1
|
Shixing X, Shengjun B, He S, Xinyue Z, Xingdong Z, Xiaoying Z, Leng H, Enyong D, Wan J. A fluorescence biosensor for detecting LncRNA MALAT1 based on isothermal amplification by cyclic extension. Anal Chim Acta 2025; 1357:344076. [PMID: 40316390 DOI: 10.1016/j.aca.2025.344076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a crucial regulator of gene expression, has emerged as a highly promising biomarker in the progression of various cancers. The clinical detection of lncRNA MALAT1 primarily relies on Reverse Transcription-Polymerase Chain Reaction (RT-PCR), which requires skilled operators and large, expensive thermal cycling equipment. These limitations have restricted the application of RT-PCR, particularly in resource-constrained settings. RESULTS In this study, we developed a novel signal amplification method, termed Isothermal Amplification by Cyclic Extension (IACE), based on the linear extension of a single-stranded DNA probe. IACE operates through the continuous extension of Probe 1 (a) into long single-stranded DNA with multiple repetitive sequences, facilitated by Probe 2 (a∗a∗) and Bst DNA polymerase. We found that the single-stranded DNA product of IACE could directly activate the CRISPR-Cas12a system without requiring a protospacer adjacent motif (PAM). By integrating IACE with a three-way junction structure and a nicking enzyme, we established a one-step signal amplification strategy for the detection of lncRNA MALAT1, achieving a detection limit as low as 37.5 fM using the CRISPR-Cas system. SIGNIFICANCE The biosensor developed in the present study simplifies workflows, minimizes contamination risks, and demonstrates exceptional detection performance in tumor patient samples, highlighting its potential to advance clinical tumor diagnostic approaches.
Collapse
Affiliation(s)
- Xue Shixing
- Second Division of Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Bu Shengjun
- Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Sun He
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Xinyue
- Second Division of Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Zhang Xingdong
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zhang Xiaoying
- College of Veterinary Medicine College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Han Leng
- Second Division of Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Dai Enyong
- Second Division of Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Jiayu Wan
- Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
2
|
Shi H, Liu X, Xing C, Guo S, Zheng Y, Tan W, Ge Y, Xu J, Li Y, Song J. DNMT1-Induced Downregulation of CBX7 Inhibits ERK Phosphorylation and Promotes Pancreatic Ductal Adenocarcinoma Progression. FASEB J 2025; 39:e70571. [PMID: 40387566 PMCID: PMC12087528 DOI: 10.1096/fj.202402903r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancer types, characterized by an alarmingly low 5-year survival rate. DNA methylation has been implicated in the progression of various tumors, with DNA methyltransferase 1 (DNMT1) being the most extensively studied enzyme in this context. However, the expression patterns and underlying mechanisms of DNMT1 in PDAC remain poorly understood. The levels of DNMT1 and CBX7 in PDAC tissues and cells were determined by IHC and Western blot. ChIP and dual-luciferase reporter assays confirmed the interaction between DNMT1 and the CBX7 promoter. Cellular functions were evaluated through CCK-8, wound healing, and transwell assays. The expression of MAPK-related proteins was analyzed by Western blot. DNMT1 expression was upregulated in PDAC tissues and cell lines, whereas CBX7 expression was downregulated. Silencing DNMT1 inhibited cell proliferation, migration, and invasion in PDAC by modulating CBX7 expression. Moreover, DNMT1 methylates the CBX7 promoter region, leading to increased ERK phosphorylation, which subsequently drives tumorigenesis and metastasis in PDAC. DNMT1 promotes the malignant progression of PDAC through the CBX7/ERK pathway. Our study provides evidence for potential therapeutic targets for the comprehensive treatment of PDAC.
Collapse
Affiliation(s)
- Haowei Shi
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Xu Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Cheng Xing
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Shiqi Guo
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Yangyang Zheng
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Wendan Tan
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Yunpeng Ge
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Jingyong Xu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Yao Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| | - Jinghai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
3
|
Lopes-Paciencia S, Ferbeyre G. Increased chromatin accessibility underpins senescence. FEBS J 2025. [PMID: 40387486 DOI: 10.1111/febs.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Senescence is a cellular state induced by various stressors or extracellular signals, but a universal pathway that triggers this process irrespective of the initial stressor has yet to be identified. Recent data indicate that chromatin opening, particularly in the noncoding genome, is a hallmark of cellular senescence. We propose a model in which this increased chromatin accessibility mediated by transcription factors downstream of the senescence-inducing stressors acts as a decisive factor to commit cells toward the senescence fate. Engagement toward senescence is then determined by the balance between mechanisms that increase or decrease chromatin accessibility and can be influenced by modulating the activity of specific histone-modifying complexes. Traits of senescent cells, such as increased nuclear and nucleolar size, the secretion of pro-inflammatory cytokines, reduced rRNA biogenesis, telomere dysfunction, expression of retrotransposons and endogenous retroviruses, as well as DNA damage, can all be attributed to increased chromatin accessibility. This concept suggests potential targets to tilt the balance toward the senescence response in the context of future therapies against cancer and age-related diseases.
Collapse
Affiliation(s)
- Stéphane Lopes-Paciencia
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Canada
| | - Gerardo Ferbeyre
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Canada
| |
Collapse
|
4
|
Kesler BK, Adams J, Neuert G. Transcriptional stochasticity reveals multiple mechanisms of long non-coding RNA regulation at the Xist-Tsix locus. Nat Commun 2025; 16:4223. [PMID: 40328749 PMCID: PMC12056010 DOI: 10.1038/s41467-025-59496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Long noncoding RNAs (LncRNAs) are increasingly recognized as being involved in human physiology and diseases, but there is a lack of mechanistic understanding for the majority of lncRNAs. We comparatively test proposed mechanisms of antisense lncRNA regulation at the X-chromosome Inactivation (XCI) locus. We find that due to stochasticity in transcription, different mechanisms based on the act of transcription regulate Xist and Tsix at different levels of nascent transcription. At medium levels, RNA polymerases transcribe Xist and Tsix on each strand at the same transcription site and deposit significant amounts of the histone mark H3K36me3, which inhibits Xist. At high levels of nascent transcription, many RNA polymerases transcribe Xist or Tsix resulting in transcriptional interference. Therefore, lncRNA expression variability is not just a quirk of transcription but an important aspect of regulation that allows multiple mechanisms to be employed by the same gene locus within the same cell population.
Collapse
Affiliation(s)
- Benjamin K Kesler
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - John Adams
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Computational Systems Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Hu Q, Su L, Zhao W, Jin Y, Jin L, Yang Y, Zhang F. CBX4 regulation of senescence and associated diseases: Molecular pathways and mechanisms. Pharmacol Res 2025; 215:107705. [PMID: 40120729 DOI: 10.1016/j.phrs.2025.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Polycomb repressive complex 1 (PRC1) is a multisubunit, evolutionarily conserved epigenetic regulator critical to numerous biological processes. Being a core component of the canonical PRC1 subunit within the Polycomb group protein complex, Chromobox4 (CBX4), a SUMO E3 ligase, can bind to H3K27me3 and recruit PRC1. This ligase regulates the SUMOylation of various proteins and permits their post-translational modification under different physiological conditions. CBX4 has been reported to regulate the development of senescence and various diseases in vivo. This review delves into the physiological functions and action mechanisms of CBX4 across different tissues and cells, particularly focusing on its primarily roles in migration, cellular senescence, metabolic dysregulation, inflammation development, and tumor proliferation. Targeting CBX4 offers a therapeutic potential for delaying cell senescence and suppressing tumor growth.
Collapse
Affiliation(s)
- Qianxing Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China
| | - Linming Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China
| | - Wanli Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yinuo Jin
- Nanjing HanKai Academy, Jiangpu Street, Pukou District, Nanjing, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, China.
| |
Collapse
|
6
|
Kettunen S, Slita A, Suoranta T, Räty I, Laidinen S, Ylä‐Herttuala E, Ruotsalainen A, Ylä‐Herttuala S. Myocardial infarction activates the 9p21.3 orthologous locus expression, but its absence does not alter cardiac pathophysiology in ischemia. Physiol Rep 2025; 13:e70344. [PMID: 40405527 PMCID: PMC12098971 DOI: 10.14814/phy2.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/24/2025] Open
Abstract
Genetic variation in the 9p21.3 chromosomal region has one of the strongest associations known for coronary artery disease (CAD) that often leads to myocardial infarction (MI). This risk locus encodes a long noncoding RNA, ANRIL, which has been suggested to regulate the neighboring cyclin-dependent kinase inhibitors 2A and B (Cdkn2A/B), the key regulators of cell proliferation. In this study, we aimed to clarify the role of the 9p21.3 risk locus in acute and chronic myocardial ischemia in mice. Mice carrying a deletion equivalent to the human CAD risk interval (Chr4Δ70kb/Δ70kb) and wild type mice were exposed to MI and followed until 5 days or 4 weeks. In the wild type mice, expression of a lncRNA, Ak148321, was increased after MI, and Cdkn2a was upregulated in chronic ischemia. Chr4Δ70kb/Δ70kb downregulated both Cdkn2a/b, but this did not affect the survival or cardiac pathology after MI. These results suggest that the 9p21.3 locus is activated in response to cardiac ischemia. However, deficiency in the risk locus does not play a role in the cardiac pathophysiology in mice, supporting the studies suggesting the risk locus being more involved in the development of CAD, rather than the subsequent MI.
Collapse
Affiliation(s)
- Sanna Kettunen
- A.I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
| | - Anna Slita
- A.I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
| | - Tuisku Suoranta
- A.I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
| | - Iida Räty
- A.I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
| | | | | | | | - Seppo Ylä‐Herttuala
- A.I. Virtanen InstituteUniversity of Eastern FinlandKuopioFinland
- Heart Center and Gene Therapy UnitKuopio University HospitalKuopioFinland
| |
Collapse
|
7
|
Zhang Y, Chen M, Zheng X, Li K, Li Z, Li X. LncRNA PGM5-AS1 inhibits the progression of breast cancer by inhibiting miR-182-5p. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-14. [PMID: 40298102 DOI: 10.1080/15257770.2025.2498642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
LncRNAs serve as crucial regulators in the survival and proliferation of tumors. This study is dedicated to exploring the functional significance of lncRNA PGM5-AS1 in breast cancer (BRCA). First, the expression level of PGM5-AS1 in BRCA patients and its diagnostic ability for BRCA were analyzed by RT-qPCR and Receiver Operating Characteristic curve. Subsequently, LnCAR database was used to preliminarily explore the relationship between PGM5-AS1 and prognosis. Moreover, we investigated the effects PGM5-AS1 on proliferation, apoptosis, and migration of BRCA cells by MTT assay, flow cytometry, and Transwell assay. More importantly, the regulation effect of PGM5-AS1 on the downstream target miR-182-5p was verified by dual luciferase reporting experiment, and the role of miR-182-5p was further explored in vitro experiments. PGM5-AS1 is significantly decreased in both BRCA patients and BRCA cell lines. In the diagnosis of BRCA, the sensitivity and specificity of PGM5-AS1 were 81.5% and 78.5%. Furthermore, lower levels of PGM5-AS1 are associated with a poor prognosis for affected patients. In vitro studies demonstrate that the upregulation of PGM5-AS1 confers a protective effect against BRCA, markedly inhibiting the viability and migratory capacity of tumor cells. More importantly, overexpression of PGM5-AS1 inhibited the high expression of miR-182-5p in tumor cells. In fact, inhibition of miR-182-5p is detrimental to the proliferation and migration of BRCA cells in vitro. lncRNA PGM5-AS1 has potential as a diagnostic marker for BRCA and acts as an inhibitor in BRCA. It inhibits tumor proliferation and metastasis by targeting miR-182-5p.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Mingxi Chen
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xuan Zheng
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Kejia Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Zhi Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xuelian Li
- Department of Surgery, Xi'an Hospital of Traditional Chinese Medicine, Xi'an Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
8
|
Xiong L, Guo J, Lv J, Guo W, Qiu T. Radiotherapy-immunity lncRNA model predicts lung adenocarcinoma prognosis and treatment outcome and distinguishes between hot and cold tumors. Discov Oncol 2025; 16:455. [PMID: 40178661 PMCID: PMC11968629 DOI: 10.1007/s12672-025-02184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND There are many prognostic markers for lung adenocarcinoma (LUAD). However, studies on the prognosis of LUAD by radiotherapy immune-related long noncoding RNAs (lncRNAs) are extremely rare. METHODS We have compiled 1121 radiotherapy susceptibility differential genes and 6195 immune-related genes. After that, we screened radiotherapy-immunity lncRNAs associated with proliferation by co-expression, univariate, least absolute shrinkage selection operator regression (LASSO), and multivariate analysis of variance. Finally, we constructed a prognostic model based on 6 lncRNAs, and verified the accuracy of the predictive model by ROC and C index. In addition, we used the constructed scoring model to analyze the model's association with the characteristics of immune cell infiltration, immune checkpoint and drug sensitivity. Finally, the whole sample was divided into 2 clusters to further distinguish hot and cold tumors. RESULTS We constructed a risk score model built on 6 prognostically relevant lncRNAs. Patients were categorized into high-risk and low-risk patients based on median scores in the Train group. We found that people in the high-risk group had a lower survival rate than those in the low-risk group. However, those in the high-risk group were more sensitive to chemotherapy, targeted drugs and also more sensitive to immunotherapy drugs. Based on the line graphs of T, N, Age, Stage and Risk, the corresponding scores can be summed up to visualize the survival rate of patients at 1, 3 and 5 years. Gene set enrichment analysis (GSEA) suggested that radiotherapy-immunity-related lncRNA might be related to pathways such as cell cycle, T cell receptor signaling pathway. It is noteworthy that in our study, cluster 1 was considered to be a hot tumor more sensitive to immunotherapy. CONCLUSION In summary, we constructed a risk score model built on six radiosensitivity and immune-related lncRNAs, which is expected to be a potential predictive biomarker for radiosensitivity and LUAD prognosis.
Collapse
Affiliation(s)
- Lingfan Xiong
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China
| | - Jing Guo
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China
| | - Jingjun Lv
- Department of Anal Surgery, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China.
| | - Wenhao Guo
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China.
- Department of Oncology, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, Hubei, China.
| | - Tingting Qiu
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| |
Collapse
|
9
|
Szachnowski U, Becker E, Stuparević I, Wery M, Sallou O, Boudet M, Bretaudeau A, Morillon A, Primig M. Pervasive formation of double-stranded RNAs by overlapping sense/antisense transcripts in budding yeast mitosis and meiosis. RNA (NEW YORK, N.Y.) 2025; 31:497-513. [PMID: 39848697 PMCID: PMC11912912 DOI: 10.1261/rna.080290.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025]
Abstract
Previous RNA profiling studies revealed coexpression of overlapping sense/antisense (s/a) transcripts in pro- and eukaryotic organisms. Functional analyses in yeast have shown that certain s/a mRNA/mRNA and mRNA/lncRNA pairs form stable double-stranded RNAs (dsRNAs) that affect transcript stability. Little is known, however, about the genome-wide prevalence of dsRNA formation and its potential functional implications during growth and development in diploid budding yeast. To address this question, we monitored dsRNAs in a Saccharomyces cerevisiae strain expressing the ribonuclease DCR1 and the RNA-binding protein AGO1 from Naumovozyma castellii We identify dsRNAs at 347 s/a loci that express partially or completely overlapping transcripts during mitosis, meiosis, or both stages of the diploid life cycle. We associate dsRNAs with s/a loci previously thought to be exclusively regulated by antisense interference, and others that encode antisense RNAs, which down-regulate sense mRNA-encoded protein levels. To facilitate hypothesis building, we developed the sense/antisense double-stranded RNA (SensR) expression viewer. Users are able to retrieve different graphical displays of dsRNA and RNA expression data using genome coordinates and systematic or standard names for mRNAs and different types of stable or cryptic long noncoding RNAs (lncRNAs). Our data are a useful resource for improving yeast genome annotation and for work on RNA-based regulatory mechanisms controlling transcript and protein levels. The data are also interesting from an evolutionary perspective, since natural antisense transcripts that form stable dsRNAs have been detected in many species from bacteria to humans. The SensR viewer is freely accessible at https://sensr.genouest.org.
Collapse
Affiliation(s)
- Ugo Szachnowski
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Igor Stuparević
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Maxime Wery
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Olivier Sallou
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | | | - Antonin Morillon
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| |
Collapse
|
10
|
Souza VGP, Benard KH, Stewart GL, Enfield KSS, Lam WL. Identification of Genomic Instability-Associated LncRNAs as Potential Therapeutic Targets in Lung Adenocarcinoma. Cancers (Basel) 2025; 17:996. [PMID: 40149330 PMCID: PMC11940503 DOI: 10.3390/cancers17060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Non-small cell lung cancer (NSCLC) is the most common type of cancer, with lung adenocarcinoma (LUAD) as the predominant subtype. Despite advancements in targeted therapies, many NSCLC patients still experience poor outcomes due to treatment resistance and disease progression. Genomic instability (GI), a hallmark of cancer, defined as the increased tendency of DNA mutations and alterations, is closely linked to cancer initiation, progression, and resistance to therapy. Emerging evidence suggests that long non-coding RNAs (lncRNAs)-molecules longer than 200 nucleotides that do not encode proteins but regulate gene expression-play critical roles in cancer biology and are associated with GI. However, the relationship between GI and lncRNA expression in LUAD remains poorly understood. METHODS In this study, we analyzed the transcript profiles of lncRNAs and mRNAs from LUAD samples in The Cancer Genome Atlas (TCGA) database and classified them based on their Homologous Recombination Deficiency (HRD) score. The HRD score is an unweighted sum of three independent DNA-based measures of genomic instability: loss of heterozygosity, telomeric allelic imbalance, and large-scale transitions. We then performed a differential gene expression analysis to identify lncRNAs and mRNAs that were either upregulated or downregulated in samples with high HRD scores compared to those with low HRD scores. Following this, we conducted a correlation analysis to assess the significance of the association between HRD scores and the expression of both lncRNAs and mRNAs. RESULTS We identified 30 differentially expressed lncRNAs and 200 mRNAs associated with genomic instability. Using an RNA interactome database from sequencing experiments, we found evidence of interactions between GI-associated lncRNAs (GI-lncRNAs) and GI-associated mRNAs (GI-mRNAs). Further investigation showed that some GI-lncRNAs play regulatory and functional roles in LUAD and other diseases. We also found that GI-lncRNAs have potential as prognostic biomarkers, particularly when integrated with HRD stratification. The expression of specific GI-lncRNAs was associated with primary therapy response and immune infiltration in LUAD. Additionally, we identified existing drugs that could modulate GI-lncRNAs, offering potential therapeutic strategies to address GI in LUAD. CONCLUSIONS Our findings suggest that GI-associated lncRNAs could serve as valuable biomarkers for LUAD prognosis and therapeutic response. Furthermore, modulating these lncRNAs presents potential treatment avenues to address genomic instability in LUAD.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Katya H. Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katey S. S. Enfield
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
11
|
Zwamel AH, Ahmad AT, Altalbawy FMA, Malathi H, Singh A, Jabir MS, Aminov Z, Lal M, Kumar A, Jawad SF. Exosomal RNAs and EZH2: unraveling the molecular dialogue driving tumor progression. Med Oncol 2025; 42:103. [PMID: 40075013 DOI: 10.1007/s12032-025-02648-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The EZH2 gene encodes an enzyme that is part of the epigenetic factor Polycomb Repressive Complex 2 (PRC2). In order to control gene expression, PRC2 mainly modifies chromatin structure. In this complex process, EZH2 methylates histone proteins, which in turn suppresses further RNA transcriptions. As a result, EZH2 dysregulations can occasionally induce abnormal gene expression patterns, which can aid in the development and progression of cancer. Non-coding RNAs significantly impact the expression of EZH2 through epigenetic mechanisms. Meanwhile, normal and cancerous cells frequently release vesicles into the extracellular matrix, also known as exosomes, that occasionally carry RNA molecules from their origin cells, including messenger RNAs, microRNAs, and other non-coding RNAs. Thus exosomes are granted the ability to regulate numerous physiological functions and act as crucial messengers between cells by influencing gene expression in the recipient cell. We conducted this review to focus on EZH2's substantial biological role and the mechanisms that regulate it, driven by the desire to understand the possible impact of exosomal RNAs on EZH2 expression.
Collapse
Affiliation(s)
- Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bengaluru, Karnataka, India
| | - Amandeep Singh
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Rajasthan, Jaipur, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq
| |
Collapse
|
12
|
Nantakeeratipat T, Fujihara C, Takedachi M. Temporal Transcriptomic Analysis of Periodontal Disease Progression and Its Molecular Links to Systemic Diseases. Int J Mol Sci 2025; 26:1998. [PMID: 40076622 PMCID: PMC11900451 DOI: 10.3390/ijms26051998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Periodontal disease, a prevalent oral inflammatory condition, is implicated in exacerbating systemic diseases. However, the molecular mechanisms underlying this association remain unclear. In this study, we performed RNA sequencing of gingival tissue samples collected from a mouse model of periodontal disease at multiple time points to investigate dynamic transcriptomic changes during disease progression. Our analysis revealed distinct temporal gene expression patterns associated with the key inflammatory and immune response pathways. These findings suggest stepwise molecular progression in the periodontal inflammatory process, potentially contributing to systemic inflammation through shared signaling networks. We further identified specific genes and pathways that may mediate the bidirectional relationship between periodontal disease and systemic conditions such as cardiovascular disease and diabetes. By elucidating the temporal dynamics of molecular changes in periodontal disease, this study provides insights into the pathogenesis and its systemic implications. It identifies potential biomarkers and therapeutic targets for local and systemic disease management.
Collapse
Affiliation(s)
- Teerachate Nantakeeratipat
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, Watthana, Bangkok 10110, Thailand;
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan;
| | - Masahide Takedachi
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan;
| |
Collapse
|
13
|
Li W, Liu WJ, Lu J, Ma F, Zhang CY. A Programmable Automatic Cascade Machinery for Single-Molecule Profiling of Multiple Noncoding RNAs in Breast Tissues. Anal Chem 2025; 97:4224-4232. [PMID: 39930751 DOI: 10.1021/acs.analchem.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Noncoding RNAs (ncRNAs) are identified as critical regulatory molecules in tumorigenesis and progression. Investigating the expression patterns of multiple ncRNAs in living cells and tissues may facilitate the diagnosis of cancers. Herein, we develop a programmable automatic cascade machinery for single-molecule profiling of multiple ncRNAs. This method involves two successive amplification events that can convert extremely low-abundance target ncRNAs into abundant FAM/Cy5 molecules for the generation of amplified fluorescence signals. The subsequent single-molecule detection can identify piR-36026 with the FAM signal and DSCAM-AS1 with the Cy5 signal. Due to the high efficiency of automatic cascade machinery and the high signal-to-noise ratio of single-molecule imaging, this method can achieve sensitive detection of multiple ncRNAs with a detection limit of 44.67 aM for piR-36026 and 45.71 aM for DSCAM-AS1, and it can measure endogenous piR-36026 and DSCAM-AS1 at the single-cell level. Moreover, the profiling of piR-36026 and DSCAM-AS1 in healthy tissues and breast cancer tissues demonstrates the feasibility of the proposed method in cancer diagnostics. By programming the recognition sequences of dumbbell probes, this method can be extended to measure other cancer-related ncRNAs, with great prospects in clinical applications.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Sethi SC, Singh R, Sahay O, Barik GK, Kalita B. Unveiling the hidden gem: A review of long non-coding RNA NBAT-1 as an emerging tumor suppressor and prognostic biomarker in cancer. Cell Signal 2025; 126:111525. [PMID: 39592019 DOI: 10.1016/j.cellsig.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Previously considered junk or non-functional, long non-coding RNAs (lncRNAs) have emerged over the past few decades as pivotal components in both physiological and pathological processes, including cancer. Neuroblastoma-associated transcript-1 (NBAT-1) was initially discovered a decade ago as a risk-associated tumor suppressor lncRNA in neuroblastoma (NB). Subsequent studies have consistently demonstrated that NBAT-1 serves as a dedicated tumor suppressor in many cancers. NBAT-1 is significantly downregulated in cancer, which is closely linked to higher histological grades, increased metastasis, and poor survival in cancer patients suggesting NBAT-1's potential as a prognostic biomarker. In this review, we delve into the current body of literature, elucidating the tumor-suppressive roles of NBAT-1 and the underlying regulatory mechanisms in the context of human malignancies. Additionally, we shed light on the mechanisms contributing to the diminished expression of NBAT-1 and its potential as both a prognostic biomarker and a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ragini Singh
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Osheen Sahay
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ganesh Kumar Barik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Bhargab Kalita
- Amrita Research Center, Amrita Vishwa Vidyapeetham, Amrita Hospital, Mata Amritanandamayi Marg, Faridabad 121002, India.
| |
Collapse
|
15
|
Ruotsalainen AK, Kettunen S, Suoranta T, Kaikkonen MU, Ylä-Herttuala S, Aherrahrou R. The mechanisms of Chr.9p21.3 risk locus in coronary artery disease: where are we today? Am J Physiol Heart Circ Physiol 2025; 328:H196-H208. [PMID: 39656484 DOI: 10.1152/ajpheart.00580.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Despite the advancements and release of new therapeutics in the past few years, cardiovascular diseases (CVDs) have remained the number one cause of death worldwide. Genetic variation of a 9p21.3 genomic locus has been identified as the most significant and robust genetic CVD risk marker on the population level, with the strongest association with coronary artery disease (CAD) and other diseases, including diabetes and cancer. Several mechanisms of 9p21.3 in CVDs have been proposed, but their effects on CVDs have remained elusive. Moreover, most of the single nucleotide polymorphisms (SNPs) associated with CAD are located on a sequence of a long noncoding RNA (lncRNA) called ANRIL. ANRIL has several linear and circular splicing isoforms, which seem to have different effects and implications for CVDs. The mechanisms of the 9p21.3 locus and the interplay of its coding and noncoding transcripts in different diseases require further research. Circular RNAs have generally raised interest due to their beneficial features as biomarkers and therapeutic molecules. Here, we review the literature of 9p21.3 from its identification in 2007 and draw the current knowledge on its function, implications in CVDs, and therapeutic potential.
Collapse
Affiliation(s)
- Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuisku Suoranta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Centre, Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
16
|
Li K, Wang J, Liu X, Dang Y, Wang K, Li M, Zhang X, Liu Y. Identification of hub biomarkers and immune cell infiltrations participating in the pathogenesis of endometriosis. Sci Rep 2025; 15:2802. [PMID: 39843899 PMCID: PMC11754470 DOI: 10.1038/s41598-025-86164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Endometriosis (EM) is a chronic disease that can cause pain and infertility in patients. As is well known, immune cell infiltrations (ICIs) play important roles in the pathogenesis of EM. However, the pathogenesis and biomarkers of EM that can be used in clinical practice and their relationship with ICIs still need to be elucidated. The gene expression datasets of EM and the healthy control were obtained from the Gene Expression Omnibus (GEO). To identify the central modules and explore the correlation between the gene network and EM, weighted gene co-expression network analysis (WGCNA) was executed. The hub genes were screened using machine learning. The qRT-PCR results showed that only CHMP4C and KAT2B differentially expressed in ectopic tissues compared to the normal. Subsequently, the samples were clustered based on the expression of CHMP4C and KAT2B. Depending on the differential expression genes of the two 2rG Clusters, the samples were divided into two gene Clusters. Significant differences in immune cell infiltrations were observed among the two 2rG Clusters and the two gene Clusters. Furthermore, varied immune checkpoint genes were shown to be correlated with EM. The qRT-PCR results showed that the two genes were significantly related to the ICI genes in EM. Hub genes CHMP4C and KAT2B are involved in the pathogenesis of EM by regulating ICI.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jiaxu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xuyue Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yifei Dang
- Department of Gynecology & Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Kaiting Wang
- Department of Gynecology & Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Manyu Li
- Department of Gynecology & Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuan Liu
- Department of Gynecology & Obstetrics, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
17
|
Ranjan G, Scaria V, Sivasubbu S. Syntenic lncRNA locus exhibits DNA regulatory functions with sequence evolution. Gene 2025; 933:148988. [PMID: 39378975 DOI: 10.1016/j.gene.2024.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Syntenic long non-coding RNAs (lncRNAs) often show limited sequence conservation across species, prompting concern in the field. This study delves into functional signatures of syntenic lncRNAs between humans and zebrafish. Syntenic lncRNAs are highly expressed in zebrafish, with ∼90 % located near protein-coding genes, either in sense or antisense orientation. During early zebrafish development and in human embryonic stem cells (H1-hESC), syntenic lncRNA loci are enriched with cis-regulatory repressor signatures, influencing the expression of development-associated genes. In later zebrafish developmental stages and specific human cell lines, these syntenic lncRNA loci function as enhancers or transcription start sites (TSS) for protein-coding genes. Analysis of transposable elements (TEs) in syntenic lncRNA sequences revealed intriguing patterns: human lncRNAs are enriched in simple repeat elements, while their zebrafish counterparts show enrichment in LTR elements. This sequence evolution likely arises from post-rearrangement mutations that enhance DNA elements or cis-regulatory functions. It may also contribute to vertebrate innovation by creating novel transcription factor binding sites within the locus. This study highlights the conserved functionality of syntenic lncRNA loci through DNA elements, emphasizing their conserved roles across species despite sequence divergence.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
18
|
Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M. Gene regulation by convergent promoters. Nat Genet 2025; 57:206-217. [PMID: 39779959 PMCID: PMC11735407 DOI: 10.1038/s41588-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5'-overlapping antisense RNAs-an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept.
Collapse
Affiliation(s)
- Elina Wiechens
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Flavia Vigliotti
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Kanstantsin Siniuk
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Robert Schwarz
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katjana Schwab
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ivonne Görlich
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Arne Sahm
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Computational Phenomics Group, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Computational Phenomics Group, Ruhr University Bochum, Bochum, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Morgan A Sammons
- Department of Biological Sciences, The RNA Institute, The State University of New York at Albany, Albany, NY, USA
| | - Alexander Loewer
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
19
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
20
|
Liang WW, Müller S, Hart SK, Wessels HH, Méndez-Mancilla A, Sookdeo A, Choi O, Caragine CM, Corman A, Lu L, Kolumba O, Williams B, Sanjana NE. Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells. Cell 2024; 187:7637-7654.e29. [PMID: 39532094 DOI: 10.1016/j.cell.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Mammalian genomes host a diverse array of RNA that includes protein-coding and noncoding transcripts. However, the functional roles of most long noncoding RNAs (lncRNAs) remain elusive. Using RNA-targeting CRISPR-Cas13 screens, we probed how the loss of ∼6,200 lncRNAs impacts cell fitness across five human cell lines and identified 778 lncRNAs with context-specific or broad essentiality. We confirm their essentiality with individual perturbations and find that the majority of essential lncRNAs operate independently of their nearest protein-coding genes. Using transcriptome profiling in single cells, we discover that the loss of essential lncRNAs impairs cell-cycle progression and drives apoptosis. Many essential lncRNAs demonstrate dynamic expression across tissues during development. Using ∼9,000 primary tumors, we pinpoint those lncRNAs whose expression in tumors correlates with survival, yielding new biomarkers and potential therapeutic targets. This transcriptome-wide survey of functional lncRNAs advances our understanding of noncoding transcripts and demonstrates the potential of transcriptome-scale noncoding screens with Cas13.
Collapse
Affiliation(s)
- Wen-Wei Liang
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Simon Müller
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Sydney K Hart
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Akash Sookdeo
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olivia Choi
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Christina M Caragine
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Alba Corman
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Lu Lu
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Olena Kolumba
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Breanna Williams
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10013, USA.
| |
Collapse
|
21
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
22
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Nałęcz D, Świętek A, Hudy D, Złotopolska Z, Dawidek M, Wiczkowski K, Strzelczyk JK. The Potential Association of CDKN2A and Ki-67 Proteins in View of the Selected Characteristics of Patients with Head and Neck Squamous Cell Carcinoma. Curr Issues Mol Biol 2024; 46:13267-13280. [PMID: 39590385 PMCID: PMC11592571 DOI: 10.3390/cimb46110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent type of cancer worldwide. Not all mechanisms associated with cell cycle disturbances have been recognized in HNSCC. The aim of this study was to examine the concentration of CDKN2A and Ki-67 proteins in 54 tumor and margin samples of HNSCC and to evaluate their association with the clinical and demographic variables. The ELISA method was used to measure concentrations of CDKN2A and Ki-67 in the tissue homogenates. A significantly higher CDKN2A concentration was found in OSCC tumor samples as compared with OPSCC+HPSCC+LSCC. An inverse correlation was observed for Ki-67. We showed an association between the CDKN2A level and the clinical parameters N in tumors. The patients with concomitant diseases had significantly higher levels of Ki-67 as compared with patients with no concomitant diseases. An analysis of the effect of drinking habits on Ki-67 level demonstrated a statistical difference between regular or occasional users of stimulants and patients who do not use any stimulants in the tumor and margin samples. Moreover, we found an association between CDKN2A and Ki-67 concentrations and the HPV status in tumor and margin samples. The levels of the proteins tested may be dependent on environmental factors. Our results showed that changes in protein levels in HNSCC subtypes may reflect different molecular pathways of tumor development or may also be responsible for the involvement of CDKN2A and Ki-67 in the carcinogenesis process.
Collapse
Affiliation(s)
- Dariusz Nałęcz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland;
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
| | - Zofia Złotopolska
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland;
| | - Michał Dawidek
- Department of Head and Neck Reconstructive Surgery and Robotic Surgery, 1 Powstania Styczniowego St., 81-519 Gdynia, Poland;
| | - Karol Wiczkowski
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
- Students’ Scientific Association at the Department of Medical and Molecular Biology, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (A.Ś.); (D.H.); (K.W.); (J.K.S.)
| |
Collapse
|
24
|
Hasani S, Pourfarzi F, Mazani M, Yazdanbod A, Fazaeli A. Association of ANRIL Gene Polymorphisms with Gastric Cancer Risk: A Case-Control Study. Genet Test Mol Biomarkers 2024; 28:445-451. [PMID: 39377150 DOI: 10.1089/gtmb.2024.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Background: Gastric cancer's (GC) cause is unknown, but its complexity indicates that, in addition to environmental factors, it may have genetic origins. Scientists are studying single-nucleotide polymorphisms (SNPs) in the antisense noncoding RNA in the INK4 locus (ANRIL) gene, which encodes a long noncoding RNA molecule. They found a link between the ANRIL gene product and some polymorphisms and GC, suggesting genetic changes may lead to precancerous conditions. Methods: In a case-control research that included 250 patients with GC and 210 controls who were age- and gender-matched, four SNPs within the ANRIL gene were genotyped. These SNPs were rs1333049, rs496892, rs2383207, and rs2151280. Tetra-primer amplification refractory mutation system-PCR was utilized to carry out the process of genotyping. Results: It was found that the chance of developing GC was connected with three SNPs rs2151280, rs1333049, and rs496892. Nevertheless, rs2383207 did not demonstrate any meaningful connection. In addition, whereas CCTC and TTCC haplotypes were shown to be less common, certain haplotypes that contained these SNPs (TTCG, TCTC, and TTTC) displayed a considerably higher prevalence in the cancer group in comparison to the control group. Conclusion: This study showed novel associations between specific ANRIL gene polymorphisms (SNPs) and the risk of GC. These findings shed light on the potential role of ANRIL SNPs in GC risk and highlight the need for additional research to clarify the underlying functional processes. Understanding these functional processes might lead to developing novel diagnostic or treatment approaches for this cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
25
|
Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol 2024; 61:7919-7929. [PMID: 38443729 DOI: 10.1007/s12035-024-04074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer's and Parkinson's disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.
Collapse
Affiliation(s)
- Feiyan Shou
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
28
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
29
|
Meng Q, Tan H, Wang C, Sun Z. Progress and trends in myocardial infarction-related long non-coding RNAs: a bibliometric analysis. Front Mol Biosci 2024; 11:1382772. [PMID: 39135912 PMCID: PMC11317247 DOI: 10.3389/fmolb.2024.1382772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Background Myocardial infarction (MI), a critical condition, substantially affects patient outcomes and mortality rates. Long non-coding RNAs (lncRNAs) play a critical role in the onset and progression of MI. This study aimed to explore the related research on MI-related lncRNAs from a bibliometric perspective, providing new clues and directions for researchers in the field. Methods A comprehensive search was conducted on 7 August 2023, using the Web of Science Core Collection (WoSCC) database to compile a dataset of all English-language scientific journals. The search gathered all relevant publications from January 2000 to August 2023 that pertain to MI-related lncRNAs. Data on countries, institutions, journals, authors, and keywords were collected, sorted, statistically analyzed, and visualized using CiteSpace 6.2.R4, VOSviewer 1.6.19, an online bibliometric analysis platform (http://bibliometric.com), and the bibliometric package in R-Studio 4.3.1. Articles were screened by two independent reviewers. Results Between January 2000 and August 2023, a total of 1,452 papers were published in the research field of MI-related lncRNAs. The year with the most publications was 2020, accounting for 256 papers. The publication volume displayed an exponential growth trend, fitting the equation y = 2.0215e0.2786x, R^2 = 0.97. In this domain, China leads in both the number of published papers (N = 1,034) and total citations, followed by the United States, Germany, Iran, and Italy. The most productive institution is Harbin Medical University (N = 144). The European Review for Medical and Pharmacological Sciences had the highest number of publications (N = 46), while Circulation Research had the most citations (TC = 4,537), indicating its irreplaceable standing in this field. Research mainly focuses on the cardiovascular system, cellular biology, physiology, etc. The most productive author is Zhang Y. Apart from "Myocardial Infarction" and "LncRNA," the most frequent keywords include "expression," "atherosclerosis," and "apoptosis." Cluster analysis suggests current research themes concentrate on cardiovascular diseases and gene expression, cardiac ischemia/reperfusion injury and protection, expression and proliferation, atherosclerosis and inflammatory response, among others. Keyword bursts indicate recent hot topics as targeting, autophagy, etc. Conclusion This bibliometric analysis reveals that research on MI-related lncRNAs has rapidly expanded between January 2000 and August 2023, primarily led by China and the United States. Our study highlights the significant biological roles of lncRNAs in the pathogenesis and progression of MI, including their involvement in gene expression regulation, atherosclerosis development, and apoptosis. These findings underscore the potential of lncRNAs as therapeutic targets and biomarkers for MI. Additionally, our study provides insights into the features and quality of related publications, as well as the future directions in this research field. There is a long road ahead, highlighting the urgent need for enhanced global academic exchange.
Collapse
Affiliation(s)
- Qingkun Meng
- Department of Cardiology, The People’s Hospital of China Medical University, Shenyang, China
| | - Hao Tan
- Department of Thoracic and Esophageal Radiotherapy, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Chengfu Wang
- Department of Cardiology, The People’s Hospital of China Medical University, Shenyang, China
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Yang DM, Han Y, Zhang Q, Zhao S, Zhang CY. Development of a DNAzyme-Driven Fluorescent Light-Up Aptasensor for Label-Free Detection of Multiple lncRNAs. Anal Chem 2024; 96:11603-11610. [PMID: 38953495 DOI: 10.1021/acs.analchem.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.
Collapse
Affiliation(s)
- Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
31
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
32
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
33
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
34
|
Shi W, Song J, Weiner JM, Chopra A, Dommisch H, Beule D, Schaefer AS. lncRNA CDKN2B-AS1 regulates collagen expression. Hum Genet 2024; 143:907-919. [PMID: 38833008 PMCID: PMC11294485 DOI: 10.1007/s00439-024-02674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/27/2024] [Indexed: 06/06/2024]
Abstract
The long noncoding RNA CDKN2B-AS1 harbors a major coronary artery disease risk haplotype, which is also associated with progressive forms of the oral inflammatory disease periodontitis as well as myocardial infarction (MI). Despite extensive research, there is currently no broad consensus on the function of CDKN2B-AS1 that would explain a common molecular role of this lncRNA in these diseases. Our aim was to investigate the role of CDKN2B-AS1 in gingival cells to better understand the molecular mechanisms underlying the increased risk of progressive periodontitis. We downregulated CDKN2B-AS1 transcript levels in primary gingival fibroblasts with LNA GapmeRs. Following RNA-sequencing, we performed differential expression, gene set enrichment analyses and Western Blotting. Putative causal alleles were searched by analyzing associated DNA sequence variants for changes of predicted transcription factor binding sites. We functionally characterized putative functional alleles using luciferase-reporter and antibody electrophoretic mobility shift assays in gingival fibroblasts and HeLa cells. Of all gene sets analysed, collagen biosynthesis was most significantly upregulated (Padj=9.7 × 10- 5 (AUC > 0.65) with the CAD and MI risk gene COL4A1 showing strongest upregulation of the enriched gene sets (Fold change = 12.13, Padj = 4.9 × 10- 25). The inflammatory "TNFA signaling via NFKB" gene set was downregulated the most (Padj=1 × 10- 5 (AUC = 0.60). On the single gene level, CAPNS2, involved in extracellular matrix organization, was the top upregulated protein coding gene (Fold change = 48.5, P < 9 × 10- 24). The risk variant rs10757278 altered a binding site of the pathogen responsive transcription factor STAT1 (P = 5.8 × 10- 6). rs10757278-G allele reduced STAT1 binding 14.4% and rs10757278-A decreased luciferase activity in gingival fibroblasts 41.2% (P = 0.0056), corresponding with GTEx data. CDKN2B-AS1 represses collagen gene expression in gingival fibroblasts. Dysregulated collagen biosynthesis through allele-specific CDKN2B-AS1 expression in response to inflammatory factors may affect collagen synthesis, and in consequence tissue barrier and atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Weiwei Shi
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Jiahui Song
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - January Mikolaj Weiner
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Avneesh Chopra
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Henrik Dommisch
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Arne S Schaefer
- Dept. of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Li K, Xie T, Li Y, Huang X. LncRNAs act as modulators of macrophages within the tumor microenvironment. Carcinogenesis 2024; 45:363-377. [PMID: 38459912 DOI: 10.1093/carcin/bgae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been established as pivotal players in various cellular processes, encompassing the regulation of transcription, translation and post-translational modulation of proteins, thereby influencing cellular functions. Notably, lncRNAs exert a regulatory influence on diverse biological processes, particularly in the context of tumor development. Tumor-associated macrophages (TAMs) exhibit the M2 phenotype, exerting significant impact on crucial processes such as tumor initiation, angiogenesis, metastasis and immune evasion. Elevated infiltration of TAMs into the tumor microenvironment (TME) is closely associated with a poor prognosis in various cancers. LncRNAs within TAMs play a direct role in regulating cellular processes. Functioning as integral components of tumor-derived exosomes, lncRNAs prompt the M2-like polarization of macrophages. Concurrently, reports indicate that lncRNAs in tumor cells contribute to the expression and release of molecules that modulate TAMs within the TME. These actions of lncRNAs induce the recruitment, infiltration and M2 polarization of TAMs, thereby providing critical support for tumor development. In this review, we survey recent studies elucidating the impact of lncRNAs on macrophage recruitment, polarization and function across different types of cancers.
Collapse
Affiliation(s)
- Kangning Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
37
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
38
|
Sayed NH, Hammad M, Abdelrahman SA, Abdelgawad HM. Association of long non-coding RNAs and ABO blood groups with acute lymphoblastic leukemia in Egyptian children. Noncoding RNA Res 2024; 9:307-317. [PMID: 38505304 PMCID: PMC10945145 DOI: 10.1016/j.ncrna.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 03/21/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevailing cancer among children. Despite extensive studies, ALL etiology is still an unsolved puzzle. Long non-coding RNAs (lncRNAs) emerged as key mediators in cancer etiology. Several lncRNAs are dysregulated in ALL, leading to oncogenic or tumor-suppressive activities. Additionally, a relation between ABO blood groups and hematological malignancies was proposed. The current study intended to explore the association of lncRNAs, ANRIL and LINC-PINT, and their downstream targets, CDKN2A and heme oxygenase-1 (HMOX1), with the incidence of ALL and treatment response, and to determine the distribution of blood groups across different childhood ALL phenotypes. Blood samples were taken from 66 ALL patients (at diagnosis and at the end of remission induction phase) and 39 healthy children. Whole blood was used for blood group typing. Expression of ANRIL, LINC-PINT and CDKN2A was analyzed in plasma by qRT-PCR. Serum HMOX1 was measured using ELISA. ANRIL and CDKN2A were upregulated, while LINC-PINT and HMOX1 were downregulated in newly diagnosed patients. All of which showed remarkable diagnostic performance, where HMOX1 was superior. HMOX1 was independent predictor of ALL as well. LINC-PINT and HMOX1 were significantly upregulated after treatment. Notably, ANRIL and LINC-PINT were associated with poor outcome. No significant difference in the distribution of ABO blood groups was observed between patients and controls. In conclusion, our results suggested an association of ANRIL and LINC-PINT with childhood ALL predisposition, at least in part, through altering CDKN2A and HMOX1 production. Furthermore, the impact of remission induction treatment was newly revealed.
Collapse
Affiliation(s)
- Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | | | | |
Collapse
|
39
|
Bierhoff H. [Genetics, epigenetics, and environmental factors in life expectancy-What role does nature-versus-nurture play in aging?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:521-527. [PMID: 38637469 PMCID: PMC11093831 DOI: 10.1007/s00103-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In Germany and worldwide, the average age of the population is continuously rising. With this general increase in chronological age, the focus on biological age, meaning the actual health and fitness status, is becoming more and more important. The key question is to what extent the age-related decline in fitness is genetically predetermined or malleable by environmental factors and lifestyle.Many epigenetic studies in aging research have provided interesting insights in this nature-versus-nurture debate. In most model organisms, aging is associated with specific epigenetic changes, which can be countered by certain interventions like moderate caloric restriction or increased physical activity. Since these interventions also have positive effects on lifespan and health, epigenetics appears to be the interface between environmental factors and the aging process. This notion is supported by the fact that an epigenetic drift occurs through the life course of identical twins, which is related to the different manifestations of aging symptoms. Furthermore, biological age can be determined with high precision based on DNA methylation patterns, further emphasizing the importance of epigenetics in aging.This article provides an overview of the importance of genetic and epigenetic parameters for life expectancy. A major focus will be on the possibilities of maintaining a young epigenome through lifestyle and environmental factors, thereby slowing down biological aging.
Collapse
Affiliation(s)
- Holger Bierhoff
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, 07745, Jena, Deutschland.
- Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut (FLI), Jena, Deutschland.
| |
Collapse
|
40
|
Sinha A, Ghosh A, Ghosh A, Mathai S, Bhaumik J, Mukhopadhyay A, Maitra A, Biswas NK, Sengupta S. MAL expression downregulation through suppressive H3K27me3 marks at the promoter in HPV16-related cervical cancers is prognostically relevant and manifested by the interplay of novel MAL antisense long noncoding RNA AC103563.8, E7 oncoprotein and EZH2. Clin Epigenetics 2024; 16:40. [PMID: 38461243 PMCID: PMC10924967 DOI: 10.1186/s13148-024-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND MAL (T-lymphocyte maturation-associated protein) is highly downregulated in most cancers, including cervical cancer (CaCx), attributable to promoter hypermethylation. Long noncoding RNA genes (lncGs) play pivotal roles in CaCx pathogenesis, by interacting with human papillomavirus (HPV)-encoded oncoproteins, and epigenetically regulating coding gene expression. Hence, we attempted to decipher the impact and underlying mechanisms of MAL downregulation in HPV16-related CaCx pathogenesis, by interrogating the interactive roles of MAL antisense lncRNA AC103563.8, E7 oncoprotein and PRC2 complex protein, EZH2. RESULTS Employing strand-specific RNA-sequencing, we confirmed the downregulated expression of MAL in association with poor overall survival of CaCx patients bearing HPV16, along with its antisense long noncoding RNA (lncRNA) AC103563.8. The strength of positive correlation between MAL and AC103563.8 was significantly high among patients compared to normal individuals. While downregulated expression of MAL was significantly associated with poor overall survival of CaCx patients bearing HPV16, AC103563.8 did not reveal any such association. We confirmed the enrichment of chromatin suppressive mark, H3K27me3 at MAL promoter, using ChIP-qPCR in HPV16-positive SiHa cells. Subsequent E7 knockdown in such cells significantly increased MAL expression, concomitant with decreased EZH2 expression and H3K27me3 marks at MAL promoter. In silico analysis revealed that both E7 and EZH2 bear the potential of interacting with AC103563.8, at the same binding domain. RNA immunoprecipitation with anti-EZH2 and anti-E7 antibodies, respectively, and subsequent quantitative PCR analysis in E7-silenced and unperturbed SiHa cells confirmed the interaction of AC103563.8 with EZH2 and E7, respectively. Apparently, AC103563.8 seems to preclude EZH2 and bind with E7, failing to block EZH2 function in patients. Thereby, enhanced EZH2 expression in the presence of E7 could potentially inactivate the MAL promoter through H3K27me3 marks, corroborating our previous results of MAL expression downregulation in patients. CONCLUSION AC103563.8-E7-EZH2 axis, therefore, appears to crucially regulate the expression of MAL, through chromatin inactivation in HPV16-CaCx pathogenesis, warranting therapeutic strategy development.
Collapse
Affiliation(s)
- Abarna Sinha
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Abhisikta Ghosh
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Sonia Mathai
- Tata Medical Center, Kolkata, West Bengal, India
| | | | - Asima Mukhopadhyay
- Kolkata Gynecological Oncology Trials and Translational Research Group, Kolkata, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India.
| |
Collapse
|
41
|
Huang Y, Wang T, Jiang C, Li S, Zhou H, Li R. Relish-facilitated lncRNA-CR11538 suppresses Drosophila Imd immune response and maintains immune homeostasis via decoying Relish away from antimicrobial peptide promoters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105098. [PMID: 37956726 DOI: 10.1016/j.dci.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Innate immunity plays a crucial role in host defense against pathogen invasion and its strength and duration requires precise control. Long non-coding RNAs (lncRNAs) have become important regulators of innate immunity, yet their roles in Drosophila immune responses remain largely unknown. In this study, we identified that the overexpression of lncRNA-CR11538 inhibits the expression of antimicrobial peptides (AMPs) Dpt and AttA in Drosophila upon Escherichia coli (E. coli) infection, and influences the survival rate of flies after E. cloacae infection. Mechanically, lncRNA-CR11538 decoys Relish away from AMPs promoter region. We further revealed that Relish can promote the transcription of lncRNA-CR11538. After analyzing the dynamic expression profile of lncRNA-CR11538 during Imd immune response, we put forward a hypothesis that in the late stage of Imd immune response, lncRNA-CR11538 can be activated by Relish and further decoy Relish away from the AMPs promoter to suppress excessive immune signal and maintain immune homeostasis. This mechanism we proposed provides insights into the complex regulatory networks controlling immune responses in Drosophila and suggests potential targets for therapeutic intervention in diseases involving dysregulated immune responses.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Tan Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Chun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China.
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, PR China.
| |
Collapse
|
42
|
Abstract
Long non-coding RNAs (lncRNAs) are significant contributors in maintaining genomic integrity through epigenetic regulation. LncRNAs can interact with chromatin-modifying complexes in both cis and trans pathways, drawing them to specific genomic loci and influencing gene expression via DNA methylation, histone modifications, and chromatin remodeling. They can also operate as building blocks to assemble different chromatin-modifying components, facilitating their interactions and gene regulatory functions. Deregulation of these molecules has been associated with various human diseases, including cancer, cardiovascular disease, and neurological disorders. Thus, lncRNAs are implicated as potential diagnostic indicators and therapeutic targets. This review discusses the current understanding of how lncRNAs mediate epigenetic control, genomic integrity, and their putative functions in disease pathogenesis.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- The LncRNA, Epigenetics, and Genome Organization Laboratory, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
43
|
Akan G, Nyawawa E, Nyangasa B, Turkcan MK, Mbugi E, Janabi M, Atalar F. Severity of coronary artery disease is associated with diminished circANRIL expression: A possible blood based transcriptional biomarker in East Africa. J Cell Mol Med 2024; 28:e18093. [PMID: 38149798 PMCID: PMC10844708 DOI: 10.1111/jcmm.18093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with coronary artery disease (CAD). ANRIL and its transcript variants were investigated for the susceptibility to CAD in adipose tissues (AT) and peripheral blood mononuclear cells (PBMCs) of the study group and the impact of 9p21.3 locus mutations was further analysed. Expressions of ANRIL, circANRIL (hsa_circ_0008574), NR003529, EU741058 and DQ485454 were detected in epicardial AT (EAT) mediastinal AT (MAT), subcutaneous AT (SAT) and PBMCs of CAD patients undergoing coronary artery bypass grafting and non-CAD patients undergoing heart valve surgery. ANRIL expression was significantly upregulated, while the expression of circANRIL was significantly downregulated in CAD patients. Decreased circANRIL levels were significantly associated with the severity of CAD and correlated with aggressive clinical characteristics. rs10757278 and rs10811656 were significantly associated with ANRIL and circANRIL expressions in AT and PBMCs. The ROC-curve analysis suggested that circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). circANRIL has high diagnostic accuracy (AUC: 0.9808, cut-off: 0.33, sensitivity: 1.0, specificity: 0.88). We report the first data demonstrating the presence of ANRIL and its transcript variants expressions in the AT and PBMCs of CAD patients. circANRIL having a synergetic effect with ANRIL plays a protective role in CAD pathogenesis. Therefore, altered circANRIL expression may become a potential diagnostic transcriptional biomarker for early CAD diagnosis.
Collapse
Affiliation(s)
- Gokce Akan
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Near East UniversityDESAM Research InstituteMersinNorth CyprusTurkey
| | | | | | | | - Erasto Mbugi
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
| | | | - Fatmahan Atalar
- Biochemistry Department, MUHAS Genetics Laboratory, School of MedicineMuhimbili University of Health and Allied SciencesDar es SalaamTanzania
- Department of Rare DiseasesIstanbul University, Child Health InstituteIstanbulTurkey
| |
Collapse
|
44
|
Mahato RK, Bhattacharya S, Khullar N, Sidhu IS, Reddy PH, Bhatti GK, Bhatti JS. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J Biotechnol 2024; 379:98-119. [PMID: 38065367 DOI: 10.1016/j.jbiotec.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Cancer is the second leading cause of death worldwide, despite recent advances in its identification and management. To improve cancer patient diagnosis and care, it is necessary to identify new biomarkers and molecular targets. In recent years, long non-coding RNAs (lncRNAs) have surfaced as important contributors to various cellular activities, with growing proof indicating their substantial role in the genesis, development, and spread of cancer. Their unique expression profiles within specific tissues and their wide-ranging functionalities make lncRNAs excellent candidates for potential therapeutic intervention in cancer management. They are implicated in multiple hallmarks of cancer, such as uncontrolled proliferation, angiogenesis, and immune evasion. This review article explores the innovative application of CRISPR-Cas9 technology in targeting lncRNAs as a cancer therapeutic strategy. The CRISPR-Cas9 system has been widely applied in functional genomics, gene therapy, and cancer research, offering a versatile platform for lncRNA targeting. CRISPR-Cas9-mediated targeting of lncRNAs can be achieved through CRISPR interference, activation or the complete knockout of lncRNA loci. Combining CRISPR-Cas9 technology with high-throughput functional genomics makes it possible to identify lncRNAs critical for the survival of specific cancer subtypes, opening the door for tailored treatments and personalised cancer therapies. CRISPR-Cas9-mediated lncRNA targeting with other cutting-edge cancer therapies, such as immunotherapy and targeted molecular therapeutics can be used to overcome the drug resistance in cancer. The synergy of lncRNA research and CRISPR-Cas9 technology presents immense potential for individualized cancer treatment, offering renewed hope in the battle against this disease.
Collapse
Affiliation(s)
- Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
45
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
46
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
47
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
48
|
Wang S, Chen J, Li P, Chen Y. LINC01133 can induce acquired ferroptosis resistance by enhancing the FSP1 mRNA stability through forming the LINC01133-FUS-FSP1 complex. Cell Death Dis 2023; 14:767. [PMID: 38007473 PMCID: PMC10676390 DOI: 10.1038/s41419-023-06311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Due to a lack of research on the critical non-coding RNAs in regulating ferroptosis, our study aimed to uncover the crucial ones involved in the process. We found that LINC01133 could make pancreatic cancer cells more resistant to ferroptosis. A higher expression of LINC01133 was associated with a higher IC50 of sorafenib in clinical samples. Furthermore, we discovered that LINC01133 induced this process through enhancing the mRNA stability of FSP1. CEBPB was the transcription factor to increase the expression of LINC01133. A higher CEBPB could also indicate a higher IC50 of sorafenib in patients with cancer. Moreover, we confirmed that LINC01133 could form a triple complex with FUS and FSP1 to increase the mRNA stability of FSP1.
Collapse
Affiliation(s)
- Shaowen Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- Neuromedicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Pengping Li
- Department of Thyroid & Breast Surgery, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|
49
|
Liu WJ, Zhang L, Zhang CY. Construction of a Programmable Feedback Network with Continuously Activatable Molecular Beacon Fluorescence for One-Step Quantification of Long Noncoding RNAs in Clinical Breast Tissues. Anal Chem 2023; 95:16343-16351. [PMID: 37874866 DOI: 10.1021/acs.analchem.3c03575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators in numerous pathological and physiological processes, and their aberrant expression is implicated in many diseases. Herein, we develop a programmable feedback network with continuously activatable molecular beacon (MB) fluorescence for one-step quantification of mammalian-metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) in clinical breast tissues. We introduce a functional MB with three domains, including a substrate for lncRNA MALAT1 recognition, a template for strand displacement amplification (SDA), and a reporter for signal output with FAM fluorescence being quenched by BHQ1. When MALAT1 is present, it recognizes and unfolds the MB, leading to the recovery of FAM fluorescence. Once the MB is opened, multiple rounds of SDA reaction are automatically initiated by recruiting primer, KF DNA polymerase, and Nt.BbvCI nicking enzyme, inducing the opening of more MBs and the dissociation of more FAM/BHQ1 pairs. Consequently, a feedback network is constructed through multicycle cascade SDA, achieving the exponential accumulation of fluorescence signals for accurate quantification of MALAT1. In this assay, only two oligonucleotides (i.e., MB and primer) are involved for the establishment of a feedback amplification network, greatly simplifying the design of the reaction system. Moreover, this assay requires only one step to realize the isothermal exponential amplification for real-time monitoring of MALAT1 with attomolar sensitivity. This assay displays single-base mismatch selectivity with high anti-interference capability, and it can further quantify endogenous MALAT1 at the single-cell level and differentiate MALAT1 expression between breast cancer patient tissues and healthy person tissues.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai 264200, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
50
|
Beihaghi M, Sahebi R, Beihaghi MR, Nessiani RK, Yarasmi MR, Gholamalizadeh S, Shahabnavaie F, Shojaei M. Evaluation of rs10811661 polymorphism in CDKN2A / B in colon and gastric cancer. BMC Cancer 2023; 23:985. [PMID: 37845622 PMCID: PMC10577985 DOI: 10.1186/s12885-023-11461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
One of the causes of colon and gastric cancer is the dysregulation of carcinogenic genes, tumor inhibitors, and micro-RNA. The purpose of this study is to apply rs10811661 polymorphism in CDKN2A /B gene as an effective biomarker of colon cancer and early detection of gastric cancer. As a result,400 blood samples, inclusive of 200 samples from healthy individuals and 200 samples (100 samples from intestinal cancer,100 samples from stomach cancer) from the blood of someone with these cancers, to determine the genotype of genes in healthful and ill people through PCR-RFLP approach and Allelic and genotypic tests of SPSS software. To observe the connection between gastric cancer and bowel cancer risk and genotypes, the t-student test for quantitative variables and Pearson distribution for qualitative variables have been tested and the results have been evaluated using the Chi-square test. The effects confirmed that the highest frequency of TT genotypes is in affected individuals and CC genotype is in healthful individuals. In addition, it confirmed that women were more inclined than men to T3 tumor invasion and most grade II and III colon cancers, and in older sufferers with gastric cancer, the grade of tumor tended to be grade I. Among genetic variety and rs10811661, with invasiveness, there is a tumor size and degree in the affected person. In summary, our findings suggest that the rs10811661 polymorphism of the CDKN2A / B gene is strongly associated with the occurrence of intestinal cancer and stomach is linked to its potential role as a prognostic biomarker for the management of bowel cancer and stomach.
Collapse
Affiliation(s)
- Maria Beihaghi
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran.
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Beihaghi
- Department of Public Health, Sheffield Hallam University, Sheffield, South Yorkshire, England
| | | | | | | | | | - Mitra Shojaei
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|