL transgenic worm was more suitable to be cultured and used further than N2;GFP-RPS-30UbL , for expressing RPS-30UbL in wild type N2 worms shortened the lifespan and deceased the brood size. Therefore, rps-30-/- ;RFP-RPS-30UbL transgenic worm might play a potential role in versatile environmental biomonitoring, with the advantage of not only the convenient and quick fluorescence-based reporter assay, but also the quantificational evaluation of the toxicities of environmental contaminants using 'rod-like' structures with high sensitivity, off-limited the expression level of the reporter protein.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Han Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Aijun Qiao
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, Alabama, USA
| | - Ting Jiang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- School of First Clinic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jianghui Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Long Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ling Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Huicong Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiumei Yan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Department of Pediatric Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Baolong Yan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Demeneva VV, Tolmacheva EN, Nikitina TV, Sazhenova EA, Yuriev SY, Makhmutkhodzhaev AS, Zuev AS, Filatova SA, Dmitriev AE, Darkova YA, Nazarenko LP, Lebedev IN, Vasilyev SA. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy. Vavilovskii Zhurnal Genet Selektsii 2023; 27:63-71. [PMID: 36923475 PMCID: PMC10009475 DOI: 10.18699/vjgb-23-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 03/11/2023] Open
Abstract
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p <0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 - R = -0.59, YWHAB - R = -0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 - R = -0.46, YWHAB - R = -0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
Collapse
Affiliation(s)
- V V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S Yu Yuriev
- Siberian State Medical University, Tomsk, Russia
| | | | - A S Zuev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Filatova
- National Research Tomsk State University, Tomsk, Russia
| | - A E Dmitriev
- National Research Tomsk State University, Tomsk, Russia
| | - Ya A Darkova
- National Research Tomsk State University, Tomsk, Russia
| | - L P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
22
|
Wang C, Nistala R, Cao M, Li DP, Pan Y, Golzy M, Cui Y, Liu Z, Kang X. Repair of Limb Ischemia Is Dependent on Hematopoietic Stem Cell Specific-SHP-1 Regulation of TGF-β1. Arterioscler Thromb Vasc Biol 2023; 43:92-108. [PMID: 36412197 PMCID: PMC10037747 DOI: 10.1161/atvbaha.122.318205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-β1 signaling. TGF-β1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-β1. METHODS A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (μm) and area (μm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS After femoral artery ligation, TGF-β1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-β1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-β1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-β1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS HSPC-SHP-1-mediated regulation of TGF-β1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.
Collapse
Affiliation(s)
- Chen Wang
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Ravi Nistala
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Nephrology (R.N.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Min Cao
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - De-Pei Li
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Yi Pan
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Mojgan Golzy
- Department of Family and Community Medicine - Biostatistics Unit, School of Medicine, University of Missouri, Columbia (M.G.)
| | - Yuqi Cui
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Cardiovascular Medicine (Y.C., Z.L.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - Zhenguo Liu
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
- Division of Cardiovascular Medicine (Y.C., Z.L.), Department of Medicine, University of Missouri School of Medicine, Columbia
| | - XunLei Kang
- Center for Precision Medicine (C.W., R.N., M.C., D.-P.L., Y.P., Y.C., Z.L., X.K.), Department of Medicine, University of Missouri School of Medicine, Columbia
| |
Collapse
|
23
|
García-Gutiérrez P, García-Domínguez M. SUMO control of nervous system development. Semin Cell Dev Biol 2022; 132:203-212. [PMID: 34848148 DOI: 10.1016/j.semcdb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
In the last decades, the post-translational modification system by covalent attachment of the SUMO polypeptide to proteins has emerged as an essential mechanism controlling virtually all the physiological processes in the eukaryotic cell. This includes vertebrate development. In the nervous system, SUMO plays crucial roles in synapse establishment and it has also been linked to a variety of neurodegenerative diseases. However, to date, the involvement of the modification of specific targets in key aspects of nervous system development, like patterning and differentiation, has remained largely elusive. A number of recent works confirm the participation of target-specific SUMO modification in critical aspects of nervous system development. Here, we review pioneering and new findings demonstrating the essential role SUMO plays in neurogenesis and other facets of neurodevelopment, which will help to precisely understand the variety of mechanisms SUMO utilizes to control most fundamental processes in the cell.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
24
|
Targeting Epigenetic Regulation of Cardiomyocytes through Development for Therapeutic Cardiac Regeneration after Heart Failure. Int J Mol Sci 2022; 23:ijms231911878. [PMID: 36233177 PMCID: PMC9569953 DOI: 10.3390/ijms231911878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death globally, with no cure currently. Therefore, there is a dire need to further understand the mechanisms that arise during heart failure. Notoriously, the adult mammalian heart has a very limited ability to regenerate its functional cardiac cells, cardiomyocytes, after injury. However, the neonatal mammalian heart has a window of regeneration that allows for the repair and renewal of cardiomyocytes after injury. This specific timeline has been of interest in the field of cardiovascular and regenerative biology as a potential target for adult cardiomyocyte repair. Recently, many of the neonatal cardiomyocyte regeneration mechanisms have been associated with epigenetic regulation within the heart. This review summarizes the current and most promising epigenetic mechanisms in neonatal cardiomyocyte regeneration, with a specific emphasis on the potential for targeting these mechanisms in adult cardiac models for repair after injury.
Collapse
|
25
|
Zhang YJ, Zhao LY, He X, Yao RF, Lu F, Lu BN, Pang ZR. CBXs-related prognostic gene signature correlates with immune microenvironment in gastric cancer. Aging (Albany NY) 2022; 14:6227-6254. [PMID: 35969177 PMCID: PMC9417237 DOI: 10.18632/aging.204214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/09/2022]
Abstract
Background: Chromobox (CBX) proteins are important Polycomb family proteins in the development of gastric cancer. Nonetheless, the relationship between CBXs and gastric cancer microenvironment remains unclear. Methods: Multiple databases were used for the analysis of CBXs expression and clinical value in gastric cancer patients. A Cox regression analysis was used to evaluate the prognostic importance of CBXs. Thereafter, regression analysis of LASSO Cox was used to construct the prognostic model. Spearman's correlation between risk score and immune infiltration was analyzed using the McP-counter algorithm. A predicted nomogram was developed to predict the overall survival of gastric cancer patients after 1, 2, and 3 years. Results: In contrast with normal tissues, mRNA and protein expression levels of CBX2/3 were significantly high in gastric cancer tissues, whereas those of CBX6/7 were low. CBXs significantly correlated with immune subtypes and molecular subtypes. A prognostic gene model based on five CBX genes (CBX1, CBX2, CBX3, CBX7, and CBX8) predicted the overall survival of gastric cancer patients. A significant correlation was noted between the risk score of the CBXs-related prognostic gene model and immune-cell infiltration. Low risk patients could achieve a better response to immune checkpoint inhibitors. A predictive nomogram constructed using the above five CBX genes revealed that overall survival rates over 1, 2, and 3 years could be reasonably predicted. Therefore, the roles of CBXs were associated with chromatin modifications and histone methylation, etc. Conclusion: In summary, we identified a prognostic CBXs model comprising five genes (CBX1, CBX2, CBX3, CBX7, and CBX8) for gastric cancer patients through bioinformatics analysis.
Collapse
Affiliation(s)
- Yin Jiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Lin Yi Zhao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Rong Fei Yao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Fan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Bi Nan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Zong Ran Pang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| |
Collapse
|
26
|
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol 2022; 23:715-731. [PMID: 35750927 DOI: 10.1038/s41580-022-00500-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Sumoylation is an essential post-translational modification that is catalysed by a small number of modifying enzymes but regulates thousands of target proteins in a dynamic manner. Small ubiquitin-like modifiers (SUMOs) can be attached to target proteins as one or more monomers or in the form of polymers of different types. Non-covalent readers recognize SUMO-modified proteins via SUMO interaction motifs. SUMO simultaneously modifies groups of functionally related proteins to regulate predominantly nuclear processes, including gene expression, the DNA damage response, RNA processing, cell cycle progression and proteostasis. Recent progress has increased our understanding of the cellular and pathophysiological roles of SUMO modifications, extending their functions to the regulation of immunity, pluripotency and nuclear body assembly in response to oxidative stress, which partly occurs through the recently characterized mechanism of liquid-liquid phase separation. Such progress in understanding the roles and regulation of sumoylation opens new avenues for the targeting of SUMO to treat disease, and indeed the first drug blocking sumoylation is currently under investigation in clinical trials as a possible anticancer agent.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
27
|
Taghvaei S, Sabouni F, Minuchehr Z. Identification of Natural Products as SENP2 Inhibitors for Targeted Therapy in Heart Failure. Front Pharmacol 2022; 13:817990. [PMID: 35431915 PMCID: PMC9012495 DOI: 10.3389/fphar.2022.817990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: Sentrin-specific protease -2 (SENP2) is involved in deSUMOylation. Increased deSUMOylation in murine hearts by SENP2 upregulation resulted in cardiac dysfunction and congenital heart defects. Natural compounds via regulating cell proliferation and survival, induce cell cycle cessation, cell death, apoptosis, and producing reactive oxygen species and various enzyme systems cause disease prevention. Then, natural compounds can be suitable inhibitors and since SENP2 is a protein involved in heart disease, so our aim was inhibition of SENP2 by natural products for heart disease treatment. Material and methods: Molecular docking and molecular dynamics simulation of natural products i.e. Gallic acid (GA), Caffeic acid (CA), Thymoquinone (TQ), Betanin, Betanidin, Fisetin, and Ebselen were done to evaluate the SENP2 inhibitory effect of these natural products. The toxicity of compounds was also predicted. Results: The results showed that Betanin constituted a stable complex with SENP2 active site as it revealed low RMSD, high binding energy, and hydrogen bonds. Further, as compared to Ebselen, Betanin demonstrated low toxicity, formed a stable complex with SENP2 via four to seven hydrogen bonds, and constituted more stable MD plots. Therefore, depending upon the outcomes presented herein, Betanin significantly inhibited SENP2 and hence may be considered as a suitable natural compound for the treatment of heart failure. Further clinical trials must be conducted to validate its use as a potential SENP2 inhibitor.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
28
|
Chen X, Qin Y, Zhang Y, Yang X, Xing Z, Shen Y, Cheng J, Yeh ETH, Wu H, Qi Y. SENP2-PLCβ4 signaling regulates neurogenesis through the maintenance of calcium homeostasis. Cell Death Differ 2022; 29:337-350. [PMID: 34465891 PMCID: PMC8817034 DOI: 10.1038/s41418-021-00857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neurogenesis plays a critical role in brain physiology and behavioral performance, and defective neurogenesis leads to neurological and psychiatric disorders. Here, we show that PLCβ4 expression is markedly reduced in SENP2-deficient cells and mice, resulting in decreased IP3 formation and altered intracellular calcium homeostasis. PLCβ4 stability is regulated by the SUMO-dependent ubiquitin-mediated proteolytic pathway, which is catalyzed by PIAS2α and RNF4. SUMOylated PLCβ4 is transported to the nucleus through Nup205- and RanBP2-dependent pathways and regulates nuclear signaling. Furthermore, dysregulated calcium homeostasis induced defects in neurogenesis and neuronal viability in SENP2-deficient mice. Finally, SENP2 and PLCβ4 are stimulated by starvation and oxidative stress, which maintain calcium homeostasis regulated neurogenesis. Our findings provide mechanistic insight into the critical roles of SENP2 in the regulation of PLCβ4 SUMOylation, and the involvement of SENP2-PLCβ4 axis in calcium homeostasis regulated neurogenesis under stress.
Collapse
Affiliation(s)
- Xu Chen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuanyuan Qin
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuhong Zhang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Xinyi Yang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Zhengcao Xing
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yajie Shen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Jinke Cheng
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edward T. H. Yeh
- grid.241054.60000 0004 4687 1637Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Hongmei Wu
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yitao Qi
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| |
Collapse
|
29
|
Hotz PW, Müller S, Mendler L. SUMO-specific Isopeptidases Tuning Cardiac SUMOylation in Health and Disease. Front Mol Biosci 2021; 8:786136. [PMID: 34869605 PMCID: PMC8641784 DOI: 10.3389/fmolb.2021.786136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
SUMOylation is a transient posttranslational modification with small-ubiquitin like modifiers (SUMO1, SUMO2 and SUMO3) covalently attached to their target-proteins via a multi-step enzymatic cascade. SUMOylation modifies protein-protein interactions, enzymatic-activity or chromatin binding in a multitude of key cellular processes, acting as a highly dynamic molecular switch. To guarantee the rapid kinetics, SUMO target-proteins are kept in a tightly controlled equilibrium of SUMOylation and deSUMOylation. DeSUMOylation is maintained by the SUMO-specific proteases, predominantly of the SENP family. SENP1 and SENP2 represent family members tuning SUMOylation status of all three SUMO isoforms, while SENP3 and SENP5 are dedicated to detach mainly SUMO2/3 from its substrates. SENP6 and SENP7 cleave polySUMO2/3 chains thereby countering the SUMO-targeted-Ubiquitin-Ligase (StUbL) pathway. Several biochemical studies pinpoint towards the SENPs as critical enzymes to control balanced SUMOylation/deSUMOylation in cardiovascular health and disease. This study aims to review the current knowledge about the SUMO-specific proteases in the heart and provides an integrated view of cardiac functions of the deSUMOylating enzymes under physiological and pathological conditions.
Collapse
Affiliation(s)
- Paul W Hotz
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Luca Mendler
- Institute of Biochemistry II, Gustav Embden Zentrum, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Zhang Y, Chen X, Wang Q, Du C, Lu W, Yuan H, Zhang Z, Li D, Ling X, Ren X, Zhao Y, Su Q, Xing Z, Qin Y, Yang X, Shen Y, Wu H, Qi Y. Hyper-SUMOylation of SMN induced by SENP2 deficiency decreases its stability and leads to spinal muscular atrophy-like pathology. J Mol Med (Berl) 2021; 99:1797-1813. [PMID: 34628513 DOI: 10.1007/s00109-021-02130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy (SMA), a degenerative motor neuron disease and a leading cause of infant mortality, is caused by loss of functional survival motor neuron (SMN) protein due to SMN1 gene mutation. Here, using mouse and cell models for behavioral and histological studies, we found that SENP2 (SUMO/sentrin-specific protease 2)-deficient mice developed a notable SMA-like pathology phenotype with significantly decreased muscle fibers and motor neurons. At the molecular level, SENP2 deficiency in mice did not affect transcription but decreased SMN protein levels by promoting the SUMOylation of SMN. SMN was modified by SUMO2 with the E3 PIAS2α and deconjugated by SENP2. SUMOylation of SMN accelerated its degradation by the ubiquitin-proteasome degradation pathway with the ubiquitin E1 UBA1 (ubiquitin-like modifier activating enzyme 1) and E3 ITCH. SUMOylation of SMN increased its acetylation to inhibit the formation of Cajal bodies (CBs). These results showed that SENP2 deficiency induced hyper-SUMOylation of the SMN protein, which further affected the stability and functions of the SMN protein, eventually leading to the SMA-like phenotype. Thus, we uncovered the important roles for hyper-SUMOylation of SMN induced by SENP2 deficiency in motor neurons and provided a novel targeted therapeutic strategy for SMA. KEY MESSAGES: SENP2 deficiency enhanced the hyper-SUMOylation of SMN and promoted the degradation of SMN by the ubiquitin-proteasome pathway. SUMOylation increased the acetylation of SMN to inhibit CB formation. SENP2 deficiency caused hyper-SUMOylation of SMN protein, which further affected the stability and functions of SMN protein and eventually led to the occurrence of SMA-like pathology.
Collapse
Affiliation(s)
- Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
31
|
Yamada S, Sato A, Ishihara N, Akiyama H, Sakakibara SI. Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development. iScience 2021; 24:103484. [PMID: 34988397 PMCID: PMC8710555 DOI: 10.1016/j.isci.2021.103484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| |
Collapse
|
32
|
Giordano I, Pirone L, Muratore V, Landaluze E, Pérez C, Lang V, Garde-Lapido E, Gonzalez-Lopez M, Barroso-Gomila O, Vertegaal ACO, Aransay AM, Rodriguez JA, Rodriguez MS, Sutherland JD, Barrio R. SALL1 Modulates CBX4 Stability, Nuclear Bodies, and Regulation of Target Genes. Front Cell Dev Biol 2021; 9:715868. [PMID: 34621739 PMCID: PMC8490708 DOI: 10.3389/fcell.2021.715868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Development is orchestrated through a complex interplay of multiple transcription factors. The comprehension of this interplay will help us to understand developmental processes. Here we analyze the relationship between two key transcription factors: CBX4, a member of the Polycomb Repressive Complex 1 (PRC1), and SALL1, a member of the Spalt-like family with important roles in embryogenesis and limb development. Both proteins localize to nuclear bodies and are modified by the small ubiquitin-like modifier (SUMO). Our results show that CBX4 and SALL1 interact in the nucleoplasm and that increased SALL1 expression reduces ubiquitination of CBX4, enhancing its stability. This is accompanied by an increase in the number and size of CBX4-containing Polycomb bodies, and by a greater repression of CBX4 target genes. Thus, our findings uncover a new way of SALL1-mediated regulation of Polycomb bodies through modulation of CBX4 stability, with consequences in the regulation of its target genes, which could have an impact in cell differentiation and development.
Collapse
Affiliation(s)
- Immacolata Giordano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Lucia Pirone
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Eukene Landaluze
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Coralia Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Valerie Lang
- Viralgen Vector Core, Parque Científico y Tecnológico de Guipúzcoa, San Sebastián, Spain
| | - Elisa Garde-Lapido
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination-CNRS, Paul Sabatier: Université Toulouse III, Toulouse, France
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| |
Collapse
|
33
|
Du C, Chen X, Su Q, Lu W, Wang Q, Yuan H, Zhang Z, Wang X, Wu H, Qi Y. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci 2021; 22:10618. [PMID: 34638970 PMCID: PMC8509021 DOI: 10.3390/ijms221910618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease caused by many factors, including atherosclerosis, congenital heart disease, heart failure, and ischemic cardiomyopathy. CVD has been regarded as one of the most common diseases and has a severe impact on the life quality of patients. The main features of CVD include high morbidity and mortality, which seriously threaten human health. SUMO proteins covalently conjugate lysine residues with a large number of substrate proteins, and SUMOylation regulates the function of target proteins and participates in cellular activities. Under certain pathological conditions, SUMOylation of proteins related to cardiovascular development and function are greatly changed. Numerous studies have suggested that SUMOylation of substrates plays critical roles in normal cardiovascular development and function. We reviewed the research progress of SUMOylation in cardiovascular development and function, and the regulation of protein SUMOylation may be applied as a potential therapeutic strategy for CVD treatment.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 246011, China;
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| |
Collapse
|
34
|
Chen X, Zhang Y, Ren X, Su Q, Liu Y, Dang X, Qin Y, Yang X, Xing Z, Shen Y, Wang Y, Bai Z, Yeh ETH, Wu H, Qi Y. The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels. J Biol Chem 2021; 297:101183. [PMID: 34509475 PMCID: PMC8488601 DOI: 10.1016/j.jbc.2021.101183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/04/2022] Open
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP2. CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yan Liu
- School of Life Sciences & Research Center for Peptide Drugs, Yan'an University, Yan'an, Shaanxi, China
| | - Xing Dang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhantao Bai
- School of Life Sciences & Research Center for Peptide Drugs, Yan'an University, Yan'an, Shaanxi, China
| | - Edward T H Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
35
|
Wu M, Yang L, Hou X, Wang Z, Zhang J. Human Polycomb Protein 2 (hPC2) as a Novel Independent Prognostic Marker in Nasopharyngeal Carcinoma. Cancer Manag Res 2021; 13:5775-5784. [PMID: 34321924 PMCID: PMC8312507 DOI: 10.2147/cmar.s308884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Human polycomb protein 2(hPC2) is a vital component of polycomb repressive complex 1(PRC1). It plays a critical role in tumorigenesis and progression. However, whether HPC2 expression affects the prognosis of patients with nasopharyngeal carcinoma (NPC) is currently unclear. In the present study, we investigated the expression of hPC2and elucidated its clinical prognostic significance in NPC. Patients and Methods The expression of hPC2 in 180 NPCs samples was examined by immunohistochemistry (IHC) and evaluated by H-score staining intensity. Receiver operator characteristic (ROC) curve analysis was performed to determine cut-off values of hPC2 expression. The chi-square test, Kaplan–Meier (Log rank test), and the Cox proportional hazards model were utilized to analyze the data. Results We found hPC2 is highly expressed in 48.3% of NPC specimens, which significantly correlated with T stage (p=0.032), N stage (p=0.006), and clinical stage (p=0.003). Kaplan–Meier analysis indicated that NPCs with high hPC2 expression tended to have a lower cumulative rates of overall survival (OS, p<0.001), recurrence-free survival (RFS, p=0.001), and distant metastasis-free survival (DMFS, p=0.003). In the NPCs subgroup, T3–T4, N2–N3, and stages III–IV, high hPC2 expression also had a prognostic impact on worse outcome in terms of OS, RFS, and DMFS. More importantly, multivariate analyses demonstrated that hPC2 expression was an independent prognostic factor for OS (hazard ratio [HR], 95% (confidence interval [CI]), p=0.001), RFS (HR, 95% CI, p=0.018), and DMFS (HR, 95% CI, p=0.022). Conclusion We present evidence that high expression of hPC2 correlated with poorer prognosis in NPC. hPC2 could serve as a novel prognostic biomarker and might be a promising therapeutic target for NPC.
Collapse
Affiliation(s)
- Mei Wu
- Diagnosis and Treatment Center of Otorhinolaryngology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Li Yang
- Diagnosis and Treatment Center of Otorhinolaryngology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Xiaojuan Hou
- Diagnosis and Treatment Center of Otorhinolaryngology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Ziyuan Wang
- Diagnosis and Treatment Center of Otorhinolaryngology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Jianqing Zhang
- Department of Radiotherapy People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, People's Republic of China
| |
Collapse
|
36
|
Qin Y, Yuan H, Chen X, Yang X, Xing Z, Shen Y, Dong W, An S, Qi Y, Wu H. SUMOylation Wrestles With the Occurrence and Development of Breast Cancer. Front Oncol 2021; 11:659661. [PMID: 33968766 PMCID: PMC8097099 DOI: 10.3389/fonc.2021.659661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
37
|
Chen X, Qin Y, Zhang Z, Xing Z, Wang Q, Lu W, Yuan H, Du C, Yang X, Shen Y, Zhao B, Shao H, Wang X, Wu H, Qi Y. Hyper-SUMOylation of ERG Is Essential for the Progression of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:652284. [PMID: 33842551 PMCID: PMC8032903 DOI: 10.3389/fmolb.2021.652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
38
|
Chen Y, Xu T, Li M, Li C, Ma Y, Chen G, Sun Y, Zheng H, Wu G, Liao W, Liao Y, Chen Y, Bin J. Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clin Sci (Lond) 2021; 135:811-828. [PMID: 33687053 DOI: 10.1042/cs20201408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Post-translational modification (PTM) by small ubiquitin-like modifier (SUMO) is a key regulator of cell proliferation and can be readily reversed by a family of SUMO-specific proteases (SENPs), making SUMOylation an ideal regulatory mechanism for developing novel therapeutic strategies for promoting a cardiac regenerative response. However, the role of SUMOylation in cardiac regeneration remains unknown. In the present study, we assessed whether targeting protein kinase B (Akt) SUMOylation can promote cardiac regeneration. Quantitative PCR and Western blotting results showed that small ubiquitin-like modifier-specific protease 2 (SENP2) is up-regulated during postnatal heart development. SENP2 deficiency promoted P7 and adult cardiomyocyte (CM) dedifferentiation and proliferation both in vitro and in vivo. Mice with SENP2 deficiency exhibited improved cardiac function after MI due to CM proliferation and angiogenesis. Mechanistically, the loss of SENP2 up-regulated Akt SUMOylation levels and increased Akt kinase activity, leading to a decrease in GSK3β levels and subsequently promoting CM proliferation and angiogenesis. In summary, inhibition of SENP2-mediated Akt deSUMOylation promotes CM differentiation and proliferation by activating the Akt pathway. Our results provide new insights into the role of SUMOylation in cardiac regeneration.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yusheng Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangkai Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
39
|
Chen X, Zhang Y, Wang Q, Qin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 2021; 35:e21510. [PMID: 33710677 DOI: 10.1096/fj.202002702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
40
|
SUMO E3 ligase CBX4 regulates hTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem J 2021; 477:3803-3818. [PMID: 32926159 DOI: 10.1042/bcj20200359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
hTERT, the catalytic component of the human telomerase enzyme, is regulated by post-translational modifications, like phosphorylation and ubiquitination by multiple proteins which remarkably affects the overall activity of the enzyme. Here we report that hTERT gets SUMOylated by SUMO1 and polycomb protein CBX4 acts as the SUMO E3 ligase of hTERT. hTERT SUMOylation positively regulates its telomerase activity which can be inhibited by SENP3-mediated deSUMOylation. Interestingly, we have established a new role of hTERT SUMOylation in the repression of E-cadherin gene expression and consequent triggering on the epithelial-mesenchymal-transition (EMT) program in breast cancer cells. We also observed that catalytically active CBX4, leads to retention of hTERT/ZEB1 complex onto E-cadherin promoter leading to its repression through hTERT-SUMOylation. Further through wound healing and invasion assays in breast cancer cells, we showed the tumor promoting ability of hTERT was significantly compromised upon overexpression of SUMO-defective mutant of hTERT. Thus our findings establish a new post-translational modification of hTERT which on one hand is involved in telomerase activity maintenance and on the other hand plays a crucial role in the regulation of gene expression thereby promoting migration and invasion of breast cancer cells.
Collapse
|
41
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
42
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
43
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
44
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
45
|
Zhang X, Wang C, Zhao D, Chen X, Zhang C, Zheng J, Liu X. Zinc deficiency induces abnormal development of the myocardium by promoting SENP5 overexpression. PLoS One 2020; 15:e0242606. [PMID: 33211757 PMCID: PMC7676719 DOI: 10.1371/journal.pone.0242606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Gestational zinc deficiency is a cause of congenital heart disease in the fetus, and sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) as deSUMOylation enzymes play a crucial role in the development of cardiac structures. However, current studies of the regulation and function of SENP in zinc-deficient status during heart development remain limited. In this study, SUMO1 modification was found to gradually decrease during heart development, and the level of SENP5 exhibited a similar trend to SUMO1 conjugation. In addition, zinc deficiency resulted in cardiac dysplasia, increased cell apoptosis, decreased cell viability, and differentiation inhibition of hiPSC-CMs. In order to investigate the function of SENP5 in zinc deficiency, hiPSC-CMs were transfected with SENP5 small interfering RNA. The negative effects of zinc lacking conditions were reversed with depletion of SENP5. It was confirmed that zinc deficiency induced abnormal differentiation of hiPSCs and increased apoptosis of hiPSC-CMs by promoting SENP5 overexpression, which led to cardiac dysplasia. Thus, it was concluded that SENP5 regulates the SUMO1 deconjugation during heart development and zinc deficiency may reduce conjugated SUMO by promoting SENP5 overexpression, which induces abnormal development of the myocardium.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neonatology, Tianjin Medical University, Tianjin, P.R. China
| | - Cuancuan Wang
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Dan Zhao
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xuhong Chen
- Department of Obstetrics and Gynecology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, P.R. China
| |
Collapse
|
46
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
47
|
Zhao B, Zhang Z, Chen X, Shen Y, Qin Y, Yang X, Xing Z, Zhang S, Long X, Zhang Y, An S, Wu H, Qi Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J Cell Physiol 2020; 236:3466-3480. [PMID: 33151565 DOI: 10.1002/jcp.30143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.
Collapse
Affiliation(s)
- Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
48
|
Wang K, Jiang Z, Lu X, Zhang Y, Yuan X, Luo D, Lin Z, Zuo Y, Luo Q. Cardiomyocyte-specific deletion of Senp2 contributes to CVB3 viral replication and inflammation. Int Immunopharmacol 2020; 88:106941. [PMID: 33182061 DOI: 10.1016/j.intimp.2020.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Viral myocarditis (VMC) is characterized by cardiac inflammation and excessive inflammatory responses after viral infection. SENP2, a deSUMO-specific protease, has been reported to regulate antiviral innate immunity. This study aimed to investigate whether SENP2 affects CVB3-induced VMC. We generated a CVB3-induced VMC mouse model in 6-week-old cardiomyocyte-specific Senp2 knockout mice. The mice were sacrificed at days 0, 2, 4 and 6 after CVB3 infection. The survival rate, body weight, myocardial histopathological changes, viral load, cytokine levels and antiviral gene expression in cardiac tissues of both groups were investigated. Our study indicated that the expression of Senp2 in primary cardiomyocytes was upregulated by CVB3 infection. Moreover, deletion of Senp2 in the heart exacerbated CVB3 infection-induced myocarditis, facilitated CVB3 viral replication and downregulated the expression of antiviral proteins. In conclusion, our findings suggest a protective role for SENP2 in CVB3-induced VMC.
Collapse
Affiliation(s)
- Kangwei Wang
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Zaixue Jiang
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Xiaomei Lu
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Yaozhong Zhang
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Xu Yuan
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Dong Luo
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Zitian Lin
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China
| | - Yong Zuo
- The Department of Biochemistry and Molecular & Cell Biology, The Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medical, Shanghai 200025, China.
| | - Qingming Luo
- Department of Children's Genetics and Infectious Diseases Laboratory, Dongguan Institute of Pediatrics, Dongguan, Guangdong 510000, China; Department of Respiratory Medicine, Dongguan Children's Hospital, Dongguan, Guangdong 510000, China.
| |
Collapse
|
49
|
Patil S, Steuber B, Kopp W, Kari V, Urbach L, Wang X, Küffer S, Bohnenberger H, Spyropoulou D, Zhang Z, Versemann L, Bösherz MS, Brunner M, Gaedcke J, Ströbel P, Zhang JS, Neesse A, Ellenrieder V, Singh SK, Johnsen SA, Hessmann E. EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of GATA6. Cancer Res 2020; 80:4620-4632. [PMID: 32907838 DOI: 10.1158/0008-5472.can-20-0672] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Recent studies have thoroughly described genome-wide expression patterns defining molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different prognostic and predictive implications. Although the reversible nature of key regulatory transcription circuits defining the two extreme PDAC subtype lineages "classical" and "basal-like" suggests that subtype states are not permanently encoded but underlie a certain degree of plasticity, pharmacologically actionable drivers of PDAC subtype identity remain elusive. Here, we characterized the mechanistic and functional implications of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in controlling PDAC plasticity, dedifferentiation, and molecular subtype identity. Utilization of transgenic PDAC models and human PDAC samples linked EZH2 activity to PDAC dedifferentiation and tumor progression. Combined RNA- and chromatin immunoprecipitation sequencing studies identified EZH2 as a pivotal suppressor of differentiation programs in PDAC and revealed EZH2-dependent transcriptional repression of the classical subtype defining transcription factor Gata6 as a mechanistic basis for EZH2-dependent PDAC progression. Importantly, genetic or pharmacologic depletion of EZH2 sufficiently increased GATA6 expression, thus inducing a gene signature shift in favor of a less aggressive and more therapy-susceptible, classical PDAC subtype state. Consistently, abrogation of GATA6 expression in EZH2-deficient PDAC cells counteracted the acquisition of classical gene signatures and rescued their invasive capacities, suggesting that GATA6 derepression is critical to overcome PDAC progression in the context of EZH2 inhibition. Together, our findings link the EZH2-GATA6 axis to PDAC subtype identity and uncover EZH2 inhibition as an appealing strategy to induce subtype-switching in favor of a less aggressive PDAC phenotype. SIGNIFICANCE: This study highlights the role of EZH2 in PDAC progression and molecular subtype identity and suggests EZH2 inhibition as a strategy to recalibrate GATA6 expression in favor of a less aggressive disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4620/F1.large.jpg.
Collapse
Affiliation(s)
- Shilpa Patil
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Dimitra Spyropoulou
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Marius Brunner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, PR China.,Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany.,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
50
|
Edwards JA, Tan N, Toussaint N, Ou P, Mueller C, Stanek A, Zinsou V, Roudnitsky S, Sagal M, Dresner L, Schwartzman A, Huan C. Role of regenerating islet-derived proteins in inflammatory bowel disease. World J Gastroenterol 2020; 26:2702-2714. [PMID: 32550748 PMCID: PMC7284176 DOI: 10.3748/wjg.v26.i21.2702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract that affects millions of patients worldwide. It has a complex and multifactorial etiology leading to excessive exposure of intestinal epithelium to microbial antigens, inappropriate activation of the immune system and ultimately to the damage of intestinal tissues. Although numerous efforts have been made to improve the disease management, IBD remains persistently recurring and beyond cure. This is due largely to the gaps in our understanding of the pathogenesis of IBD that hamper the development of timely diagnoses and effective treatment. However, some recent discoveries, including the beneficial effects of interleukin-22 (IL-22) on the inflamed intestine, have shed light on a self-protective mechanism in IBD. Regenerating islet-derived (REG/Reg) proteins are small secretory proteins which function as IL-22's downstream effectors. Mounting studies have demonstrated that IBD patients have significantly increased REG expressions in the injured intestine, but with undefined mechanisms and roles. The reported functions of REG/Reg proteins in intestinal homeostasis, such as those of antibacterial, anti-inflammatory and tissue repair, lead us to discuss their potential mechanisms and clinical relevance in IBD in order to advance IBD research and management.
Collapse
Affiliation(s)
- Jodi-Ann Edwards
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Nicholas Tan
- College of Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Nadlie Toussaint
- College of Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Peiqi Ou
- MCB program, School of Graduate Studies, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Cathy Mueller
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Albert Stanek
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Vladimir Zinsou
- College of Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Sean Roudnitsky
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Michelle Sagal
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Lisa Dresner
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Alexander Schwartzman
- Department of Surgery, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Chongmin Huan
- Department of Surgery and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, United States
| |
Collapse
|