1
|
Xie B, Dean A. Noncoding function of super enhancer derived Cpox pre-mRNA in modulating neighbouring gene expression and chromatin interactions. RNA Biol 2025; 22:1-17. [PMID: 40051047 PMCID: PMC11913378 DOI: 10.1080/15476286.2025.2475421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/12/2025] Open
Abstract
Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, Cpox pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zhu M, Wang X, Zhao H, Wang Z. Update on R-loops in genomic integrity: Formation, functions, and implications for human diseases. Genes Dis 2025; 12:101401. [PMID: 40271193 PMCID: PMC12017992 DOI: 10.1016/j.gendis.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 04/25/2025] Open
Abstract
R-loops, three-strand nucleic acid structures, have emerged as crucial players in various physiological processes, including the regulation of gene expression, DNA replication, and class switch recombination. However, their presence also poses a significant threat to genome stability. A particularly challenging aspect is understanding the dynamic balance between R-loops' "light" and "dark" sites, especially concerning maintaining genome integrity. The complex and multifaceted roles of R-loops in genome stability necessitate a deeper understanding. This review offers a comprehensive exploration of the formation, resolution, and implications of R-loops, particularly in the context of DNA damage and human disease. We delve into the dualistic nature of R-loops, highlighting their role in DNA damage response and repair, and discuss the therapeutic potential arising from our evolving understanding of these enigmatic entities. Emphasizing recent advancements and unresolved questions, this review aims to provide a cohesive overview of R-loops, inviting further inquiry and investigation into their complex biological significance.
Collapse
Affiliation(s)
- Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xinyu Wang
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| |
Collapse
|
3
|
Beghѐ C, Harpham H, Barberic Y, Gromak N. R-loops in neurodegeneration. Curr Opin Genet Dev 2025; 92:102345. [PMID: 40203732 DOI: 10.1016/j.gde.2025.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025]
Abstract
Neurodegenerative diseases are associated with the progressive loss of neurons. R-loops are non-canonical nucleic acid structures formed during transcription and composed of an RNA/DNA hybrid and a displaced single-stranded DNA. Whilst R-loops are important regulators of cellular processes, they are also associated with the pathologies of multiple disorders, including repeat expansion, motor neuron, inflammatory and ageing diseases. In this review, we discuss how R-loops contribute to pathological mechanisms that underpin neurodegeneration. We highlight the role of R-loops in several hallmarks of neurodegenerative disorders, including RNA and DNA defects, DNA damage, protein aggregation, inflammation, mitochondrial dysfunction, and neuronal cell death. We also discuss the potential role of R-loops as therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Beghѐ
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Helena Harpham
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Yasmine Barberic
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK.
| |
Collapse
|
4
|
Karányi Z, Képes Z, Szabó Z, Csoma E, Székvölgyi L. Evolutionary interplay between viruses and R-loops. FEBS Lett 2025. [PMID: 40448548 DOI: 10.1002/1873-3468.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025]
Abstract
Viruses frequently interact with host transcriptional and epigenetic regulatory networks. A commonly overlooked element of these interactions is the formation of R-loops, three-stranded nucleic acid structures comprising an RNA-DNA hybrid and a displaced single DNA strand. Accumulating evidence implicates R-loops in viral integration site preferences, the regulation of latent viral genomes, epigenetic silencing, and even the genesis of small interfering RNAs (siRNAs) that modulate mobile viral elements. This perspective presents the potential connections among viral genes, transposons, and R-loops; examines the roles of R-loops in viral pathogenesis, latency, and reactivation; explores how viruses harness or evade R-loop-associated responses; and highlights future research directions-from mapping R-loop hotspots to exploiting R-loop modulation for antiviral therapy.
Collapse
Affiliation(s)
- Zsolt Karányi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Hungary
| |
Collapse
|
5
|
Hernández-Reyes Y, Fonseca-Rodríguez C, Freire R, Smits VAJ. DDX37 and DDX50 Maintain Genome Stability by Preventing Transcription-dependent R-loop Formation. J Mol Biol 2025; 437:169061. [PMID: 40043837 DOI: 10.1016/j.jmb.2025.169061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
R-loops consist of an RNA-DNA hybrid and a displaced single-stranded DNA strand that play a central role in several biological processes. However, as the presence of aberrant R-loops forms a significant threat to genome stability, R-loop formation and resolution is strictly controlled by RNAse H and helicases. In a screening for RNA helicases, previously described as RNA-DNA hybrid interactors, that control genome integrity, we identified for the first time DDX37 and DDX50. Depletion of DDX37 and DDX50 promotes DNA damage, as demonstrated by H2AX phosphorylation and increased comet tail length. In addition, knock down of these RNA helicases decreases the DNA replication track length and leads to RPA focus formation, results that are indicative of replication stress. Downregulation of DDX37 and DDX50 triggers an increase in RNA-DNA hybrids, that can be reverted by the overexpression of RNase H1. Interestingly, inhibition of transcription prevented the increased RNA-DNA hybrid formation and DNA damage upon DDX37 or DDX50 depletion. Together these results demonstrate that DDX37 and DDX50 are important for resolving RNA-DNA hybrids appearing during transcription and thereby preventing DNA damage by replication stress.
Collapse
Affiliation(s)
- Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Cintia Fonseca-Rodríguez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain.
| |
Collapse
|
6
|
Meng Y, Zou L. Building an integrated view of R-loops, transcription, and chromatin. DNA Repair (Amst) 2025; 149:103832. [PMID: 40222192 DOI: 10.1016/j.dnarep.2025.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
R-loops are dynamic three-stranded nucleic acid structures that form naturally during transcription. These structures typically arise when the newly synthesized RNA hybridizes with the DNA template strand, displacing the non-template DNA strand. R-loops are not only found at protein-coding genes but also in regions producing non-coding RNAs, such as telomeres, centromeres, ribosomal DNA genes, and transfer RNA genes. While R-loops are regulated by both the process of transcription and chromatin structures, they also play a critical role in modulating transcription and influencing the chromatin landscape. Moreover, the interactions between R-loops, transcription, and chromatin are essential for maintaining genome stability and are often disrupted in various human diseases. In this review, we will explore recent insights into the intricate relationship between R-loops and transcription, as well as their crosstalk with chromatin.
Collapse
Affiliation(s)
- Yingying Meng
- Department of Pharmacology and Cancer Biology Duke University School of Medicine, Durham, NC, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Chen L, Hu L, Chang H, Mao J, Ye M, Jin X. DNA-RNA hybrids in inflammation: sources, immune response, and therapeutic implications. J Mol Med (Berl) 2025; 103:511-529. [PMID: 40131443 DOI: 10.1007/s00109-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Cytoplasmic DNA-RNA hybrids are emerging as important immunogenic nucleic acids, that were previously underappreciated. DNA-RNA hybrids, formed during cellular processes like transcription and replication, or by exogenous pathogens, are recognized by pattern recognition receptors (PRRs), including cGAS, DDX41, and TLR9, which trigger immune responses. Post-translational modifications (PTMs) including ubiquitination, phosphorylation, acetylation, and palmitoylation regulate the activity of PRRs and downstream signaling molecules, fine-tuning the immune response. Targeting enzymes involved in DNA-RNA hybrid metabolism and PTMs regulation offers therapeutic potential for inflammatory diseases. Herein, we discuss the sources, immune response, and therapeutic implications of DNA-RNA hybrids in inflammation, highlighting the significance of DNA-RNA hybrids as potential targets for the treatment of inflammation.
Collapse
Affiliation(s)
- Litao Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lechen Hu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Han Chang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Li Y, Sheng Y, Di C, Yao H. Base-pair resolution reveals clustered R-loops and DNA damage-susceptible R-loops. Mol Cell 2025; 85:1686-1702.e5. [PMID: 40112807 DOI: 10.1016/j.molcel.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
R-loops are pervasive triplex nucleic acid structures across diverse organisms, yet their biological functions remain incompletely understood. Here, we develop R-loop identification assisted by nucleases and sequencing (RIAN-seq), a nuclease-assisted, antibody-free sequencing technology, to map R-loops at base-pair resolution. By digesting single-stranded RNA (ssRNA), single-stranded DNA (ssDNA), and double-stranded DNA (dsDNA) with nuclease P1, T5 exonuclease, and lambda exonuclease while preserving RNA:DNA hybrids, RIAN-seq achieves unprecedented precision in identifying the position and size of R-loops, detecting an order of magnitude more R-loops than existing methods. Approximately 50% of RNA:DNA hybrids span between 60 and 130 bp, with many forming previously undetectable clusters. Clustered R-loops at promoters recruit zinc-finger proteins VEZF1 and SP5, enhancing transcription in a number-dependent manner and resisting transcriptional perturbation. Conversely, R-loops featuring the Y(C/T)M(A/C)CAG motif at both ends contribute to DNA damage, a phenomenon conserved from yeast to mammalian cells. Our findings reveal a dual role for R-loops: clustered R-loops promote gene expression, while YMCAG-associated R-loops compromise genome stability.
Collapse
Affiliation(s)
- Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Di
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Tsao N, Lombardi PM, Park A, Olabode J, Rodell R, Sun H, Padmanaban S, Brickner JR, Tsai MS, Pollina EA, Chen CK, Mosammaparast N. YTHDC1 cooperates with the THO complex to prevent RNA-damage-induced DNA breaks. Mol Cell 2025; 85:1085-1100.e9. [PMID: 40037355 PMCID: PMC12009005 DOI: 10.1016/j.molcel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/05/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Certain environmental toxins and chemotherapeutics are nucleic acid-damaging agents, causing adducts in DNA and RNA. While most of these adducts occur in RNA, the consequences of RNA damage are largely unexplored. Here, we demonstrate that nuclear RNA damage can result in loss of genome integrity in human cells. Specifically, we show that YTHDC1 regulates alkylation damage responses with the THO complex (THOC). In addition to its established binding to N6-methyladenosine (m6A), YTHDC1 binds to chemically induced N1-methyladenosine (m1A). Without YTHDC1, cells have greater alkylation damage sensitivity and increased DNA breaks, which are rescued by an RNA-specific dealkylase. These RNA-damage-induced DNA breaks (RDIBs) depend on R-loop formation, which is converted to DNA breaks by the XPG nuclease. Strikingly, in the absence of YTHDC1 or THOC, a nuclear RNA m1A methyltransferase is sufficient to induce DNA breaks. Our results provide mechanistic insight into how damaged RNAs can impact genomic integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick M Lombardi
- Department of Science, Mount St. Mary's University, Emmitsburg, MD 21727, USA
| | - Ajin Park
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Olabode
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Rodell
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Padmanaban
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Pollina
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chun-Kan Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
11
|
Sberna S, Filipuzzi M, Bianchi N, Croci O, Fardella F, Soriani C, Rohban S, Carnevali S, Albertini AA, Crosetto N, Rodighiero S, Chiesa A, Curti L, Campaner S. Senataxin prevents replicative stress induced by the Myc oncogene. Cell Death Dis 2025; 16:187. [PMID: 40108134 PMCID: PMC11923212 DOI: 10.1038/s41419-025-07485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
Collapse
Affiliation(s)
- Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Filipuzzi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Federica Fardella
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Chiara Soriani
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Carnevali
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | | | - Nicola Crosetto
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE, 17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE, 17165, Sweden
| | - Simona Rodighiero
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Chiesa
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
12
|
Cao M, Gan Y, Huang Y, Tong J, Xiong C, Chen Y, Chen B, Huang R, Xie B, Deng J, Huang S, He X, Hao Q, Zhou X. p53 activates circASCC3 to repress R-loops and enhance resistance to chemotherapy. Proc Natl Acad Sci U S A 2025; 122:e2415869122. [PMID: 40067902 PMCID: PMC11929464 DOI: 10.1073/pnas.2415869122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 03/25/2025] Open
Abstract
The tumor suppressor p53 can trigger tumor resistance to chemotherapy by facilitating DNA damage repair and maintaining genomic integrity. Here, we report that a p53-induced circular RNA circASCC3 promotes chemotherapeutic resistance by resolving R-loops. Our results reveal that p53 directly activates the transcription of ASCC3, the host gene of circASCC3. In addition, the RNA-binding protein SFPQ is identified to inhibit the formation of circASCC3 by associating with its flanking regions. Importantly, p53 facilitates the formation of circASCC3 by repressing the expression of SFPQ. CircASCC3 has a marginal effect on the survival and growth of cancer cells under normal growing conditions but surprisingly boosts their survival and growth in response to DNA damage stress. Mechanistic analysis reveals that circASCC3 binds to the DEAD-box RNA helicase DDX5 to inhibit its proteasomal degradation. This results in the prevention of R-loop accumulation due to DNA damage, thereby conferring tumor resistance to chemotherapy. Together, our study uncovers that p53 activates circASCC3 to promote R-loop resolution, which maintains genomic stability and potentially contributes to chemoresistance.
Collapse
Affiliation(s)
- Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, China
| | - Bing Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Ruixuan Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang330006, Jiangxi, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang330006, Jiangxi, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing100069, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang330006, Jiangxi, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang330006, Jiangxi, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai200032, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
13
|
Corso Diaz X, Liang X, Preston K, Tegshee B, English MA, Nellissery J, Yadav SP, Marchal C, Swaroop A. Maf-family bZIP transcription factor NRL interacts with RNA-binding proteins and R-loops in retinal photoreceptors. eLife 2025; 13:RP103259. [PMID: 40047526 PMCID: PMC11884789 DOI: 10.7554/elife.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with neural retina leucine (NRL) zipper, a Maf-family transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL-DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.
Collapse
Affiliation(s)
- Ximena Corso Diaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- Department of Ophthalmology, Byers Eye Institute, Stanford UniversityStanfordUnited States
| | - Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Kiam Preston
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Bilguun Tegshee
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Sharda Prasad Yadav
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- In silichrom LtdNewburyUnited Kingdom
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
14
|
Paul P, Kumar A, Parida AS, De AK, Bhadke G, Khatua S, Tiwari B. p53-mediated regulation of LINE1 retrotransposon-derived R-loops. J Biol Chem 2025; 301:108200. [PMID: 39828096 PMCID: PMC11903798 DOI: 10.1016/j.jbc.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Long interspersed nuclear element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear. In this study, we used DNA-RNA immunoprecipitation-sequencing experiments to investigate RNA-DNA hybrids, which are key intermediates formed during L1 retrotransposition. Our findings reveal that L1 mRNA-genomic DNA (cis L1 R-loops) and L1 mRNA-complementary DNA (trans L1 R-loops) hybrids are upregulated in p53-/- cells. This increase is synergistic with L1 activation by histone deacetylase (HDAC) inhibitors (HDACi). However, treatment with a reverse transcriptase inhibitor reduces this accumulation, indicating that retrotransposition activity plays a significant role in R-loop accumulation. Interestingly, in WT cells, hyperactivated L1 transposons are suppressed upon HDACi withdrawal. L1 suppression in WT cells coincided with the recruitment of repressive marks, specifically H3K9me3 and H3K27me3, simultaneously preventing the addition of activating marks like H3K4me3, and H3K9ac at the L1 5'UTR. Mechanistically, we demonstrate that p53 cooperates with histone methyltransferases SETDB1 and G9A to deposit H3K9me3 marks at the L1 promoter, thereby silencing transposons. This study is the first to reveal novel roles of p53 in preventing the formation of L1-derived RNA-DNA hybrids (R-loops) and suppression of hyperactivated L1 elements by cooperating with histone methyltransferases, underscoring its critical role in maintaining genomic stability.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Arun Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Ankita Subhadarsani Parida
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Astik Kumar De
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Gauri Bhadke
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Satyajeet Khatua
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India.
| |
Collapse
|
15
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
16
|
Dong S, Li X, Liu Q, Zhu T, Tian A, Chen N, Tu X, Ban L. Comparative genomics uncovers evolutionary drivers of locust migratory adaptation. BMC Genomics 2025; 26:203. [PMID: 40021962 PMCID: PMC11869625 DOI: 10.1186/s12864-025-11376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Locust migration is one of the main causes of locust plagues. While existing research has highlighted the adaptive migratory capabilities of locusts, the evolutionary patterns of their migration remain elusive. This study aims to explore these evolutionary patterns of locust migratory behavior at the genomic level. To achieve this, we conducted comparative genomics analysis using genomic data from 10 locust species with diverse migratory tendencies. RESULTS We identified 1064 genes showing signatures of positive selection in five migratory locust species using a dN/dS model. The BUSTED-PH model revealed 116 genes associated with migratory phenotypes. Gene ontology enrichment analysis indicated that these genes were predominantly related to metabolism and mitochondria-related pathways through both methods. Additionally, the evolutionary rate (RER) analysis between migratory and non-migratory locusts revealed significant divergence in energy metabolism pathways. Notably, of the genes analyzed, the SETX gene consistently showed evidence of positive selection across all five migratory species. CONCLUSIONS The findings suggest that the evolution of migratory behavior is associated with increased selective pressure on metabolism and mitochondria-related pathways. Hundreds of genes undergo selective changes during repetitive transitions to migratory behavior. These findings enhance our understanding of the genetic and phenotypic relationships underlying different locust migratory behaviors, providing important data for understanding the biological mechanisms behind locust outbreaks.
Collapse
Affiliation(s)
- Sujuan Dong
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinghua Li
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Aiwei Tian
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nuo Chen
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiongbing Tu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
18
|
Pan JM, Betts H, Cubbon A, He L, Bolt EL, Soultanas P. The human HELQ helicase and XRN2 exoribonuclease cooperate in R-loop resolution. Open Biol 2025; 15:240112. [PMID: 39965657 PMCID: PMC11835494 DOI: 10.1098/rsob.240112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
The human HELQ helicase is a superfamily 2, 3'-5 helicase homologous to POLQ and RNA helicases of the Ski2-like subfamily. It is involved in diverse aspects of DNA repair and is an emerging prognosis biomarker and novel drug target for cancer therapy. HELQ interacts with RPA through its inherently disordered N-HELQ domain and hence is recruited to RPA-bound DNA substrates. Our study reveals a novel role for HELQ in R-loop resolution. We show in cells and in vitro that HELQ is recruited by RPA at R-loops, which are then resolved if HELQ is catalytically active as an ATPase/helicase. Furthermore, we identify a functional interaction of HELQ with XRN2, a nuclear 5' to 3' exoribonuclease, which we suggest coordinates R-loop unwinding by HELQ with RNA digestion by XRN2. Collectively, we assign a new biological function for HELQ in genome stability in metazoans through its involvement with XRN2 in R-loop metabolism.
Collapse
Affiliation(s)
- J. M. Pan
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - H. Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - A. Cubbon
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - L. He
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - E. L. Bolt
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - P. Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| |
Collapse
|
19
|
Fu M, Zhang M, Zhang L, Feng Y, Gao C, Xu H, Zhang J, Zhang H, Peng T, Chu Y, Wu Y, Wang P, Ye D, Mao Y, Hua W. Transketolase attenuates the chemotherapy sensitivity of glioma cells by modulating R-loop formation. Cell Rep 2025; 44:115142. [PMID: 39792560 DOI: 10.1016/j.celrep.2024.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops. Depletion of TKT leads to increased R-loop accumulation and genome instability, increasing the susceptibility of glioma cells to chemotherapy. In conclusion, our study reveals a non-metabolic function of TKT in regulating R-loop dynamics, genome instability, and chemotherapy sensitivity in gliomas.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Mengli Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Chao Gao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Huaichao Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Tianping Peng
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai 201210, China
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai 201210, China
| | - Pu Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Ye
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China.
| |
Collapse
|
20
|
Kang Z, Xu C, Lu S, Gong J, Yan R, Luo G, Wang Y, He Q, Wu Y, Yan Y, Qian B, Han S, Bu Z, Zhang J, Xia X, Chen L, Hu Z, Lin M, Sun Z, Gu Y, Ye L. NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit. Nat Commun 2025; 16:791. [PMID: 39824811 PMCID: PMC11742055 DOI: 10.1038/s41467-024-55579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes. NKAPL binds to promoter-associated nascent transcripts and co-localizes with DNA-RNA hybrid R-loop structures at GAA-rich loci to enhance R-loop formation and facilitate Pol II pause-release. NKAPL depletion prolongs Pol II pauses and stalls the SOX30/HDAC3 transcription initiation complex on the chromatin. Genetic variants in NKAPL are associated with azoospermia in humans, while mice carrying an NKAPL frameshift mutation (M349fs) show defective meiotic exit and transcriptomic changes similar to NKAPL depletion. These findings identify NKAPL as an R-loop-recognizing factor that regulates transcription elongation, which coordinates the meiotic-to-postmeiotic transcriptome switch in alliance with the SOX30/HDAC3-mediated transcription initiation.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Gan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zhiwen Bu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xian Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou, Jiangsu, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Corso-Díaz X, Liang X, Preston K, Tegshee B, English MA, Nellissery J, Yadav SP, Marchal C, Swaroop A. Maf-family bZIP transcription factor NRL interacts with RNA-binding proteins and R-loops in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.19.613899. [PMID: 39345562 PMCID: PMC11430021 DOI: 10.1101/2024.09.19.613899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with NRL, a Maf-family bZIP transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL-DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Stanford, California, USA
| | - Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Kiam Preston
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Bilguun Tegshee
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Milton A. English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Sharda Prasad Yadav
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
- In silichrom Ltd, 15 Digby road, RG14 1TS Newbury, United Kingdom
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| |
Collapse
|
22
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
24
|
Zhao W, Luo Q, Zhan H, Du Z, Deng T, Duan H. DDX18 influences chemotherapy sensitivity in colorectal cancer by regulating genomic stability. Exp Cell Res 2025; 444:114344. [PMID: 39577603 DOI: 10.1016/j.yexcr.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Chromosomal Instability (CIN) encompasses approximately 65 %-70 % of colorectal cancer (CRC) patients, playing a pivotal role in tumor progression. However, controversies persist regarding the molecular characteristics and treatment strategies associated with these patients. Integrative colorectal cancer proteogenomic analysis identified DDX18 in colorectal cancer. We investigated the molecular mechanisms underlying the regulation of colorectal cancer by the R-loop binding protein DDX18 using colon cancer tissues, cell lines and patient-derived organoids. Our findings revealed that DDX18 expression positively correlates with the expression of genomic instability marker R-loops. Moreover, heightened DDX18 expression delays the completion of DNA damage repair, leading to an increase in double-strand DNA breaks, thereby promoting genomic instability. Notably, the upregulation of DDX18 enhances sensitivity to DNA-damaging. This study elucidated DDX18 beyond participating in fundamental physiological functions, may play a crucial role in the regulation of genomic stability, and also provides a powerful resource for further functional exploration of DDX18 in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| | - Qingqing Luo
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China
| | - Han Zhan
- 921 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, China
| | - Zhen Du
- Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, China; Hunan Hepatobiliary and Pancreatic Cancer Clinical Medical Research Center, China.
| |
Collapse
|
25
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
26
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
27
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
28
|
Aiello U, Porrua O, Libri D. Sen1: The Varied Virtues of a Multifaceted Helicase. J Mol Biol 2025; 437:168808. [PMID: 39357815 DOI: 10.1016/j.jmb.2024.168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Several machineries concurrently work on the DNA, but among them RNA Polymerases (RNAPs) are the most widespread and active users. The homeostasis of such a busy genomic environment relies on the existence of mechanisms that allow limiting transcription to a functional level, both in terms of extent and rate. Sen1 is a central player in this sense: using its translocase activity this protein has evolved the specific function of dislodging RNAPs from the DNA template, thus ending the transcription cycle. Over the years, studies have shown that Sen1 uses this same mechanism in a multitude of situations, allowing termination of all three eukaryotic RNAPs in different contexts. In virtue of its helicase activity, Sen1 has also been proposed to have a prominent function in the resolution of co-transcriptional genotoxic R-loops, which can cause the stalling of replication forks. In this review, we provide a synopsis of past and recent findings on the functions of Sen1 in yeast and of its human homologue Senataxin (SETX).
Collapse
Affiliation(s)
- Umberto Aiello
- Stanford University School of Medicine, Department of Genetics, Stanford, CA, USA.
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
29
|
Xu J, Duncan S, Ding Y. The role of RNA structure in 3' end processing in eukaryotes. Curr Opin Struct Biol 2024; 89:102933. [PMID: 39348742 DOI: 10.1016/j.sbi.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Maturation of pre-mRNA into fully functional mRNA involves a series of highly coordinated steps that are essential for eukaryotic gene expression. RNA structure has been found to play regulatory roles in many of these steps, including cleavage, polyadenylation, and termination. Recent advances in structure probing techniques have been instrumental in revealing how nascent transcript conformation contributes to these dynamic, co-transcriptional processes. In this review, we present examples where RNA structure affects accessibility and/or function of key processing enzymes, thereby influencing the efficiency and precision of 3' end processing machinery. We also discuss emerging technologies that could further enhance our understanding of RNA structure mediated regulation of 3' end processing.
Collapse
Affiliation(s)
- Jin Xu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
30
|
Long Q, Ajit K, Sedova K, Haluza V, Stefl R, Dokaneheifard S, Beckedorff F, Valencia M, Sebesta M, Shiekhattar R, Gullerova M. Tetrameric INTS6-SOSS1 complex facilitates DNA:RNA hybrid autoregulation at double-strand breaks. Nucleic Acids Res 2024; 52:13036-13056. [PMID: 39445827 PMCID: PMC11602137 DOI: 10.1093/nar/gkae937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
Collapse
Affiliation(s)
- Qilin Long
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kamal Ajit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katerina Sedova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Vojtech Haluza
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica G Valencia
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
31
|
Kuznetsova AA, Kosarev IA, Timofeyeva NA, Novopashina DS, Kuznetsov NA. Kinetic Features of Degradation of R-Loops by RNase H1 from Escherichia coli. Int J Mol Sci 2024; 25:12263. [PMID: 39596330 PMCID: PMC11594918 DOI: 10.3390/ijms252212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
R-loops can act as replication fork barriers, creating transcription-replication collisions and inducing replication stress by arresting DNA synthesis, thereby possibly causing aberrant processing and the formation of DNA strand breaks. RNase H1 (RH1) is one of the enzymes that participates in R-loop degradation by cleaving the RNA strand within a hybrid RNA-DNA duplex. In this study, the kinetic features of the interaction of RH1 from Escherichia coli with R-loops of various structures were investigated. It was found that the values of the dissociation constants Kd were minimal for complexes of RH1 with model R-loops containing a 10-11-nt RNA-DNA hybrid part, indicating effective binding. Analysis of the kinetics of RNA degradation in the R-loops by RH1 revealed that the rate-limiting step of the process was catalytic-complex formation. In the presence of RNA polymerase, the R-loops containing a ≤16-nt RNA-DNA hybrid part were efficiently protected from cleavage by RH1. In contrast, R-loops containing longer RNA-DNA hybrid parts, as a model of an abnormal transcription process, were not protected by RNA polymerase and were effectively digested by RH1.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Iurii A. Kosarev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda A. Timofeyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.K.); (N.A.T.); (D.S.N.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Bhandari J, Guillén-Mendoza C, Banks K, Eliaz L, Southwell S, Eyaa D, Luna R, Aguilera A, Xue X. The molecular chaperone ALYREF promotes R-loop resolution and maintains genome stability. J Biol Chem 2024; 300:107996. [PMID: 39547511 DOI: 10.1016/j.jbc.2024.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Unscheduled R-loops usually cause DNA damage and replication stress, and are therefore a major threat to genome stability. Several RNA processing factors, including the conserved THO complex and its associated RNA and DNA-RNA helicase UAP56, prevent R-loop accumulation in cells. Here, we investigate the function of ALYREF, an RNA export adapter associated with UAP56 and the THO complex, in R-loop regulation. We demonstrate that purified ALYREF promotes UAP56-mediated R-loop dissociation in vitro, and this stimulation is dependent on its interaction with UAP56 and R-loops. Importantly, we show that ALYREF binds DNA-RNA hybrids and R-loops. Consistently, ALYREF depletion causes R-loop accumulation and R-loop-mediated genome instability in cells. We propose that ALYREF, apart from its known role in RNA metabolism and export, is a key cellular R-loop coregulator, which binds R-loops and stimulates UAP56-driven resolution of unscheduled R-loops during transcription.
Collapse
Affiliation(s)
- Jay Bhandari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Cristina Guillén-Mendoza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Kathryn Banks
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Lillian Eliaz
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Sierra Southwell
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Darriel Eyaa
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA; Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, Texas, USA.
| |
Collapse
|
33
|
Khosraviani N, Yerlici VT, St-Germain J, Hou YY, Cao SB, Ghali C, Bokros M, Krishnan R, Hakem R, Lee S, Raught B, Mekhail K. Nucleolar Pol II interactome reveals TBPL1, PAF1, and Pol I at intergenic rDNA drive rRNA biogenesis. Nat Commun 2024; 15:9603. [PMID: 39505901 PMCID: PMC11541992 DOI: 10.1038/s41467-024-54002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Ribosomal DNA (rDNA) repeats harbor ribosomal RNA (rRNA) genes and intergenic spacers (IGS). RNA polymerase (Pol) I transcribes rRNA genes yielding rRNA components of ribosomes. IGS-associated Pol II prevents Pol I from excessively synthesizing IGS non-coding RNAs (ncRNAs) that can disrupt nucleoli and rRNA production. Here, compartment-enriched proximity-dependent biotin identification (compBioID) revealed the TATA-less-promoter-binding TBPL1 and transcription-regulatory PAF1 with nucleolar Pol II. TBPL1 localizes to TCT motifs, driving Pol II and Pol I and maintaining its baseline ncRNA levels. PAF1 promotes Pol II elongation, preventing unscheduled R-loops that hyper-restrain IGS Pol I-associated ncRNAs. PAF1 or TBPL1 deficiency disrupts nucleolar organization and rRNA biogenesis. In PAF1-deficient cells, repressing unscheduled IGS R-loops rescues nucleolar organization and rRNA production. Depleting IGS Pol I-dependent ncRNAs is sufficient to compromise nucleoli. We present the nucleolar interactome of Pol II and show that its regulation by TBPL1 and PAF1 ensures IGS Pol I ncRNAs maintaining nucleolar structure and function.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yi Yang Hou
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shi Bo Cao
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carla Ghali
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Bokros
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Lee
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, The Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
34
|
Sagi T, Sadato D, Takayasu K, Sasanuma H, Kanoh Y, Masai H. RNA-DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S-phase in fission yeast. Genes Cells 2024; 29:966-982. [PMID: 39252397 DOI: 10.1111/gtc.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
RNA-DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA-DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA-DNA hybrids and map their genomic locations in fission yeast cells. The RNA-DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA-DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA-DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA-DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA-DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.
Collapse
Affiliation(s)
- Tomoko Sagi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daichi Sadato
- Clinical Research and Trials Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuto Takayasu
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sasanuma
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yutaka Kanoh
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
35
|
Li M, Shao G. Senataxin Attenuates DNA Damage Response Activation and Suppresses Senescence. Antioxidants (Basel) 2024; 13:1337. [PMID: 39594478 PMCID: PMC11591223 DOI: 10.3390/antiox13111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), induces DNA double-strand breaks (DSBs) that compromise genomic integrity. The DNA Damage Response (DDR), primarily mediated by ATM and ATR kinases, is crucial for recognizing and repairing DSBs. Senataxin (SETX), a DNA/RNA helicase, is critical in resolving R-loops, with mutations in SETX associated with neurodegenerative diseases. This study uncovers a novel function of senataxin in modulating DDR and its impact on cellular senescence. Senataxin is shown to be crucial not only for DSB repair but also for determining cell fate under oxidative stress. SETX knockout cells show impaired DSB repair and prolonged ATM/ATR signaling detected by Western blotting, leading to increased senescence, as indicated by elevated β-galactosidase activity following H2O2 exposure and I-PpoI-induced DSBs. Wild-type cells exhibit higher apoptosis levels compared to SETX knockout cells under H2O2 treatment, suggesting that senataxin promotes apoptosis over senescence in oxidative stress. This indicates that senataxin plays a protective role against the accumulation of senescent cells, potentially mitigating age-related cellular decline and neurodegenerative disease progression. These findings highlight senataxin as a critical mediator in DDR pathways and a potential therapeutic target for conditions where cellular senescence contributes to disease pathology.
Collapse
Affiliation(s)
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
36
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
37
|
Choi H, Zhou L, Zhao Y, Dean J. RNA helicase D1PAS1 resolves R-loops and forms a complex for mouse pachytene piRNA biogenesis required for male fertility. Nucleic Acids Res 2024; 52:11973-11994. [PMID: 39162228 PMCID: PMC11514495 DOI: 10.1093/nar/gkae712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
During meiosis, RNA polymerase II transcribes pachytene piRNA precursors with unusually long and unspliced transcripts from discrete autosomal loci in the mouse genome. Despite the importance of piRNA for male fertility and a well-defined maturation process, the transcriptional machinery remains poorly understood. Here, we document that D1PAS1, an ATP-dependent RNA helicase, is critical for pachytene piRNA expression from multiple genomic loci and subsequent translocation into the cytoplasm to ensure mature piRNA biogenesis. Depletion of D1PAS1 in gene-edited mice results in the accumulation of R-loops in pachytene spermatocytes, leading to DNA-damage-induced apoptosis, disruption of piRNA biogenesis, spermatogenic arrest, and male infertility. Transcriptome, genome-wide R-loop profiling, and proteomic analyses document that D1PAS1 regulates pachytene piRNA transcript elongation and termination. D1PAS1 subsequently forms a complex with nuclear export components to ensure pachytene piRNA precursor translocation from the nucleus to the cytoplasm for processing into small non-coding RNAs. Thus, our study defines D1PAS1 as a specific transcription activator that promotes R-loop unwinding and is a critical factor in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangu Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P. The hidden architects of the genome: a comprehensive review of R-loops. Mol Biol Rep 2024; 51:1095. [PMID: 39460836 DOI: 10.1007/s11033-024-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Three-stranded DNA: RNA hybrids known as R-loops form when the non-template DNA strand is displaced and the mRNA transcript anneals to its template strand. Although R-loop formation controls DNA damage response, mitochondrial and genomic transcription, and physiological R-loop formation, imbalanced formation of R-loop can jeopardize a cell's genomic integrity. Transcription regulation and immunoglobulin class switch recombination are two further specialized functions of genomic R-loops. R-loop formation has a dual role in the development of cancer and disturbed R-loop homeostasis as observed in several malignancies. R-loops transcribe at the telomeric and pericentromeric regions, develop in the space between long non-coding RNAs and telomeric repeats, and shield telomeres. In bacteria and archaea, R-loop development is a natural defence mechanism against viruses which also causes DNA degradation. Their emergence in the mammalian genome is controlled, suggesting that they were formed as an inevitable byproduct of RNA transcription but also co-opted for regulatory functions. R-loops may be engaged in cell physiology by regulating gene expression. R-loop biology is probably going to remain a fascinating field of study for a very long time as it offers many avenues for R-loop research.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Smiti Nanda
- Department of Gynaecology and Obstetrics, Pt. B.D. Sharma, University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
39
|
Meng F, Li T, Singh AK, Wang Y, Attiyeh M, Kohram F, Feng Q, Li YR, Shen B, Williams T, Liu Y, Raoof M. Base-excision repair pathway regulates transcription-replication conflicts in pancreatic ductal adenocarcinoma. Cell Rep 2024; 43:114820. [PMID: 39368091 DOI: 10.1016/j.celrep.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.
Collapse
Affiliation(s)
- Fan Meng
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Tiane Li
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yingying Wang
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc Attiyeh
- Department of Surgery, Cedars Sinai, Los Angeles, CA, USA
| | - Fatemeh Kohram
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qianhua Feng
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun R Li
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yilun Liu
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
40
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
41
|
Roy S, Adhikary H, Isler S, D'Amours D. The Smc5/6 complex counteracts R-loop formation at highly transcribed genes in cooperation with RNase H2. eLife 2024; 13:e96626. [PMID: 39404251 PMCID: PMC11620742 DOI: 10.7554/elife.96626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
The R-loop is a common transcriptional by-product that consists of an RNA-DNA duplex joined to a displaced strand of genomic DNA. While the effects of R-loops on health and disease are well established, there is still an incomplete understanding of the cellular processes responsible for their removal from eukaryotic genomes. Here, we show that a core regulator of chromosome architecture -the Smc5/6 complex- plays a crucial role in the removal of R-loop structures formed during gene transcription. Consistent with this, budding yeast mutants defective in the Smc5/6 complex and enzymes involved in R-loop resolution show strong synthetic interactions and accumulate high levels of RNA-DNA hybrid structures in their chromosomes. Importantly, we demonstrate that the Smc5/6 complex acts on specific types of RNA-DNA hybrid structures in vivo and promotes R-loop degradation by the RNase H2 enzyme in vitro. Collectively, our results reveal a crucial role for the Smc5/6 complex in the removal of toxic R-loops formed at highly transcribed genes and telomeres.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Sarah Isler
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Damien D'Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
42
|
Crowner A, Smith K, DeSmet M. Regulation of R-Loops in DNA Tumor Viruses. Pathogens 2024; 13:863. [PMID: 39452734 PMCID: PMC11510693 DOI: 10.3390/pathogens13100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
R-loops are triple-stranded nucleic acid structures that occur when newly synthesized single-stranded RNA anneals to duplex DNA upon the collision of replication forks with transcription complexes. These RNA-DNA hybrids facilitate several transcriptional processes in the cell and have been described extensively in the literature. Recently, evidence has emerged that R-loops are key regulators of DNA tumor virus transcription and the replication of their lifecycle. Studies have demonstrated that R-loops on the Human Papillomavirus (HPV) genome must be resolved to maintain genome maintenance and avoid viral integration, a hallmark of HPV cancers. For Epstein-Barr virus (EBV), R-loops are formed at the oriLyt to establish lytic replication. Structural maintenance of chromosome proteins 5/6 (SMC5/6) bind to these viral R-loops to repress EBV lytic replication. Most viruses in the herpesvirales order, such as KSHV, contain R-loop-forming sequences. In this perspective, we will describe the current, although limited, literature demonstrating the importance of RNA-DNA hybrids to regulate DNA virus transcription. We will also detail potential new areas of R-loop research and how these viruses can be used as tools to study the growing field of R-loops.
Collapse
Affiliation(s)
- Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Yi C. DDX21 is a new player in co-transcriptional RNA modification and functions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2291-2293. [PMID: 38995490 DOI: 10.1007/s11427-024-2626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
45
|
Rao S, Andrs M, Shukla K, Isik E, König C, Schneider S, Bauer M, Rosano V, Prokes J, Müller A, Janscak P. Senataxin RNA/DNA helicase promotes replication restart at co-transcriptional R-loops to prevent MUS81-dependent fork degradation. Nucleic Acids Res 2024; 52:10355-10369. [PMID: 39119900 PMCID: PMC11417401 DOI: 10.1093/nar/gkae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Replication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase. Interestingly, loss of SETX helicase activity leads to nascent DNA degradation upon induction of R-loop-mediated fork stalling by hydroxyurea. This fork degradation phenotype is independent of replication fork reversal and results from DNA2-mediated resection of MUS81-cleaved replication forks that accumulate due to defective replication restart. Finally, we demonstrate that SETX acts in a common pathway with the DEAD-box helicase DDX17 to suppress R-loop-mediated replication stress in human cells. A possible cooperation between these RNA/DNA helicases in R-loop unwinding at TRC sites is discussed.
Collapse
Affiliation(s)
- Satyajeet Rao
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Andrs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Esin Isik
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christiane König
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Schneider
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Bauer
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vinicio Rosano
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiri Prokes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
46
|
Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, Ahmed-Seghir S, Ratnakumar A, Di Bona M, McDermott N, Gomez-Aguilar J, Anderson KS, Ng CKY, Selenica P, Bakhoum SF, Reis-Filho JS, Riaz N, Powell SN. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun 2024; 15:7776. [PMID: 39237529 PMCID: PMC11377823 DOI: 10.1038/s41467-024-51784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
| | - Aman Sharma
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Xin Pei
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Nils Weinhold
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | | | | | - Melody Di Bona
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Niamh McDermott
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Kyrie S Anderson
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, CH, 3008, Switzerland
- SIB, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
- AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
- Molecular Biology Program, MSKCC, New York, NY, 10065, USA.
| |
Collapse
|
47
|
Ivanov MP, Zecchini H, Hamerlik P. Simultaneous Visualization of R-Loops/RNA:DNA Hybrids and Replication Forks in a DNA Combing Assay. Genes (Basel) 2024; 15:1161. [PMID: 39336752 PMCID: PMC11430951 DOI: 10.3390/genes15091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
R-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.
Collapse
Affiliation(s)
- Miroslav Penchev Ivanov
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- The Francis Crick Institute, London NW1 1AT, UK
| | - Heather Zecchini
- Light Microscopy Facility, University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK;
| | - Petra Hamerlik
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
48
|
Zhou W, Ås J, Shore-Lorenti C, Nguyen HH, van de Laarschot DM, Sztal-Mazer S, Grill V, Girgis CM, Stricker BHC, van der Eerden BCJ, Thakker RV, Appelman-Dijkstra NM, Wadelius M, Clifton-Bligh RJ, Hallberg P, Verkerk AJMH, van Rooij JGJ, Ebeling PR, Zillikens MC. Gene-based association analysis of a large patient cohort provides insights into genetics of atypical femur fractures. J Bone Miner Res 2024; 39:1315-1326. [PMID: 39126371 PMCID: PMC11371903 DOI: 10.1093/jbmr/zjae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Several small genetic association studies have been conducted for atypical femur fracture (AFF) without replication of results. We assessed previously implicated and novel genes associated with AFFs in a larger set of unrelated AFF cases using whole exome sequencing (WES). We performed gene-based association analysis on 139 European AFF cases and 196 controls matched for bisphosphonate use. We tested all rare, protein-altering variants using both candidate gene and hypothesis-free approaches. In the latter, genes suggestively associated with AFFs (uncorrected p-values <.01) were investigated in a Swedish whole-genome sequencing replication study and assessed in 46 non-European cases. In the candidate gene analysis, PLOD2 showed a suggestive signal. The hypothesis-free approach revealed 10 tentative associations, with XRN2, SORD, and PLOD2 being the most likely candidates for AFF. XRN2 and PLOD2 showed consistent direction of effect estimates in the replication analysis, albeit not statistically significant. Three SNPs associated with SORD expression according to the GTEx portal were in linkage disequilibrium (R2 ≥ 0.2) with an SNP previously reported in a genome-wide association study of AFF. The prevalence of carriers of variants for both PLOD2 and SORD was higher in Asian versus European cases. While we did not identify genes enriched for damaging variants, we found suggestive evidence of a role for XRN2, PLOD2, and SORD, which requires further investigation. Our findings indicate that genetic factors responsible for AFFs are not widely shared among AFF cases. The study provides a stepping-stone for future larger genetic studies of AFF.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Joel Ås
- Department of Medical Sciences, Uppsala University Hospital, Uppsala 75185, Sweden
| | - Catherine Shore-Lorenti
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC 3168, Australia
| | - Denise M van de Laarschot
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Shoshana Sztal-Mazer
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne VIC 3004, Australia
- Department of Public Health and Preventative Medicine, Monash University, Melbourne VIC 3004, Australia
| | - Vivian Grill
- Department of Endocrinology and Diabetes, Western Health, Melbourne VIC 3011, Australia
| | - Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, The Sydney University, Camperdown NSW 2050, Australia
| | - Bruno H Ch Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Natasha M Appelman-Dijkstra
- Department of Internal Medicine, division endocrinology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Mia Wadelius
- Department of Medical Sciences, Uppsala University Hospital, Uppsala 75185, Sweden
| | | | - Pär Hallberg
- Department of Medical Sciences, Uppsala University Hospital, Uppsala 75185, Sweden
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton VIC 3168, Australia
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
49
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
50
|
Lee S, Lee S, Choi N, Kim J, Kweon J, Miller K, Kim J. PCAF promotes R-loop resolution via histone acetylation. Nucleic Acids Res 2024; 52:8643-8660. [PMID: 38936834 PMCID: PMC11347145 DOI: 10.1093/nar/gkae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nak Hun Choi
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ja Young Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Hee Kweon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|