1
|
Zhang W, Ren D, Li Z, Yue L, Whitman WB, Dong X, Li J. Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon. Nucleic Acids Res 2023; 51:7851-7867. [PMID: 37439380 PMCID: PMC10450193 DOI: 10.1093/nar/gkad575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
2
|
Jeynes-Smith C, Araujo RP. Protein-protein complexes can undermine ultrasensitivity-dependent biological adaptation. J R Soc Interface 2023; 20:20220553. [PMID: 36596458 PMCID: PMC9810431 DOI: 10.1098/rsif.2022.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Robust perfect adaptation (RPA) is a ubiquitously observed signalling response across all scales of biological organization. A major class of network architectures that drive RPA in complex networks is the Opposer module-a feedback-regulated network into which specialized integral-computing 'opposer node(s)' are embedded. Although ultrasensitivity-generating chemical reactions have long been considered a possible mechanism for such adaptation-conferring opposer nodes, this hypothesis has relied on simplified Michaelian models, which neglect the presence of protein-protein complexes. Here we develop complex-complete models of interlinked covalent-modification cycles with embedded ultrasensitivity, explicitly capturing all molecular interactions and protein complexes. Strikingly, we demonstrate that the presence of protein-protein complexes thwarts the network's capacity for RPA in any 'free' active protein form, conferring RPA capacity instead on the concentration of a larger protein pool consisting of two distinct forms of a single protein. We further show that the presence of enzyme-substrate complexes, even at comparatively low concentrations, play a crucial and previously unrecognized role in controlling the RPA response-significantly reducing the range of network inputs for which RPA can obtain, and imposing greater parametric requirements on the RPA response. These surprising results raise fundamental new questions as to the biochemical requirements for adaptation-conferring Opposer modules within complex cellular networks.
Collapse
Affiliation(s)
- C. Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - R. P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Topolewski P, Zakrzewska KE, Walczak J, Nienałtowski K, Müller-Newen G, Singh A, Komorowski M. Phenotypic variability, not noise, accounts for most of the cell-to-cell heterogeneity in IFN-γ and oncostatin M signaling responses. Sci Signal 2022; 15:eabd9303. [PMID: 35167339 DOI: 10.1126/scisignal.abd9303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular signaling responses show substantial cell-to-cell heterogeneity, which is often ascribed to the inherent randomness of biochemical reactions, termed molecular noise, wherein high noise implies low signaling fidelity. Alternatively, heterogeneity could arise from differences in molecular content between cells, termed molecular phenotypic variability, which does not necessarily imply imprecise signaling. The contribution of these two processes to signaling heterogeneity is unclear. Here, we fused fibroblasts to produce binuclear syncytia to distinguish noise from phenotypic variability in the analysis of cytokine signaling. We reasoned that the responses of the two nuclei within one syncytium could approximate the signaling outcomes of two cells with the same molecular content, thereby disclosing noise contribution, whereas comparison of different syncytia should reveal contribution of phenotypic variability. We found that ~90% of the variance in the primary response (which was the abundance of phosphorylated, nuclear STAT) to stimulation with the cytokines interferon-γ and oncostatin M resulted from differences in the molecular content of individual cells. Thus, our data reveal that cytokine signaling in the system used here operates in a reproducible, high-fidelity manner.
Collapse
Affiliation(s)
- Piotr Topolewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Karolina E Zakrzewska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jarosław Walczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Karol Nienałtowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michał Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Jeynes-Smith C, Araujo RP. Ultrasensitivity and bistability in covalent-modification cycles with positive autoregulation. Proc Math Phys Eng Sci 2021; 477:20210069. [PMID: 35153570 PMCID: PMC8331239 DOI: 10.1098/rspa.2021.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Switch-like behaviours in biochemical networks are of fundamental significance in biological signal processing, and exist as two distinct types: ultra-sensitivity and bistability. Here we propose two new models of a reversible covalent-modification cycle with positive autoregulation (PAR), a motif structure that is thought to be capable of both ultrasensitivity and bistability in different parameter regimes. These new models appeal to a modelling framework that we call complex-complete, which accounts fully for the molecular complexities of the underlying signalling mechanisms. Each of the two new models encodes a specific molecular mechanism for PAR. We demonstrate that the modelling simplifications for PAR models that have been used in previous work, which rely on Michaelian approximations, are unable to accurately recapitulate the qualitative signalling responses supported by our detailed models. Strikingly, we show that complex-complete PAR models are capable of new qualitative responses such as one-way switches and a 'prozone' effect, depending on the specific PAR-encoding mechanism, which are not supported by Michaelian simplifications. Our results highlight the critical importance of accurately representing the molecular details of biochemical signalling mechanisms, and strongly suggest that the Michaelian approximation is inadequate for predictive models of enzyme-mediated chemical reactions with added regulations such as PAR.
Collapse
Affiliation(s)
- Cailan Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Brisbane, Australia
| | - Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Brisbane, Australia
| |
Collapse
|
5
|
Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021; 251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Organisms have cellular machinery that is focused on optimum utilization of resources to maximize growth and survival depending on various environmental and developmental factors. Catabolite repression is a strategy utilized by various species of bacteria and fungi to accommodate changes in the environment such as the depletion of resources, or an abundance of less-favored nutrient sources. Catabolite repression allows for the rapid use of certain substrates like glucose over other carbon sources. Effective handling of carbon and nitrogen catabolite repression in microorganisms is crucial to outcompete others in nutrient limiting conditions. Investigations into genes and proteins linked to preferential uptake of different nutrients under various environmental conditions can aid in identifying regulatory mechanisms that are crucial for optimum growth and survival of microorganisms. The exact time and way bacteria and fungi switch their utilization of certain nutrients is of great interest for scientific, industrial, and clinical reasons. Catabolite repression is of great significance for industrial applications that rely on microorganisms for the generation of valuable bio-products. The impact catabolite repression has on virulence of pathogenic bacteria and fungi and disease progression in hosts makes it important area of interest in medical research for the prevention of diseases and developing new treatment strategies. Regulatory networks under catabolite repression exemplify the flexibility and the tremendous diversity that is found in microorganisms and provides an impetus for newer insights into these networks.
Collapse
Affiliation(s)
- Abhinav Nair
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Li Z, Ding D, Wang H, Liu L, Fang H, Chen T, Zhang D. Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synth Syst Biotechnol 2020; 5:200-205. [PMID: 32671235 PMCID: PMC7334480 DOI: 10.1016/j.synbio.2020.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Optimizing the supply of biosynthetic precursors and cofactors is usually an effective metabolic strategy to improve the production of target compounds. Here, the combination of optimizing precursor synthesis and balancing cofactor metabolism was adopted to improve tryptophan production in Escherichia coli. First, glutamine synthesis was improved by expressing heterologous glutamine synthetase from Bacillus subtilis and Bacillus megaterium in the engineered Escherichia coli strain KW001, resulting in the best candidate strain TS-1. Then icd and gdhA were overexpressed in TS-1, which led to the accumulation of 1.060 g/L tryptophan. Subsequently, one more copy of prs was introduced on the chromosome to increase the flux of 5-phospho-α-d-ribose 1-diphosphate followed by the expression of mutated serA and thrA to increase the precursor supply of serine, resulting in the accumulation of 1.380 g/L tryptophan. Finally, to maintain cofactor balance, sthA and pntAB, encoding transhydrogenase, were overexpressed. With sufficient amounts of precursors and balanced cofactors, the engineered strain could produce 1.710 g/L tryptophan after 48 h of shake-flask fermentation, which was 2.76-times higher than the titer of the parent strain. Taken together, our results demonstrate that the combination of optimizing precursor supply and regulating cofactor metabolism is an effective approach for high-level production of tryptophan. Similar strategies could be applied to the production of other amino acids or related derivatives.
Collapse
Affiliation(s)
- Zhu Li
- Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongqin Ding
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiying Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol 2020; 30:408-424. [PMID: 32302552 DOI: 10.1016/j.tcb.2020.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
As one of the fundamental requirements for cell growth and proliferation, nitrogen acquisition and utilization must be tightly regulated. Nitrogen can be generated from amino acids (AAs) and utilized for biosynthetic processes through transamination and deamination reactions. Importantly, limitations of nitrogen availability in cells can disrupt the synthesis of proteins, nucleic acids, and other important nitrogen-containing compounds. Rewiring cellular metabolism to support anabolic processes is a feature common to both cancer and proliferating immune cells. In this review, we discuss how nitrogen is utilized in biosynthetic pathways and highlight different metabolic and oncogenic programs that alter the flow of nitrogen to sustain biomass production and growth, an important emerging feature of cancer and immune cell proliferation.
Collapse
|
8
|
Guan S, Xu L, Zhang Q, Shi H. Trade-offs between effectiveness and cost in bifunctional enzyme circuit with concentration robustness. Phys Rev E 2020; 101:012409. [PMID: 32069674 DOI: 10.1103/physreve.101.012409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/01/2023]
Abstract
A fundamental trade-off in biological systems is whether they consume resources to perform biological functions or save resources. Bacteria need to reliably and rapidly respond to input signals by using limited cellular resources. However, excessive resource consumption will become a burden for bacteria growth. To investigate the relationship between functional effectiveness and resource cost, we study the ubiquitous bifunctional enzyme circuit, which is robust to fluctuations in protein concentration and responds quickly to signal changes. We show that trade-off relationships exist between functional effectiveness and protein cost. Expressing more proteins of the circuit increases concentration robustness and response speed but affects bacterial growth. In particular, our study reveals a general relationship between free-energy dissipation rate, response speed, and concentration robustness. The dissipation of free energy plays an important role in the concentration robustness and response speed. High robustness can only be achieved with a large amount of free-energy consumption and protein cost. In addition, the noise of the output increases with increasing protein cost, while the noise of the response time decreases with increasing protein cost. We also calculate the trade-off relationships in the EnvZ-OmpR system and the nitrogen assimilation system, which both have the bifunctional enzyme. Similar results indicate that these relationships are mainly derived from the specific feature of the bifunctional enzyme circuits and are not relevant to the details of the models. According to the trade-off relationships, bacteria take a compromise solution that reliably performs biological functions at a reasonable cost.
Collapse
Affiliation(s)
- Shaohua Guan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liufang Xu
- Department of Physics and Biophysics & Complex System Center, Jilin University, Changchun 130012, Jilin, China
| | - Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
10
|
Evidence of Robustness in a Two-Component System Using a Synthetic Circuit. J Bacteriol 2020; 202:JB.00672-19. [PMID: 31792012 DOI: 10.1128/jb.00672-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.
Collapse
|
11
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
12
|
Araujo RP, Liotta LA. The topological requirements for robust perfect adaptation in networks of any size. Nat Commun 2018; 9:1757. [PMID: 29717141 PMCID: PMC5931626 DOI: 10.1038/s41467-018-04151-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become. Robust perfect adaptation (RPA), the ability of a system to return to its pre-stimulus state in the presence of a new signal, enables organisms to respond to further changes in stimuli. Here, the authors identify the modular structure of the full set of network topologies that can confer RPA on complex networks.
Collapse
Affiliation(s)
- Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia. .,Institute of Health and Biomedical Innovation (IHBI), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, Virginia, 20110, USA
| |
Collapse
|
13
|
Straube R. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration. Biosystems 2017; 162:215-232. [PMID: 29107640 DOI: 10.1016/j.biosystems.2017.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks.
Collapse
Affiliation(s)
- Ronny Straube
- Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1, D-39106 Magdeburg, Germany
| |
Collapse
|
14
|
Kallenberger SM, Unger AL, Legewie S, Lymperopoulos K, Klingmüller U, Eils R, Herten DP. Correlated receptor transport processes buffer single-cell heterogeneity. PLoS Comput Biol 2017; 13:e1005779. [PMID: 28945754 PMCID: PMC5659801 DOI: 10.1371/journal.pcbi.1005779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/27/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. Cell surface receptors translate extracellular ligand concentrations to intracellular responses. Receptor transport between the plasma membrane and other cellular compartments regulates the number of accessible receptors at the plasma membrane that determines the strength of downstream pathway activation at a given ligand concentration. In cell populations, pathway activation strength and cellular responses vary between cells. Understanding origins of cell-to-cell variability is highly relevant for cancer research, motivated by the problem of fractional killing by chemotherapies and development of resistance in subpopulations of tumor cells. The erythropoietin receptor (EpoR) is a characteristic example of a receptor system that strongly depends on receptor transport processes. It is involved in several cellular processes, such as differentiation or proliferation, regulates the renewal of erythrocytes, and is expressed in several tumors. To investigate the involvement of receptor transport processes in cell-to-cell variability, we quantitatively characterized trafficking of EpoR in individual cells by combining live-cell imaging with mathematical modeling. Thereby, we found that EpoR dynamics was strongly dependent on rapid receptor transport and turnover. Interestingly, although transport processes largely differed between individual cells, receptor concentrations in cellular compartments were robust to variability in trafficking processes due to the correlated kinetics of opposing transport processes.
Collapse
Affiliation(s)
- Stefan M. Kallenberger
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Anne L. Unger
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Konstantinos Lymperopoulos
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Roland Eils
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Dirk-Peter Herten
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| |
Collapse
|
15
|
Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a glnE Deletion. Appl Environ Microbiol 2017; 83:AEM.00808-17. [PMID: 28432097 DOI: 10.1128/aem.00808-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022] Open
Abstract
Overcoming the inhibitory effects of excess environmental ammonium on nitrogenase synthesis or activity and preventing ammonium assimilation have been considered strategies to increase the amount of fixed nitrogen transferred from bacterial to plant partners in associative or symbiotic plant-diazotroph relationships. The GlnE adenylyltransferase/adenylyl-removing enzyme catalyzes reversible adenylylation of glutamine synthetase (GS), thereby affecting the posttranslational regulation of ammonium assimilation that is critical for the appropriate coordination of carbon and nitrogen assimilation. Since GS is key to the sole ammonium assimilation pathway of Azotobacter vinelandii, attempts to obtain deletion mutants in the gene encoding GS (glnA) have been unsuccessful. We have generated a glnE deletion strain, thus preventing posttranslational regulation of GS. The resultant strain containing constitutively active GS is unable to grow well on ammonium-containing medium, as previously observed in other organisms, and can be cultured only at low ammonium concentrations. This phenotype is caused by the lack of downregulation of GS activity, resulting in high intracellular glutamine levels and severe perturbation of the ratio of glutamine to 2-oxoglutarate under excess-nitrogen conditions. Interestingly, the mutant can grow diazotrophically at rates comparable to those of the wild type. This observation suggests that the control of nitrogen fixation-specific gene expression at the transcriptional level in response to 2-oxoglutarate via NifA is sufficiently tight to alone regulate ammonium production at levels appropriate for optimal carbon and nitrogen balance.IMPORTANCE In this study, the characterization of the glnE knockout mutant of the model diazotroph Azotobacter vinelandii provides significant insights into the integration of the regulatory mechanisms of ammonium production and ammonium assimilation during nitrogen fixation. The work reveals the profound fidelity of nitrogen fixation regulation in providing ammonium sufficient for maximal growth but constraining energetically costly excess production. A detailed fundamental understanding of the interplay between the regulation of ammonium production and assimilation is of paramount importance in exploiting existing and potentially engineering new plant-diazotroph relationships for improved agriculture.
Collapse
|
16
|
Wheatley NM, Eden KD, Ngo J, Rosinski JS, Sawaya MR, Cascio D, Collazo M, Hoveida H, Hubbell WL, Yeates TO. A PII-Like Protein Regulated by Bicarbonate: Structural and Biochemical Studies of the Carboxysome-Associated CPII Protein. J Mol Biol 2016; 428:4013-4030. [PMID: 27464895 PMCID: PMC5048545 DOI: 10.1016/j.jmb.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
Abstract
Autotrophic bacteria rely on various mechanisms to increase intracellular concentrations of inorganic forms of carbon (i.e., bicarbonate and CO2) in order to improve the efficiency with which they can be converted to organic forms. Transmembrane bicarbonate transporters and carboxysomes play key roles in accumulating bicarbonate and CO2, but other regulatory elements of carbon concentration mechanisms in bacteria are less understood. In this study, after analyzing the genomic regions around α-type carboxysome operons, we characterize a protein that is conserved across these operons but has not been previously studied. On the basis of a series of apo- and ligand-bound crystal structures and supporting biochemical data, we show that this protein, which we refer to as the carboxysome-associated PII protein (CPII), represents a new and distinct subfamily within the broad superfamily of previously studied PII regulatory proteins, which are generally involved in regulating nitrogen metabolism in bacteria. CPII undergoes dramatic conformational changes in response to ADP binding, and the affinity for nucleotide binding is strongly enhanced by the presence of bicarbonate. CPII therefore appears to be a unique type of PII protein that senses bicarbonate availability, consistent with its apparent genomic association with the carboxysome and its constituents.
Collapse
Affiliation(s)
- Nicole M Wheatley
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Kevin D Eden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Joanna Ngo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Justin S Rosinski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Michael Collazo
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Hamidreza Hoveida
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Jules Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
|
18
|
Haverkorn van Rijsewijk BRB, Kochanowski K, Heinemann M, Sauer U. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA. MICROBIOLOGY-SGM 2016; 162:1672-1679. [PMID: 27488847 DOI: 10.1099/mic.0.000346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transhydrogenases catalyse interconversion of the redox cofactors NADH and NADPH, thereby conveying metabolic flexibility to balance catabolic NADPH formation with anabolic or stress-based consumption of NADPH. Escherichia coli is one of the very few microbes that possesses two isoforms: the membrane-bound, proton-translocating transhydrogenase PntAB and the cytosolic, energy-independent transhydrogenase UdhA. Despite their physiological relevance, we have only fragmented information on their regulation and the signals coordinating their counteracting activities. Here we investigated PntAB and UdhA regulation by studying transcriptional responses to environmental and genetic perturbations. By testing pntAB and udhA GFP reporter constructs in the background of WT E. coli and 62 transcription factor mutants during growth on different carbon sources, we show distinct transcriptional regulation of the two transhydrogenase promoters. Surprisingly, transhydrogenase regulation was independent of the actual catabolic overproduction or underproduction of NADPH but responded to nutrient levels and growth rate in a fashion that matches the cellular need for the redox cofactors NADPH and/or NADH. Specifically, the identified transcription factors Lrp, ArgP and Crp link transhydrogenase expression to particular amino acids and intracellular concentrations of cAMP. The overall identified set of regulators establishes a primarily biosynthetic role for PntAB and link UdhA to respiration.
Collapse
Affiliation(s)
- Bart R B Haverkorn van Rijsewijk
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Science Graduate School, Zurich, Switzerland
| | - Karl Kochanowski
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Systems Biology Graduate School, Zurich, Switzerland
| | - Matthias Heinemann
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Feng S, Ollivier JF, Soyer OS. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks. PLoS Comput Biol 2016; 12:e1004918. [PMID: 27163612 PMCID: PMC4862689 DOI: 10.1371/journal.pcbi.1004918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications.
Collapse
Affiliation(s)
- Song Feng
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci Rep 2016; 6:24834. [PMID: 27109914 PMCID: PMC4843011 DOI: 10.1038/srep24834] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition.
Collapse
Affiliation(s)
- Anat Bren
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Junyoung O Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin D Towbin
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Erez Dekel
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Uri Alon
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel 76100
| |
Collapse
|
21
|
|
22
|
Dexter JP, Dasgupta T, Gunawardena J. Invariants reveal multiple forms of robustness in bifunctional enzyme systems. Integr Biol (Camb) 2015; 7:883-94. [PMID: 26021467 DOI: 10.1039/c5ib00009b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
23
|
Downing T. Tackling Drug Resistant Infection Outbreaks of Global Pandemic Escherichia coli ST131 Using Evolutionary and Epidemiological Genomics. Microorganisms 2015; 3:236-67. [PMID: 27682088 PMCID: PMC5023239 DOI: 10.3390/microorganisms3020236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
High-throughput molecular screening is required to investigate the origin and diffusion of antimicrobial resistance in pathogen outbreaks. The most frequent cause of human infection is Escherichia coli, which is dominated by sequence type 131 (ST131)-a set of rapidly radiating pandemic clones. The highly infectious clades of ST131 originated firstly by a mutation enhancing conjugation and adhesion. Secondly, single-nucleotide polymorphisms occurred enabling fluoroquinolone-resistance, which is near-fixed in all ST131. Thirdly, broader resistance through beta-lactamases has been gained and lost frequently, symptomatic of conflicting environmental selective effects. This flexible approach to gene exchange is worrying and supports the proposition that ST131 will develop an even wider range of plasmid and chromosomal elements promoting antimicrobial resistance. To stop ST131, deep genome sequencing is required to understand the origin, evolution and spread of antimicrobial resistance genes. Phylogenetic methods that decipher past events can predict future patterns of virulence and transmission based on genetic signatures of adaptation and gene exchange. Both the effect of partial antimicrobial exposure and cell dormancy caused by variation in gene expression may accelerate the development of resistance. High-throughput sequencing can decode measurable evolution of cell populations within patients associated with systems-wide changes in gene expression during treatments. A multi-faceted approach can enhance assessment of antimicrobial resistance in E. coli ST131 by examining transmission dynamics between hosts to achieve a goal of pre-empting resistance before it emerges by optimising antimicrobial treatment protocols.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
24
|
Dexter JP, Xu P, Gunawardena J, McClean MN. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2015; 9:17. [PMID: 25888817 PMCID: PMC4377207 DOI: 10.1186/s12918-015-0158-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae relies on the high-osmolarity glycerol (HOG) signaling pathway to respond to increases in external osmolarity. The HOG pathway is rapidly activated under conditions of elevated osmolarity and regulates transcriptional and metabolic changes within the cell. Under normal growth conditions, however, a three-component phospho-relay consisting of the histidine kinase Sln1, the transfer protein Ypd1, and the response regulator Ssk1 represses HOG pathway activity by phosphorylation of Ssk1. This inhibition of the HOG pathway is essential for cellular fitness in normal osmolarity. Nevertheless, the extent to and mechanisms by which inhibition is robust to fluctuations in the concentrations of the phospho-relay components has received little attention. RESULTS We established that the Sln1-Ypd1-Ssk1 phospho-relay is robust-it is able to maintain inhibition of the HOG pathway even after significant changes in the levels of its three components. We then developed a biochemically realistic mathematical model of the phospho-relay, which suggested that robustness is due to buffering by a large excess pool of Ypd1. We confirmed experimentally that depletion of the Ypd1 pool results in inappropriate activation of the HOG pathway. CONCLUSIONS We identified buffering by an intermediate component in excess as a novel mechanism through which a phospho-relay can achieve robustness. This buffering requires multiple components and is therefore unavailable to two-component systems, suggesting one important advantage of multi-component relays.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Ping Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | | | - Megan N McClean
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
26
|
Stochasticity of metabolism and growth at the single-cell level. Nature 2014; 514:376-9. [PMID: 25186725 DOI: 10.1038/nature13582] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Abstract
Elucidating the role of molecular stochasticity in cellular growth is central to understanding phenotypic heterogeneity and the stability of cellular proliferation. The inherent stochasticity of metabolic reaction events should have negligible effect, because of averaging over the many reaction events contributing to growth. Indeed, metabolism and growth are often considered to be constant for fixed conditions. Stochastic fluctuations in the expression level of metabolic enzymes could produce variations in the reactions they catalyse. However, whether such molecular fluctuations can affect growth is unclear, given the various stabilizing regulatory mechanisms, the slow adjustment of key cellular components such as ribosomes, and the secretion and buffering of excess metabolites. Here we use time-lapse microscopy to measure fluctuations in the instantaneous growth rate of single cells of Escherichia coli, and quantify time-resolved cross-correlations with the expression of lac genes and enzymes in central metabolism. We show that expression fluctuations of catabolically active enzymes can propagate and cause growth fluctuations, with transmission depending on the limitation of the enzyme to growth. Conversely, growth fluctuations propagate back to perturb expression. Accordingly, enzymes were found to transmit noise to other unrelated genes via growth. Homeostasis is promoted by a noise-cancelling mechanism that exploits fluctuations in the dilution of proteins by cell-volume expansion. The results indicate that molecular noise is propagated not only by regulatory proteins but also by metabolic reactions. They also suggest that cellular metabolism is inherently stochastic, and a generic source of phenotypic heterogeneity.
Collapse
|
27
|
Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 2014; 157:624-35. [PMID: 24766808 DOI: 10.1016/j.cell.2014.02.033] [Citation(s) in RCA: 941] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/31/2013] [Accepted: 02/11/2014] [Indexed: 11/23/2022]
Abstract
Quantitative views of cellular functions require precise measures of rates of biomolecule production, especially proteins-the direct effectors of biological processes. Here, we present a genome-wide approach, based on ribosome profiling, for measuring absolute protein synthesis rates. The resultant E. coli data set transforms our understanding of the extent to which protein synthesis is precisely controlled to optimize function and efficiency. Members of multiprotein complexes are made in precise proportion to their stoichiometry, whereas components of functional modules are produced differentially according to their hierarchical role. Estimates of absolute protein abundance also reveal principles for optimizing design. These include how the level of different types of transcription factors is optimized for rapid response and how a metabolic pathway (methionine biosynthesis) balances production cost with activity requirements. Our studies reveal how general principles, important both for understanding natural systems and for synthesizing new ones, emerge from quantitative analyses of protein synthesis.
Collapse
|
28
|
Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme. Biophys J 2014; 105:1925-33. [PMID: 24138868 DOI: 10.1016/j.bpj.2013.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/29/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023] Open
Abstract
Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system's components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme's opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively.
Collapse
|
29
|
Dasgupta T, Croll DH, Owen JA, Vander Heiden MG, Locasale JW, Alon U, Cantley LC, Gunawardena J. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J Biol Chem 2014; 289:13010-25. [PMID: 24634222 DOI: 10.1074/jbc.m113.546515] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between "on" and "off" and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed "linear framework" for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.
Collapse
Affiliation(s)
- Tathagata Dasgupta
- From the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses. Metabolites 2013; 4:1-35. [PMID: 24958385 PMCID: PMC4018673 DOI: 10.3390/metabo4010001] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022] Open
Abstract
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell.
Collapse
|
31
|
Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U. Promoter activity dynamics in the lag phase of Escherichia coli. BMC SYSTEMS BIOLOGY 2013; 7:136. [PMID: 24378036 PMCID: PMC3918108 DOI: 10.1186/1752-0509-7-136] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
Background Lag phase is a period of time with no growth that occurs when stationary phase bacteria are transferred to a fresh medium. Bacteria in lag phase seem inert: their biomass does not increase. The low number of cells and low metabolic activity make it difficult to study this phase. As a consequence, it has not been studied as thoroughly as other bacterial growth phases. However, lag phase has important implications for bacterial infections and food safety. We asked which, if any, genes are expressed in the lag phase of Escherichia coli, and what is their dynamic expression pattern. Results We developed an assay based on imaging flow cytometry of fluorescent reporter cells that overcomes the challenges inherent in studying lag phase. We distinguish between lag1 phase- in which there is no biomass growth, and lag2 phase- in which there is biomass growth but no cell division. We find that in lag1 phase, most promoters are not active, except for the enzymes that utilize the specific carbon source in the medium. These genes show promoter activities that increase exponentially with time, despite the fact that the cells do not measurably increase in size. An oxidative stress promoter, katG, is also active. When cells enter lag2 and begin to grow in size, they switch to a full growth program of promoter activity including ribosomal and metabolic genes. Conclusions The observed exponential increase in enzymes for the specific carbon source followed by an abrupt switch to production of general growth genes is a solution of an optimal control model, known as bang-bang control. The present approach contributes to the understanding of lag phase, the least studied of bacterial growth phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
32
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
33
|
Blüthgen N, Legewie S. Robustness of signal transduction pathways. Cell Mol Life Sci 2013; 70:2259-69. [PMID: 23007845 PMCID: PMC11113274 DOI: 10.1007/s00018-012-1162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Signal transduction pathways transduce information about the outside of the cell to the nucleus, regulating gene expression and cell fate. To reliably inform the cell about its surroundings, information transfer has to be robust against typical perturbation that a cell experiences. Robustness of several mammalian signaling pathways has been studied recently by quantitative experimentation and using mathematical modeling. Here, we review these studies, and describe the emerging concepts of robustness and the underlying mechanisms.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
34
|
Bren A, Hart Y, Dekel E, Koster D, Alon U. The last generation of bacterial growth in limiting nutrient. BMC SYSTEMS BIOLOGY 2013; 7:27. [PMID: 23531321 PMCID: PMC3626568 DOI: 10.1186/1752-0509-7-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/12/2013] [Indexed: 11/24/2022]
Abstract
Background Bacterial growth as a function of nutrients has been studied for decades, but is still not fully understood. In particular, the growth laws under dynamically changing environments have been difficult to explore, because of the rapidly changing conditions. Here, we address this challenge by means of a robotic assay and measure bacterial growth rate, promoter activity and substrate level at high temporal resolution across the entire growth curve in batch culture. As a model system, we study E. coli growing under nitrogen or carbon limitation, and explore the dynamics in the last generation of growth where nutrient levels can drop rapidly. Results We find that growth stops abruptly under limiting nitrogen or carbon, but slows gradually when nutrients are not limiting. By measuring growth rate at a 3 min time resolution, and inferring the instantaneous substrate level, s, we find that the reduction in growth rate μ under nutrient limitation follows Monod’s law, μ=μ0sks+s. By following promoter activity of different genes we found that the abrupt stop of growth under nitrogen or carbon limitation is accompanied by a pulse-like up-regulation of the expression of genes in the relevant nutrient assimilation pathways. We further find that sharp stop of growth is conditional on the presence of regulatory proteins in the assimilation pathway. Conclusions The observed sharp stop of growth accompanied by a pulsed expression of assimilation genes allows bacteria to compensate for the drop in nutrients, suggesting a strategy used by the cells to prolong exponential growth under limiting substrate.
Collapse
Affiliation(s)
- Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
35
|
Abstract
A recurring theme in biological circuits is the existence of components that are antagonistically bifunctional, in the sense that they simultaneously have two opposing effects on the same target or biological process. Examples include bifunctional enzymes that carry out two opposing reactions such as phosphorylating and dephosphorylating the same target, regulators that activate and also repress a gene in circuits called incoherent feedforward loops, and cytokines that signal immune cells to both proliferate and die. Such components are termed "paradoxical", and in this review we discuss how they can provide useful features to cell circuits that are otherwise difficult to achieve. In particular, we summarize how paradoxical components can provide robustness, generate temporal pulses, and provide fold-change detection, in which circuits respond to relative rather than absolute changes in signals.
Collapse
Affiliation(s)
- Yuval Hart
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
36
|
Dexter JP, Gunawardena J. Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli. J Biol Chem 2012. [PMID: 23192354 DOI: 10.1074/jbc.m112.339226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important goal of systems biology is to develop quantitative models that explain how specific molecular features give rise to systems-level properties. Metabolic and regulatory pathways that contain multifunctional proteins are especially interesting to study from this perspective because they have frequently been observed to exhibit robustness: the ability for a system to perform its proper function even as levels of its components change. In this study, we use extensive biochemical data and algebraic modeling to develop and analyze a model that shows how robust behavior arises in the isocitrate dehydrogenase (IDH) regulatory system of Escherichia coli, which was shown in 1985 to experimentally exhibit robustness. E. coli IDH is regulated by reversible phosphorylation catalyzed by the bifunctional isocitrate dehydrogenase kinase/phosphatase (IDHKP), and the level of IDH activity determines whether carbon flux is directed through the glyoxylate bypass (for growth on two-carbon substrates) or the full tricarboxylic acid cycle. Our model, which incorporates recent structural data on IDHKP, identifies several specific biochemical features of the system (including homodimerization of IDH and bifunctionality of IDHKP) that provide a potential explanation for robustness. Using algebraic techniques, we derive an invariant that summarizes the steady-state relationship between the phospho-forms of IDH. We use the invariant in combination with kinetic data on IDHKP to calculate IDH activity at a range of total IDH levels and find that our model predicts robustness. Our work unifies much of the known biochemistry of the IDH regulatory system into a single quantitative framework and highlights the importance of constructing biochemically realistic models in systems biology.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
37
|
Jiang P, Ventura AC, Ninfa AJ. Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli. Biochemistry 2012; 51:9045-57. [PMID: 23088566 DOI: 10.1021/bi300575j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRII-NRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, United States
| | | | | |
Collapse
|
38
|
García-Contreras R, Vos P, Westerhoff HV, Boogerd FC. Why in vivo may not equal in vitro - new effectors revealed by measurement of enzymatic activities under the same in vivo-like assay conditions. FEBS J 2012; 279:4145-59. [PMID: 22978366 DOI: 10.1111/febs.12007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 01/10/2023]
Abstract
Does the understanding of the dynamics of biochemical networks in vivo, in terms of the properties of their components determined in vitro, require the latter to be determined all under the same conditions? An in vivo-like assay medium for enzyme activity determination was designed based on the concentrations of the major ionic constituents of the Escherichia coli cytosol: K(+), Na(+), Mg(2+), phosphate, glutamate, sulfate and Cl(-). The maximum capacities (V(max)) of the extracted enzymes of two pathways were determined using both this in vivo-like assay medium and the assay medium specific for each enzyme. The enzyme activities differed between the two assay conditions. Most of the differences could be attributed to unsuspected, pleiotropic effects of K(+) and phosphate. K(+) activated some enzymes (aldolase, enolase and glutamate dehydrogenase) and inhibited others (phosphoglucose isomerase, phosphofructokinase, triosephosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase), whereas phosphate inhibited all glycolytic enzymes and glutamine synthetase but only activated glutamine 2-oxoglutarate amidotransferase. Neither a high glutamate concentration, nor macromolecular crowding affected the glycolytic or nitrogen assimilation enzymes, other than through the product inhibition of glutamate dehydrogenase by glutamate. This strategy of assessing all pathway enzymes kinetically under the same conditions may be necessary to avoid inadvertent differences between in vivo and in vitro biochemistry. It may also serve to reveal otherwise unnoticed pleiotropic regulation, such as that demonstrated in the present study by K(+) and phosphate.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Section of Molecular Cell Physiology, Netherlands Institute for Systems Biology, VU University Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Abstract
Biological systems display complex networks of interactions both at the level of molecules inside the cell and at the level of interactions between cells. Networks of interacting molecules, such as transcription networks, have been shown to be composed of recurring circuits called network motifs, each with specific dynamical functions. Much less is known about the possibility of such circuit analysis in networks made of communicating cells. Here, we study models of circuits in which a few cell types interact by means of signaling molecules. We consider circuits of cells with architectures that seem to recur in immunology. An intriguing feature of these circuits is their use of signaling molecules with a pleiotropic or paradoxical role, such as cytokines that increase both cell growth and cell death. We find that pleiotropic signaling molecules can provide cell circuits with systems-level functions. These functions include for different circuits maintenance of homeostatic cell concentrations, robust regulation of differentiation processes, and robust pulses of cells or cytokines.
Collapse
|
40
|
Yeo WS, Zwir I, Huang HV, Shin D, Kato A, Groisman EA. Intrinsic negative feedback governs activation surge in two-component regulatory systems. Mol Cell 2012; 45:409-21. [PMID: 22325356 DOI: 10.1016/j.molcel.2011.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/26/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022]
Abstract
PhoP and PhoQ comprise a two-component system in the bacterium Salmonella enterica. PhoQ is the sensor kinase/phosphatase that modifies the phosphorylation state of the regulator PhoP in response to stimuli. The amount of phosphorylated PhoP surges after activation, then declines to reach a steady-state level. We now recapitulate this surge in vitro by incubating PhoP and PhoQ with ATP and ADP. Mathematical modeling identified PhoQ's affinity for ADP as the key parameter dictating phosphorylated PhoP levels, as ADP promotes PhoQ's phosphatase activity toward phosphorylated PhoP. The lid covering the nucleotide-binding pocket of PhoQ governs the kinase to phosphatase switch because a lid mutation that decreased ADP binding compromised PhoQ's phosphatase activity in vitro and resulted in sustained expression of PhoP-dependent mRNAs in vivo. This feedback mechanism may curtail futile ATP consumption because ADP not only stimulates PhoQ's phosphatase activity but also inhibits ATP binding necessary for the kinase reaction.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Section of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, 354D, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
41
|
Brown AI, Rutenberg AD. Reconciling cyanobacterial fixed-nitrogen distributions and transport experiments with quantitative modelling. Phys Biol 2012; 9:016007. [DOI: 10.1088/1478-3975/9/1/016007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Jiang P, Ninfa AJ. A Source of Ultrasensitivity in the Glutamine Response of the Bicyclic Cascade System Controlling Glutamine Synthetase Adenylylation State and Activity in Escherichia coli. Biochemistry 2011; 50:10929-40. [DOI: 10.1021/bi201410x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109,
United States
| | - Alexander J. Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109,
United States
| |
Collapse
|
43
|
Hart Y, Mayo AE, Milo R, Alon U. Robust control of PEP formation rate in the carbon fixation pathway of C(4) plants by a bi-functional enzyme. BMC SYSTEMS BIOLOGY 2011; 5:171. [PMID: 22024416 PMCID: PMC3240839 DOI: 10.1186/1752-0509-5-171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022]
Abstract
Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK), which is regulated by a bifunctional enzyme, Regulatory Protein (RP). The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP) formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP), substrate levels (ATP and pyruvate) and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels). Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.
Collapse
Affiliation(s)
- Yuval Hart
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
44
|
Abstract
Bacteria encounter fluctuations in both their external and internal environments, and to manage these conditions, they employ various control mechanisms. In this issue of Molecular Cell, Hart et al. (2011) investigate how E. coli robustly controls nitrogen assimilation.
Collapse
Affiliation(s)
- Kyle R Allison
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center for BioDynamics, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|