1
|
Li F, Cheng X, He X, Kumilamba G, Liao J, Cao J, Liu Q, Sun J. Molecular responses of paddy field carp (Cyprinus carpio) in the agricultural heritage to major environmental factors in paddy fields. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101410. [PMID: 39733672 DOI: 10.1016/j.cbd.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
As a core element of the Globally Important Agricultural Heritage System (GIAHS), the Qingtian paddy field carp (Cyprinus carpio, PF-carp) has been domesticated for over 1200 years in paddy field environments. This species has successfully adapted to shallow-water conditions in paddy fields. To reveal the adaptation mechanism, we conducted transcriptome sequencing on the hepatopancreas of PF-carp under two temperature conditions (28 °C and 38 °C) and concurrently analysed RNA-seq data from hypoxic conditions in the same tissue. By analysing high-temperature transcriptome data, 3154 differentially expressed genes (DEGs) were identified. KEGG analysis indicated that DEGs involved various pathways, including protein processing in endoplasmic reticulum, circadian rhythm, and HIF-1 signaling pathway. Notably, protein processing in endoplasmic reticulum was significantly enriched with key genes such as HSP70, HSP90, HSP40, CNX, CRT, and Bip. Through concurrent analysis of RNA-seq data from hypoxic conditions, we found that PF-carp regulate their metabolism through multiple pathways and produce almost opposite metabolic regulation to adapt to high temperature and hypoxic environments. The opposite activation state observed in the HIF-1 signaling pathway is particularly intriguing. In conclusion, PF-carp appear to rely on protein processing in endoplasmic reticulum to maintain cell homeostasis at high temperatures. The HIF-1 signaling pathway may emerged as a key player in adapting PF-carps to paddy fields. This study provides valuable insights into the adaptive mechanisms of domesticated fish in paddy fields.
Collapse
Affiliation(s)
- Fangcheng Li
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiangbing Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xumeng He
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Gilbert Kumilamba
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiayi Liao
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiangwei Cao
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Jiamin Sun
- Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
2
|
Cao X, Wu X, Zhao L, Zheng J, Jin X, Hao X, Winderickx J, Liu S, Chen L, Liu B. Maturation and detoxification of synphilin-1 inclusion bodies regulated by sphingolipids. eLife 2025; 12:RP92180. [PMID: 39927758 PMCID: PMC11810108 DOI: 10.7554/elife.92180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Due to proteostasis stress induced by aging or disease, misfolded proteins can form toxic intermediate species of aggregates and eventually mature into less toxic inclusion bodies (IBs). Here, using a yeast imaging-based screen, we identified 84 potential synphilin-1 (SY1) IB regulators and isolated the conserved sphingolipid metabolic components in the most enriched groups. Furthermore, we show that, in both yeast cells and mammalian cells, SY1 IBs are associated with mitochondria. Pharmacological inhibition of the sphingolipid metabolism pathway or knockout of its key genes results in a delayed IB maturation and increased SY1 cytotoxicity. We postulate that SY1 IB matures by association with the mitochondrion membrane, and that sphingolipids stimulate the maturation via their membrane-modulating function and thereby protecting cells from SY1 cytotoxicity. Our findings identify a conserved cellular component essential for IB maturation and suggest a mechanism by which cells may detoxify the pathogenic protein aggregates through forming mitochondrion-associated IBs.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Xiang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Lei Zhao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ju Zheng
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Functional Biology, KU LeuvenLeuvenBelgium
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Guangzhou National Laboratory, GuangzhouGuangdongChina
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
5
|
Liu YS, Miao YL, Dou Y, Yang ZH, Sun W, Zhou X, Li Z, Hideki N, Gao XD, Fujita M. Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA. Glycoconj J 2024; 41:361-370. [PMID: 39531110 DOI: 10.1007/s10719-024-10171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored. In this study, we investigate the relationship between N-glycosylation and RNA glycosylation. Using a recombinant Siglec11-Fc as a probe, we detected surface sialylated glycoRNAs in human cell lines and identified their dependency on the catalytic isoforms of the oligosaccharyltransferase (OST) complex, implicating STT3A-dependent protein glycosylation as a predominant contributor for affecting indirect generation of glycoRNAs. Additionally, perturbations in N-glycan biosynthesis pathways or changes in N-glycan structure impact surface sialylated glycoRNA levels, indicating a regulatory role of glycan metabolic pathways in RNA glycosylation. Together, our results underscore the intricate relationship between protein N-glycosylation and processing and RNA biology.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yu-Long Miao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yue Dou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ze-Hui Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenhao Sun
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650021, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nakanishi Hideki
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
6
|
Pérez-Mato M, Dopico-López A, Akkoc Y, López-Amoedo S, Correa-Paz C, Candamo-Lourido M, Iglesias-Rey R, López-Arias E, Bugallo-Casal A, da Silva-Candal A, Bravo SB, Chantada-Vázquez MDP, Arias S, Santamaría-Cadavid M, Estany-Gestal A, Zaghmi A, Gauthier MA, Gutiérrez-Fernández M, Martin A, Llop J, Rodríguez C, Almeida Á, Migliavacca M, Polo E, Pelaz B, Gozuacik D, El Yamani N, SenGupta T, Rundén-Pran E, Vivancos J, Castellanos M, Díez-Tejedor E, Sobrino T, Rabinkov A, Mirelman D, Castillo J, Campos F. Preclinical validation of human recombinant glutamate-oxaloacetate transaminase for the treatment of acute ischemic stroke. iScience 2024; 27:111108. [PMID: 39524351 PMCID: PMC11543921 DOI: 10.1016/j.isci.2024.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The blood enzyme glutamate-oxaloacetate transaminase (GOT) has been postulated as an effective therapeutic to protect the brain during stroke. To demonstrate its potential clinical utility, a new human recombinant form of GOT (rGOT) was produced for medical use. We tested the pharmacokinetics and evaluated the protective efficacy of rGOT in rodent and non-human primate models that reflected clinical stroke conditions. We found that continuous intravenous administration of rGOT within the first 8 h after ischemic onset significantly reduced the infarct size in both severe (30%) and mild lesions (48%). Cerebrospinal fluid and proteomics analysis, in combination with positron emission tomography imaging, indicated that rGOT can reach the brain and induce cytoprotective autophagy and induce local protection by alleviating neuronal apoptosis. Our results suggest that rGOT can be safely used immediately in patients suspected of having a stroke. This study requires further validation in clinical stroke populations.
Collapse
Affiliation(s)
- María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), 28029 Madrid, Spain
| | - Antonio Dopico-López
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
- Department of Medical Biology, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Sonia López-Amoedo
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Esteban López-Arias
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Andrés da Silva-Candal
- Neurology Service, University Hospital Complex of A Coruña, A Coruña Biomedical Research Institute, 15006 A Coruña, Spain
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María del Pilar Chantada-Vázquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Susana Arias
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - María Santamaría-Cadavid
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unit of Methodology of the Research, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Ahlem Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), 28029 Madrid, Spain
| | - Abraham Martin
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics (IBFG), CSIC, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - Ángeles Almeida
- Institute of Functional Biology and Genomics (IBFG), CSIC, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - Martina Migliavacca
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ester Polo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
- Department of Medical Biology, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Naouale El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2027 Kjeller, Norway
| | - Tanima SenGupta
- Health Effects Laboratory, Department for Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2027 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2027 Kjeller, Norway
| | - José Vivancos
- Stroke Unit, Department of Neurology, Hospital Universitario de La Princesa & Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Mar Castellanos
- Neurology Service, University Hospital Complex of A Coruña, A Coruña Biomedical Research Institute, 15006 A Coruña, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aharon Rabinkov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Mirelman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Kesner JS, Wu X. Mechanisms suppressing noncoding translation. Trends Cell Biol 2024:S0962-8924(24)00190-9. [PMID: 39443270 PMCID: PMC12012163 DOI: 10.1016/j.tcb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The majority of the DNA sequence in our genome is noncoding and not intended for synthesizing proteins. Nonetheless, genome-wide mapping of ribosome footprints has revealed widespread translation in annotated noncoding sequences, including long noncoding RNAs (lncRNAs), untranslated regions (UTRs), and introns of mRNAs. How cells suppress the translation of potentially toxic proteins from various noncoding sequences remains poorly understood. This review summarizes mechanisms for the mitigation of noncoding translation, including the BCL2-associated athanogene 6 (BAG6)-mediated proteasomal degradation pathway, which has emerged as a unifying mechanism to suppress the translation of diverse noncoding sequences in metazoan cells.
Collapse
Affiliation(s)
- Jordan S Kesner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Xie S, Liu H, Zhu S, Chen Z, Wang R, Zhang W, Xian H, Xiang R, Xia X, Sun Y, Long J, Wang Y, Wang M, Wang Y, Yu Y, Huang Z, Lu C, Xu Z, Liu H. Arsenic trioxide and p97 inhibitor synergize against acute myeloid leukemia by targeting nascent polypeptides and activating the ZAKα-JNK pathway. Cancer Gene Ther 2024; 31:1486-1497. [PMID: 39122830 PMCID: PMC11489083 DOI: 10.1038/s41417-024-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2-ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.
Collapse
Affiliation(s)
- Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yong Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Jinlan Long
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanli Wang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yaoyifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| |
Collapse
|
9
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
10
|
Kutzner CE, Bauer KC, Lackmann JW, Acton RJ, Sarkar A, Pokrzywa W, Hoppe T. Optogenetic induction of mechanical muscle stress identifies myosin regulatory ubiquitin ligase NHL-1 in C. elegans. Nat Commun 2024; 15:6879. [PMID: 39128917 PMCID: PMC11317515 DOI: 10.1038/s41467-024-51069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Mechanical stress during muscle contraction is a constant threat to proteome integrity. However, there is a lack of experimental systems to identify critical proteostasis regulators under mechanical stress conditions. Here, we present the transgenic Caenorhabditis elegans model OptIMMuS (Optogenetic Induction of Mechanical Muscle Stress) to study changes in the proteostasis network associated with mechanical forces. Repeated blue light exposure of a muscle-expressed Chlamydomonas rheinhardii channelrhodopsin-2 variant results in sustained muscle contraction and mechanical stress. Using OptIMMuS, combined with proximity labeling and mass spectrometry, we identify regulators that cooperate with the myosin-directed chaperone UNC-45 in muscle proteostasis. One of these is the TRIM E3 ligase NHL-1, which interacts with UNC-45 and muscle myosin in genetic epistasis and co-immunoprecipitation experiments. We provide evidence that the ubiquitylation activity of NHL-1 regulates myosin levels and functionality under mechanical stress. In the future, OptIMMuS will help to identify muscle-specific proteostasis regulators of therapeutic relevance.
Collapse
Affiliation(s)
- Carl Elias Kutzner
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Karen Carolyn Bauer
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard James Acton
- Human Developmental Biology Initiative (HDBI) at Babraham Institute, Cambridge, United Kingdom
| | - Anwesha Sarkar
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
12
|
Fernandez-Fuente G, Farrugia MA, Peng Y, Schneider A, Svaren J, Puglielli L. Spatial selectivity of ATase inhibition in mouse models of Charcot-Marie-Tooth disease. Brain Commun 2024; 6:fcae232. [PMID: 39035418 PMCID: PMC11258571 DOI: 10.1093/braincomms/fcae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The endoplasmic reticulum acetylation machinery has emerged as a new branch of the larger endoplasmic reticulum quality control system. It regulates the selection of correctly folded polypeptides as well as reticulophagy-mediated removal of toxic protein aggregates with the former being a particularly important aspect of the proteostatic functions of endoplasmic reticulum acetylation. Essential to this function is the Nε-lysine acetyltransferase activity of acetyltransferase 1 and acetyltransferase 2, which regulates the induction of endoplasmic reticulum-specific autophagy through the acetylation of the autophagy-related protein 9A. Here, we used three mouse models of Charcot-Marie-Tooth disease, peripheral myelin protein 22/Tr-J, C3-peripheral myelin protein 22 and myelin protein zero/ttrr, to study spatial and translational selectivity of endoplasmic reticulum acetyltransferase inhibitors. The results show that inhibition of the endoplasmic reticulum acetyltransferases selectively targets misfolding/pro-aggregating events occurring in the lumen of the organelle. Therefore, they establish acetyltransferase 1 and acetyltransferase 2 as the first proven targets for disease-causing proteotoxic states that initiate within the lumen of the endoplasmic reticulum/secretory pathway.
Collapse
Affiliation(s)
- Gonzalo Fernandez-Fuente
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark A Farrugia
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Luigi Puglielli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| |
Collapse
|
13
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
14
|
Li T, Liu Y, Zhu H, Cao L, Zhou Y, Liu D, Shen Q. Cellular ATP redistribution achieved by deleting Tgparp improves lignocellulose utilization of Trichoderma under heat stress. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:54. [PMID: 38637859 PMCID: PMC11027231 DOI: 10.1186/s13068-024-02502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Thermotolerance is widely acknowledged as a pivotal factor for fungal survival across diverse habitats. Heat stress induces a cascade of disruptions in various life processes, especially in the acquisition of carbon sources, while the mechanisms by which filamentous fungi adapt to heat stress and maintain carbon sources are still not fully understood. RESULTS Using Trichoderma guizhouense, a representative beneficial microorganism for plants, we discover that heat stress severely inhibits the lignocellulases secretion, affecting carbon source utilization efficiency. Proteomic results at different temperatures suggest that proteins involved in the poly ADP-ribosylation pathway (TgPARP and TgADPRase) may play pivotal roles in thermal adaptation and lignocellulose utilization. TgPARP is induced by heat stress, while the deletion of Tgparp significantly improves the lignocellulose utilization capacity and lignocellulases secretion in T. guizhouense. Simultaneously, the absence of Tgparp prevents the excessive depletion of ATP and NAD+, enhances the protective role of mitochondrial membrane potential (MMP), and elevates the expression levels of the unfolded protein response (UPR)-related regulatory factor Tgire. Further investigations reveal that a stable MMP can establish energy homeostasis, allocating more ATP within the endoplasmic reticulum (ER) to reduce protein accumulation in the ER, thereby enhancing the lignocellulases secretion in T. guizhouense under heat stress. CONCLUSIONS Overall, these findings underscored the significance of Tgparp as pivotal regulators in lignocellulose utilization under heat stress and provided further insights into the molecular mechanism of filamentous fungi in utilizing lignocellulose.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
15
|
Yamamoto S, Kiyatake N, Kaneko A, Shimamura M, Yoshida T, Shimizu S. Mouse transient receptor potential melastatin 2 (TRPM2) isoform 7 attenuates full-length mouse TRPM2 activity through reductions in its expression by targeting it to ER-associated degradation. Genes Cells 2024; 29:254-269. [PMID: 38247314 DOI: 10.1111/gtc.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Transient receptor potential melastatin 2 (TRPM2) assembles into tetramers to function as an oxidative stress-sensitive Ca2+ channel at the surface membrane. Limited information is currently available on the 10 protein isoforms of mouse TRPM2 (mTRPM2) identified. This study investigated whether these isoforms function as Ca2+ channels and examined their effects on full-length mTRPM2 activity using the HEK 293 cell exogenous expression system. Only full-length mTRPM2, isoform 1 localized to the surface membrane and was activated by oxidative stress. Isoform 7 was clearly recognized by protein quality control systems and degraded by endoplasmic reticulum-associated degradation after transmembrane proteolysis. In the co-expression system, the activation and expression of full-length mTRPM2 were attenuated by its co-expression with isoform 7, but not with the other isoforms. This decrease in the expression of full-length mTRPM2 was recovered by the proteasomal inhibitor. The present results suggest that isoforms other than isoform 1 did not function as oxidative stress-sensitive channels and also that only isoform 7 attenuated the activation of full-length mTRPM2 by targeting it to endoplasmic reticulum-associated degradation. The present study will provide important information on the functional nature of mTRPM2 isoforms for the elucidation of their roles in physiological and patho-physiological responses in vivo using mouse models.
Collapse
Affiliation(s)
| | - Naoto Kiyatake
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Akihiro Kaneko
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Masanao Shimamura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Takashi Yoshida
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Shunichi Shimizu
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
16
|
Zuo RK, Wang C, Yu ZY, Shi HM, Song XK, Zhou SD, Ma NN, Chang GJ, Shen XZ. A high concentrate diet inhibits forkhead box protein A2 expression, and induces oxidative stress, mitochondrial dysfunction and mitochondrial unfolded protein response in the liver of dairy cows. Microb Pathog 2024; 188:106570. [PMID: 38341108 DOI: 10.1016/j.micpath.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.
Collapse
Affiliation(s)
- Ran Kun Zuo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Can Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Zhi Yuan Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Min Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiao Kun Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shen Dong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Na Na Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guang Jun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiang Zhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
17
|
Kabakov AY, Roder K, Bronk P, Turan NN, Dhakal S, Zhong M, Lu Y, Zeltzer ZA, Najman-Licht YB, Karma A, Koren G. E3 ubiquitin ligase rififylin has yin and yang effects on rabbit cardiac transient outward potassium currents (I to) and corresponding channel proteins. J Biol Chem 2024; 300:105759. [PMID: 38367666 PMCID: PMC10945274 DOI: 10.1016/j.jbc.2024.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Karim Roder
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Peter Bronk
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Nilüfer N Turan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Saroj Dhakal
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Yichun Lu
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Zachary A Zeltzer
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yonatan B Najman-Licht
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Gideon Koren
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
18
|
Kawan M, Körner M, Schlosser A, Buchberger A. p97/VCP Promotes the Recycling of Endocytic Cargo. Mol Biol Cell 2023; 34:ar126. [PMID: 37756124 PMCID: PMC10848945 DOI: 10.1091/mbc.e23-06-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endocytic pathway is of central importance for eukaryotic cells, as it enables uptake of extracellular materials, membrane protein quality control and recycling, as well as modulation of receptor signaling. While the ATPase p97 (VCP, Cdc48) has been found to be involved in the fusion of early endosomes and endolysosomal degradation, its role in endocytic trafficking is still incompletely characterized. Here, we identify myoferlin (MYOF), a ferlin family member with functions in membrane trafficking and repair, as a hitherto unknown p97 interactor. The interaction of MYOF with p97 depends on the cofactor PLAA previously linked to endosomal sorting. Besides PLAA, shared interactors of p97 and MYOF comprise several proteins involved in endosomal recycling pathways, including Rab11, Rab14, and the transferrin receptor CD71. Accordingly, a fraction of p97 and PLAA localizes to MYOF-, Rab11-, and Rab14-positive endosomal compartments. Pharmacological inhibition of p97 delays transferrin recycling, indicating that p97 promotes not only the lysosomal degradation, but also the recycling of endocytic cargo.
Collapse
Affiliation(s)
- Mona Kawan
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Maria Körner
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Alexander Buchberger
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
19
|
Gutierrez Guarnizo SA, Kellogg MK, Miller SC, Tikhonova E, Karamysheva ZN, Karamyshev AL. Pathogenic signal peptide variants in the human genome. NAR Genom Bioinform 2023; 5:lqad093. [PMID: 37859801 PMCID: PMC10583284 DOI: 10.1093/nargab/lqad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Secreted and membrane proteins represent a third of all cellular proteins and contain N-terminal signal peptides that are required for protein targeting to endoplasmic reticulum (ER). Mutations in signal peptides affect protein targeting, translocation, processing, and stability, and are associated with human diseases. However, only a few of them have been identified or characterized. In this report, we identified pathogenic signal peptide variants across the human genome using bioinformatic analyses and predicted the molecular mechanisms of their pathology. We recovered more than 65 thousand signal peptide mutations, over 11 thousand we classified as pathogenic, and proposed framework for distinction of their molecular mechanisms. The pathogenic mutations affect over 3.3 thousand genes coding for secreted and membrane proteins. Most pathogenic mutations alter the signal peptide hydrophobic core, a critical recognition region for the signal recognition particle, potentially activating the Regulation of Aberrant Protein Production (RAPP) quality control and specific mRNA degradation. The remaining pathogenic variants (about 25%) alter either the N-terminal region or signal peptidase processing site that can result in translocation deficiencies at the ER membrane or inhibit protein processing. This work provides a conceptual framework for the identification of mutations across the genome and their connection with human disease.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sarah C Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
20
|
Ham SW, Kim JY, Seo S, Hong N, Park MJ, Kim Y, Jang J, Park S, Lee SJ, Kim JK, Kim EJ, Kim SO, Kim SC, Park JW, Kim H. Annexin A2 Stabilizes Oncogenic JAG1 Intracellular Domain by Inhibiting Proteasomal Degradation in Glioblastoma Cells. Int J Mol Sci 2023; 24:14776. [PMID: 37834227 PMCID: PMC10573421 DOI: 10.3390/ijms241914776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.
Collapse
Affiliation(s)
- Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
- MEDIFIC Inc., Hwaseong-si 18469, Republic of Korea
| | - Jung Yun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunyoung Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sehyeon Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Silvee Jisoo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Kyum Kim
- MEDIFIC Inc., Hwaseong-si 18469, Republic of Korea
| | - Eun-Jung Kim
- MEDIFIC Inc., Hwaseong-si 18469, Republic of Korea
| | - Sung-Ok Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sung-Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong-Whi Park
- Department of Life Sciences, Gachon University, Incheon 21999, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
22
|
Sosa-Carrillo S, Galez H, Napolitano S, Bertaux F, Batt G. Maximizing protein production by keeping cells at optimal secretory stress levels using real-time control approaches. Nat Commun 2023; 14:3028. [PMID: 37231013 PMCID: PMC10212943 DOI: 10.1038/s41467-023-38807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Optimizing the production of recombinant proteins is a problem of major industrial and pharmaceutical importance. Secretion of the protein by the host cell considerably simplifies downstream purification processes. However, for many proteins, this is also the limiting production step. Current solutions involve extensive engineering of the chassis cell to facilitate protein trafficking and limit protein degradation triggered by excessive secretion-associated stress. Here, we propose instead a regulation-based strategy in which induction is dynamically adjusted to an optimal strength based on the current stress level of the cells. Using a small collection of hard-to-secrete proteins, a bioreactor-based platform with automated cytometry measurements, and a systematic assay to quantify secreted protein levels, we demonstrate that the secretion sweet spot is indicated by the appearance of a subpopulation of cells that accumulate high amounts of proteins, decrease growth, and face significant stress, that is, experience a secretion burnout. In these cells, adaptations capabilities are overwhelmed by a too strong production. Using these notions, we show for a single-chain antibody variable fragment that secretion levels can be improved by 70% by dynamically keeping the cell population at optimal stress levels using real-time closed-loop control.
Collapse
Affiliation(s)
| | - Henri Galez
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
| | - Sara Napolitano
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
| | - François Bertaux
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France
- Lesaffre International, 101 rue de Menin, Marcq-en-Baroeul, France
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
23
|
Lee SH, Sun MH, Jiang WJ, Li XH, Heo G, Zhou D, Chen Z, Cui XS. Alpha-lipoic acid attenuates heat stress-induced apoptosis via upregulating the heat shock response in porcine parthenotes. Sci Rep 2023; 13:8427. [PMID: 37225872 PMCID: PMC10209172 DOI: 10.1038/s41598-023-35587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
24
|
Li M, Li S, Zhang L. Phosphorylation Promotes the Accumulation of PERIOD Protein Foci. RESEARCH (WASHINGTON, D.C.) 2023; 6:0139. [PMID: 37223461 PMCID: PMC10202380 DOI: 10.34133/research.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Circadian clock drives the 24-h rhythm in our behavior and physiology. The molecular clock consists of a series of transcriptional/translational feedback loops operated by a number of clock genes. A very recent study reported that the clock protein PERIOD (PER) is organized into discrete foci at the nuclear envelope in fly circadian neurons, which is believed to be important for controlling the subcellular localization of clock genes. Loss of inner nuclear membrane protein lamin B receptor (LBR) leads to disruption of these foci, but how they are regulated is yet unknown. Here, we found that PER foci are likely phase-separated condensates, the formation of which is mediated by intrinsically disordered region in PER. Phosphorylation promotes the accumulation of these foci. Protein phosphatase 2A, which is known to dephosphorylate PER, hampers the accumulation of the foci. On the other hand, the circadian kinase DOUBLETIME (DBT) which phosphorylates PER enhances the accumulation of the foci. LBR likely facilitates PER foci accumulation by destabilizing the catalytic subunit of protein phosphatase 2A, MICROTUBULE STAR (MTS). In conclusion, here, we demonstrate a key role for phosphorylation in promoting the accumulation of PER foci, while LBR modulates this process by impinging on the circadian phosphatase MTS.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shujing Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei 430022, China
| |
Collapse
|
25
|
Gao C, Peng X, Zhang L, Zhao Q, Ma L, Yu Q, Lian X, Gao L, Xiong L, Li S. Proteome and Ubiquitylome Analyses of Maize Endoplasmic Reticulum under Heat Stress. Genes (Basel) 2023; 14:genes14030749. [PMID: 36981020 PMCID: PMC10047965 DOI: 10.3390/genes14030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.
Collapse
Affiliation(s)
- Chunyan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Peng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luoying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liguo Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuechun Lian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langyu Xiong
- Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT. Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnol Adv 2023; 63:108079. [PMID: 36528238 DOI: 10.1016/j.biotechadv.2022.108079] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
27
|
Sharma R, Mondal P, Srinivasula SM. CARPs regulate STUB1 and its pathogenic mutants aggregation kinetics by mono-ubiquitination. FEBS J 2023. [PMID: 36853170 DOI: 10.1111/febs.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The development of neurological pathologies is linked to the accumulation of protein aggregates like alpha-synuclein in Parkinson's disease and tau protein in Alzheimer's disease. Mono- or di-ubiquitination of these molecules has been reported to stabilize aggregates and contribute to the disorders. STIP1 Homologous and U-Box-containing protein 1 (STUB1) is a multifunctional protein that maintains proteostasis and insulin signalling. In spinocerebellar ataxia 16 (SCAR16), an autosomal recessive neurodegenerative disease, mutations in and aggregation of STUB1 are reported. Despite the well-accepted neuroprotective role of STUB1, very little is known of regulatory mechanisms that control the dynamics of STUB1 aggregate assembly. Here, we report that CARP2, a ubiquitin ligase, is a novel regulator of STUB1. CARP2 interacts and mono-ubiquitinates STUB1. Furthermore, we found that CARP2 regulates STUB1 through its TPR motif, a domain that is also associated with HSP70. Modification of STUB1 by CARP2 leads to detergent-insoluble aggregate formation. Importantly, pathogenic mutants of STUB1 are more prone than the wild-type to CARP2-mediated aggregate assembly. Hence our findings revealed CARPs (CARP1 & CARP2) as novel regulators of STUB1 and controlled its cytosolic versus aggregate dynamics.
Collapse
Affiliation(s)
- Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Prema Mondal
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, India
| |
Collapse
|
28
|
Hu W, Jia A, Ma S, Zhang G, Wei Z, Lu F, Luo Y, Zhang Z, Sun J, Yang T, Xia T, Li Q, Yao T, Zheng J, Jiang Z, Xu Z, Xia Q, Wang Y. A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun 2023; 14:837. [PMID: 36792670 PMCID: PMC9932165 DOI: 10.1038/s41467-023-36545-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.
Collapse
Affiliation(s)
- Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Anqiang Jia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Guoqing Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fang Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yongjiang Luo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiahe Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Tianfang Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - TingTing Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jiangyu Zheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zijie Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zehui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
31
|
Li YR, Fan HJ, Sun RR, Jia L, Yang LY, Zhang HF, Jin XM, Xiao BG, Ma CG, Chai Z. Wuzi Yanzong Pill Plays A Neuroprotective Role in Parkinson's Disease Mice via Regulating Unfolded Protein Response Mediated by Endoplasmic Reticulum Stress. Chin J Integr Med 2023; 29:19-27. [PMID: 36369612 DOI: 10.1007/s11655-022-3727-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the protective effects and its possible mechanism of Wuzi Yanzong Pill (WYP) on Parkinson's disease (PD) model mice. METHODS Thirty-six C57BL/6 male mice were randomly assigned to 3 groups including normal, PD, and PD+WYP groups, 12 mice in each group. One week of intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the classical PD model in mice. Meanwhile, mice in the PD+WYP group were administrated with 16 g/kg WYP, twice daily by gavage. After 14 days of administration, gait test, open field test and pole test were measured to evaluate the movement function. Tyrosine hydroxylase (TH) neurons in substantia nigra of midbrain and binding immunoglobulin heavy chain protein (GRP78) in striatum and cortex were observed by immunohistochemistry. The levels of TH, GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1α, XBP1, ATF6, CHOP, ASK1, p-JNK, Caspase-12, -9 and -3 in brain were detected by Western blot. RESULTS Compared with the PD group, WYP treatment ameliorated gait balance ability in PD mice (P<0.05). Similarly, WYP increased the total distance and average speed (P<0.05 or P<0.01), reduced rest time and pole time (P<0.05). Moreover, WYP significantly increased TH positive cells (P<0.01). Immunofluorescence showed WYP attenuated the levels of GRP78 in striatum and cortex. Meanwhile, WYP treatment significantly decreased the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1 α, XBP1, CHOP, Caspase-12 and Caspase-9 (P<0.05 or P<0.01). CONCLUSIONS WYP ameliorated motor symptoms and pathological lesion of PD mice, which may be related to the regulation of unfolded protein response-mediated signaling pathway and inhibiting the endoplasmic reticulum stress-mediated neuronal apoptosis pathway.
Collapse
Affiliation(s)
- Yan-Rong Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Rui-Rui Sun
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Lu Jia
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Li-Yang Yang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Fei Zhang
- Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
32
|
Martemucci G, Portincasa P, Centonze V, Mariano M, Khalil M, D'Alessandro AG. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med Chem 2023; 19:509-537. [PMID: 36453505 DOI: 10.2174/1573406419666221130162512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lipids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we critically discuss the main properties of free radicals, their implications in oxidative stress, and specific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenerative diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate beneficial effect of antioxidants versus reactive oxygen species in several diseases.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| |
Collapse
|
33
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
34
|
Intracellular Citrate/acetyl-CoA flux and endoplasmic reticulum acetylation: Connectivity is the answer. Mol Metab 2022; 67:101653. [PMID: 36513219 PMCID: PMC9792894 DOI: 10.1016/j.molmet.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Key cellular metabolites reflecting the immediate activity of metabolic enzymes as well as the functional metabolic state of intracellular organelles can act as powerful signal regulators to ensure the activation of homeostatic responses. The citrate/acetyl-CoA pathway, initially recognized for its role in intermediate metabolism, has emerged as a fundamental branch of this nutrient-sensing homeostatic response. Emerging studies indicate that fluctuations in acetyl-CoA availability within different cellular organelles and compartments provides substrate-level regulation of many biological functions. A fundamental aspect of these regulatory functions involves Nε-lysine acetylation. SCOPE OF REVIEW Here, we will examine the emerging regulatory functions of the citrate/acetyl-CoA pathway and the specific role of the endoplasmic reticulum (ER) acetylation machinery in the maintenance of intracellular crosstalk and homeostasis. These functions will be analyzed in the context of associated human diseases and specific mouse models of dysfunctional ER acetylation and citrate/acetyl-CoA flux. A primary objective of this review is to highlight the complex yet integrated response of compartment- and organelle-specific Nε-lysine acetylation to the intracellular availability and flux of acetyl-CoA, linking this important post-translational modification to cellular metabolism. MAJOR CONCLUSIONS The ER acetylation machinery regulates the proteostatic functions of the organelle as well as the metabolic crosstalk between different intracellular organelles and compartments. This crosstalk enables the cell to impart adaptive responses within the ER and the secretory pathway. However, it also enables the ER to impart adaptive responses within different cellular organelles and compartments. Defects in the homeostatic balance of acetyl-CoA flux and ER acetylation reflect different but converging disease states in humans as well as converging phenotypes in relevant mouse models. In conclusion, citrate and acetyl-CoA should not only be seen as metabolic substrates of intermediate metabolism but also as signaling molecules that direct functional adaptation of the cell to both intracellular and extracellular messages. Future discoveries in CoA biology and acetylation are likely to yield novel therapeutic approaches.
Collapse
|
35
|
Mashahreh B, Armony S, Johansson KE, Chappleboim A, Friedman N, Gardner RG, Hartmann-Petersen R, Lindorff-Larsen K, Ravid T. Conserved degronome features governing quality control associated proteolysis. Nat Commun 2022; 13:7588. [PMID: 36481666 PMCID: PMC9732359 DOI: 10.1038/s41467-022-35298-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The eukaryotic proteome undergoes constant surveillance by quality control systems that either sequester, refold, or eliminate aberrant proteins by ubiquitin-dependent mechanisms. Ubiquitin-conjugation necessitates the recognition of degradation determinants, termed degrons, by their cognate E3 ubiquitin-protein ligases. To learn about the distinctive properties of quality control degrons, we performed an unbiased peptidome stability screen in yeast. The search identify a large cohort of proteome-derived degrons, some of which exhibited broad E3 ligase specificity. Consequent application of a machine-learning algorithm establishes constraints governing degron potency, including the amino acid composition and secondary structure propensities. According to the set criteria, degrons with transmembrane domain-like characteristics are the most probable sequences to act as degrons. Similar quality control degrons are present in viral and human proteins, suggesting conserved degradation mechanisms. Altogether, the emerging data indicate that transmembrane domain-like degron features have been preserved in evolution as key quality control determinants of protein half-life.
Collapse
Affiliation(s)
- Bayan Mashahreh
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shir Armony
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kristoffer Enøe Johansson
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alon Chappleboim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Friedman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
36
|
Rose T, Wilkinson M, Lowe C, Xu J, Hughes D, Hassall KL, Hassani‐Pak K, Amberkar S, Noleto‐Dias C, Ward J, Heuer S. Novel molecules and target genes for vegetative heat tolerance in wheat. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:264-289. [PMID: 37284432 PMCID: PMC10168084 DOI: 10.1002/pei3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/08/2023]
Abstract
To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandeep Amberkar
- Rothamsted ResearchHarpendenUK
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | - Sigrid Heuer
- Rothamsted ResearchHarpendenUK
- National Institute of Agricultural Botany (NIAB)CambridgeUK
| |
Collapse
|
37
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
38
|
Rebelo AP, Ruiz A, Dohrn MF, Wayand M, Farooq A, Danzi MC, Beijer D, Aaron B, Vandrovcova J, Houlden H, Matalonga L, Abreu L, Rouleau G, Estiar MA, Van de Vondel L, Gan-Or Z, Baets J, Schüle R, Zuchner S. BiP inactivation due to loss of the deAMPylation function of FICD causes a motor neuron disease. Genet Med 2022; 24:2487-2500. [PMID: 36136088 DOI: 10.1016/j.gim.2022.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The chaperone protein BiP is the master regulator of the unfolded protein response in the endoplasmic reticulum. BiP chaperone activity is regulated by the post-translational modification AMPylation, exclusively provided by FICD. We investigated whether FICD variants identified in patients with motor neuron disease could interfere with BiP activity regulation. METHODS Exome sequencing was performed to identify causative pathogenic variants associated with motor neuron diseases. Functional studies were conducted on fibroblasts from patients to explore the molecular mechanism of the disease. RESULTS We identified biallelic variants in FICD causing a neurodegenerative disease of upper and lower motor neurons. Affected individuals harbor a specific missense variant, Arg374His, positioned in the catalytic motif of the enzyme and important for adenosine triphosphate binding. The mutated residue abolishes intramolecular interaction with the regulatory residue Glu234, essential to inhibit AMPylation and to promote de-AMPylation by FICD. Consequently, fibroblasts from patients with FICD variants have abnormally increased levels of AMPylated and thus inactivated BiP. CONCLUSION Loss of BiP chaperone activity in patients likely results in a chronic impairment of the protein quality control system in the endoplasmic reticulum. These findings will guide the development of therapeutic strategies for motoneuron and related diseases linked to proteotoxic stress.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Ariel Ruiz
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Melanie Wayand
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Amjad Farooq
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Danique Beijer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Brooke Aaron
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lisa Abreu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Guy Rouleau
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehrdad A Estiar
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Ziv Gan-Or
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Center, Antwerp University Hospital and Faculty of Medicine University of Antwerp, Antwerp, Belgium
| | - Rebecca Schüle
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
39
|
Lu Y, Ha M, Li X, Wang J, Mo R, Zhang A. Distribution, expression of hexaploid wheat Fes1s and functional characterization of two TaFes1As in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1037989. [PMID: 36325559 PMCID: PMC9621618 DOI: 10.3389/fpls.2022.1037989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hexaploid wheat is a major food crop and is sensitive to heat stress. It is necessary to discover genes related to thermotolerance in wheat. Fes1s is a class of nucleotide exchange factor of heat shock protein 70s, proven to be participated in heat response in human, yeast, and Arabidopsis. However, little is known about Fes1s in hexaploid wheat. In this study, we identified nine Fes1s in hexaploid wheat (TaFes1s) and found that they present as three triads. A phylogenetic relationship analysis revealed that these Fes1s grouped into Fes1A, Fes1B and Fes1C subclades, and Fes1As and Fes1Bs were divergent in monocots, but possibly not in dicots. The sequences, gene structures and protein motifs of TaFes1s homoeologues within a triad were highly conserved. Through cis-elements analysis including heat shock elements, and miRNA targets prediction, we found that regulation of three TaFes1s homoeologues may be different, while the expression patterns of three homoeologues were similar. The expression levels of TaFes1As were higher than those of TaFes1Bs and TaFes1Cs, and based on these expressions, TaFes1As were chosen for functional characterization. Intriguingly, neither TaFes1A-5A nor TaFes1A-5D could not rescue the thermotolerance defect of Arabidopsis fes1a mutants at seedling stage, but in the transgenic plants seed germination was accelerated under normal and heat stress condition. The functional characterization indicated that roles of Fes1As would be different in Arabidopsis and hexaploid wheat, and function retention of TaFes1As may occur during wheat evolution. In conclusion, our study comprehensively characterized the distribution and expression of Fes1s in hexaploid wheat and found that two TaFes1As could accelerate seed germination under normal and heat stress condition.
Collapse
Affiliation(s)
- Yunze Lu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Mingran Ha
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Xinming Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Aihua Zhang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
40
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
41
|
Abstract
Peste des petits ruminants virus (PPRV) infection leads to autophagy, and the molecular mechanisms behind this phenomenon are unclear. Here, we demonstrate that PPRV infection results in morphological changes of the endoplasmic reticulum (ER) and activation of activating transcription factor 6 (ATF6) of the ER stress unfolded protein response (UPR). Knockdown of ATF6 blocked the autophagy process, suggesting ATF6 is necessary for PPRV-mediated autophagy induction. Further study showed that PPRV infection upregulates expression of the ER-anchored adaptor protein stimulator of interferon genes (STING), which is well-known for its pivotal roles in restricting DNA viruses. Knockdown of STING suppressed ATF6 activation and autophagy induction, implying that STING functions upstream of ATF6 to induce autophagy. Moreover, the STING-mediated autophagy response originated from the cellular pattern recognition receptor melanoma differentiation-associated gene 5 (MDA5). The absence of MDA5 abolished the upregulation of STING and the activation of autophagy. The deficiency of autophagy-related genes (ATG) repressed the autophagy process and PPRV replication, while it had no effect on MDA5 or STING expression. Overall, our work revealed that MDA5 works upstream of STING to activate ATF6 to induce autophagy. IMPORTANCEPPRV infection induces cellular autophagy; however, the intracellular responses and signaling mechanisms that occur upon PPRV infection are obscure, and whether innate immune responses are linked with autophagy to regulate viral replication is largely unknown. Here, we uncovered that the innate immune sensor MDA5 initiated the signaling cascade by upregulating STING, which is best known for its role in anti-DNA virus infection by inducing interferon expression. We first provide evidence that STING regulates PPRV replication by activating the ATF6 pathway of unfolded protein responses (UPRs) to induce autophagy. Our results revealed that in addition to mediating responses to foreign DNA, STING can cross talk with MDA5 to regulate the cellular stress response and autophagy induced by RNA viruses; thus, STING works as an adaptor protein for cellular stress responses and innate immune responses. Modulation of STING represents a promising approach to control both DNA and RNA viruses.
Collapse
|
42
|
Gustchina A, Li M, Andrianova AG, Kudzhaev AM, Lountos GT, Sekula B, Cherry S, Tropea JE, Smirnov IV, Wlodawer A, Rotanova TV. Unique Structural Fold of LonBA Protease from Bacillus subtilis, a Member of a Newly Identified Subfamily of Lon Proteases. Int J Mol Sci 2022; 23:11425. [PMID: 36232729 PMCID: PMC9569914 DOI: 10.3390/ijms231911425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.
Collapse
Affiliation(s)
- Alla Gustchina
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna G Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arsen M Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - George T Lountos
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bartosz Sekula
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Lodz, Poland
| | - Scott Cherry
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E Tropea
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
43
|
Yang KZ, Zuo CR, Leng YJ, Yue JL, Liu HC, Fan ZB, Xue XY, Dong J, Chen LQ, Le J. The functional specificity of ERECTA-family receptors in Arabidopsis stomatal development is ensured by molecular chaperones in the endoplasmic reticulum. Development 2022; 149:dev200892. [PMID: 36052695 PMCID: PMC10655955 DOI: 10.1242/dev.200892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Stomata are epidermal pores that control gas exchange between plants and the atmosphere. In Arabidopsis, the ERECTA family (ERECTAf) receptors, including ERECTA, ERECTA-LIKE 1 (ERL1) and ERL2, redundantly play pivotal roles in enforcing the 'one-cell-spacing' rule. Accumulating evidence has demonstrated that the functional specificities of receptors are likely associated with their differential subcellular dynamics. The endoplasmic reticulum (ER)-resident chaperone complex SDF2-ERdj3B-BiP functions in many aspects of plant development. We employed pharmacological treatments combined with cell biological and biochemical approaches to demonstrate that the abundance of ERECTA was reduced in the erdj3b-1 mutant, but the localization and dynamics of ERECTA were not noticeably affected. By contrast, the erdj3b mutation caused the retention of ERL1/ERL2 in the ER. Furthermore, we found that the function of SDF2-ERdj3B-BiP is implicated with the distinct roles of ERECTAf receptors. Our findings establish that the ERECTAf receptor-mediated signaling in stomatal development is ensured by the activities of the ER quality control system, which preferentially maintains the protein abundance of ERECTA and proper subcellular dynamics of ERL1/ERL2, prior to the receptors reaching their destination - the plasma membrane - to execute their functions.
Collapse
Affiliation(s)
- Ke-Zhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao-Ran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Leng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun-Ling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Chao Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Bin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Yi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
45
|
Hill J, Nyathi Y. USP5 enhances SGTA mediated protein quality control. PLoS One 2022; 17:e0257786. [PMID: 35895711 PMCID: PMC9328565 DOI: 10.1371/journal.pone.0257786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.
Collapse
Affiliation(s)
- Jake Hill
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Yvonne Nyathi
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Hou C, Li Y, Wang M, Wu H, Li T. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning. BMC Biol 2022; 20:162. [PMID: 35836176 PMCID: PMC9281121 DOI: 10.1186/s12915-022-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt control of protein abundance due to mistargeting of proteins destined for degradation and often result in pathologies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the expression of specific proteins. Despite their essential function and disease targetability, reliable identification of degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts general degrons directly from protein sequences. RESULTS We showed that the BERT-based model performed well in predicting degrons singly from protein sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred successfully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis by surveying degron-related mutations in TCGA. CONCLUSIONS Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, which should advance the understanding of protein degradation, and allow exploration of uncharacterized alterations of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated these data into the website http://degron.phasep.pro/ .
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Mengyao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| |
Collapse
|
47
|
Gene expression and functional analysis of Aha1a and Aha1b in stress response in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110777. [PMID: 35830921 DOI: 10.1016/j.cbpb.2022.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions. The roles of Aha1 in vertebrates are poorly understood. Here, we characterized the expression and function of Aha1 in zebrafish. We showed that zebrafish genome contains two aha1 genes, aha1a and aha1b, that show distinct patterns of expression during development. Under the normal physiological conditions, aha1a is primarily expressed in skeletal muscle cells of zebrafish embryos, while aha1b is strongly expressed in the head region. aha1a and aha1b expression increased dramatically in response to heat shock induced stress. In addition, Aha1a-GFP fusion protein exhibited a dynamic translocation in muscle cells in response to heat shock. Moreover, upregulation of aha1 expression was also observed in hsp90a1 knockdown embryos that showed a muscle defect. Genetic studies demonstrated that knockout of aha1a, aha1b or both had no detectable effect on embryonic development, survival, and growth in zebrafish. The aha1a and aha1b mutant embryos showed normal muscle development and stress response in response to heat shock. Single or double aha1a and aha1b mutants could grow into normal reproductive adults with normal skeletal muscle structure and morphology compared with wild type control. Together, data from these studies indicate that Aha1a and Aha1b are involved in stress response. However, they are dispensable in zebrafish embryonic development, growth, and survival.
Collapse
|
48
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
49
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
50
|
Lohani N, Singh MB, Bhalla PL. Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers. FRONTIERS IN PLANT SCIENCE 2022; 13:905674. [PMID: 35755714 PMCID: PMC9218420 DOI: 10.3389/fpls.2022.905674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Climate change associated increases in the frequency and intensity of extreme temperature events negatively impact agricultural productivity and global food security. During the reproductive phase of a plant's life cycle, such high temperatures hinder pollen development, preventing fertilization, and seed formation. At the molecular level, heat stress-induced accumulation of misfolded proteins activates a signaling pathway called unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasm to enhance the protein folding capacity of the cell. Here, we report transcriptional responses of Brassica napus anthers exposed to high temperature for 5, 15, and 30 min to decipher the rapid transcriptional reprogramming associated with the unfolded protein response. Functional classification of the upregulated transcripts highlighted rapid activation of the ER-UPR signaling pathway mediated by ER membrane-anchored transcription factor within 5 min of heat stress exposure. KEGG pathway enrichment analysis also identified "Protein processing in ER" as the most significantly enriched pathway, indicating that the unfolded protein response (UPR) is an immediate heat stress-responsive pathway during B. napus anther development. Five minutes of heat stress also led to robust induction of the cytosolic HSF-HSP heat response network. Our results present a perspective of the rapid and massive transcriptional reprogramming during heat stress in pollen development and highlight the need for investigating the nature and function of very early stress-responsive networks in plant cells. Research focusing on very early molecular responses of plant cells to external stresses has the potential to reveal new stress-responsive gene networks that can be explored further for developing climate change resilient crops.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|