1
|
Valles GJ, Korchak EJ, Geddes-Buehre DH, Jaiswal N, Korzhnev DM, Bezsonova I. Activation dynamics of ubiquitin-specific protease 7. Proc Natl Acad Sci U S A 2025; 122:e2426632122. [PMID: 40397674 DOI: 10.1073/pnas.2426632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that plays a crucial role in cellular processes, including the maintenance of genome stability and regulation of antiviral and immune responses. Its dysfunction is linked to various cancers and neurodevelopmental disorders such as Hao-Fountain syndrome. Unlike other USP-family enzymes, the triad of catalytic residues in USP7 adopts an inactive conformation and undergoes rearrangement into the active state upon substrate binding. Despite its potential importance for regulating the enzyme's activity, the dynamics of USP7 have not been explored. In this study, we combine advanced CPMG NMR relaxation dispersion measurements with the analysis of enzyme kinetics to investigate the conformational dynamics of USP7 in solution and its role in enzyme activation. Our results suggest that apo-USP7 exists in a dynamic equilibrium, transiently switching between inactive and low-populated active conformations, indicating that enzyme activation can occur spontaneously, even in the absence of a substrate. Furthermore, we show that the Hao-Fountain syndrome-associated variant G392D enhances the conformational dynamics of the enzyme, leading to a significant increase in its catalytic activity. This study captures the sparsely populated, "invisible" active conformation of USP7 and demonstrates how changes in enzyme dynamics can contribute to activity, offering broader insights into enzyme function and disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Emilie J Korchak
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Dane H Geddes-Buehre
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Nancy Jaiswal
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
2
|
Srivastava M, Kumari D, Majumder S, Singh N, Mathur R, Maiti TK, Kumar A, Asthana S. Rational Computational Workflow for Structure-Guided Discovery of a Novel USP7 Inhibitor. J Chem Inf Model 2025; 65:4468-4487. [PMID: 40263111 DOI: 10.1021/acs.jcim.4c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Rationally applied, structurally guided computational methods hold the promise of identifying potent and distinct chemotypes while enabling the precise targeting of structural determinants. Here, we implemented a computational workflow combining insights from cocrystal poses and monitoring the dynamical structural determinants from our previous studies for the identification of potential candidates against USP7. We identified and tested several diverse chemical scaffolds, which underwent in vitro validation across six cancer cell lines. Among these hits, compound M15, belonging to the benzothiazole chemical class, exhibited remarkable anticancer activities, demonstrating dose-dependent reduction in cancer cell viability across all cell lines and indicating that it is a promising candidate to explore as a potent anticancer drug. Biophysical binding confirms binding of M15 on USP7. M15 also exhibited certain USP7 inhibitory activity, as observed in the enzymatic assay. A comparative cocrystal mining of reported USP7 inhibitors unveiled a distinct binding mode of M15, which nicely cross-corroborated with MD and binding-pose metadynamics simulations. Notably, M15 occupies both the determinants, i.e., BL1 and the allosteric checkpoint, which has not yet been underscored as a druggable site. In essence, our study presents a robust and multifaceted computational method for the discovery and characterization of a novel inhibitor scaffold, exemplified by the identification and mechanistic elucidation of M15 against USP7. This integrated approach not only advances our understanding of USP7 inhibition and underscores mechanistic determinants but also offers promising avenues for the discovery of target-specific therapeutic intervention.
Collapse
Affiliation(s)
- Mitul Srivastava
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Deepika Kumari
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Sushanta Majumder
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Nitu Singh
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajani Mathur
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi 110017, India
| | - Tushar Kanti Maiti
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ajay Kumar
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| |
Collapse
|
3
|
Guo X, Cui T, Sun L, Fu Y, Cheng C, Wu C, Zhu Y, Liang S, Liu Y, Zhou S, Li X, Ji C, Ma K, Zhang N, Chu Q, Xing C, Deng S, Wang J, Liu Y, Liu L. A STT3A-dependent PD-L1 glycosylation modification mediated by GMPS drives tumor immune evasion in hepatocellular carcinoma. Cell Death Differ 2025; 32:944-958. [PMID: 39690246 DOI: 10.1038/s41418-024-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor characterized by rapid progression. To explore the regulatory mechanism of rapid tumor growth and metastasis, we conducted proteomic and scRNA-Seq analyses on advanced HCC tissues and identified a significant molecule, guanine monophosphate synthase (GMPS), closely associated with the immune evasion in HCC. We analyzed the immune microenvironment characteristics remodeled by GMPS using scRNA-Seq and found GMPS induced tumor immune evasion in HCC by impairing the tumor-killing function of CD8 + T cells. Further investigation revealed that GMPS increased PD-L1 expression by regulating its ubiquitination and glycosylation modification. Mechanistically, GMPS enhanced the bond between PD-L1 and the catalytic subunit STT3A of oligosaccharyltransferase (OST) by acting as an additional module connecting the Sec61 channel complex and STT3A, which aided in the translocation and modification of nascent peptides. Increased PD-L1 impaired the tumor-killing function of CD8 + T cells, leading to the immune evasion. Importantly, targeting GMPS with angustmycin A, an inhibitor of GMPS activity, significantly suppressed PD-L1 expression and tumor growth in HCC, which also increased the sensitivity to anti-CTLA-4 immunotherapy. These findings suggested the potential of targeting GMPS as a promising therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
4
|
Shin H, Hwang S, Jeong JH, Shin SC, Oh Y, Kim J, Hwang I, Kim EE, Choo H, Song EJ. Targeting USP47 enhances the efficacy of KRAS inhibitor in KRAS G12C mutated non-small cell lung cancer by controlling deubiquitination of c-Myc. Pharmacol Res 2025; 215:107722. [PMID: 40180254 DOI: 10.1016/j.phrs.2025.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
FDA-approved KRASG12C inhibitors, like Sotorasib, target G12C-mutated KRAS in NSCLC. However, issues with insensitivity and drug resistance have emerged, requiring the development of new combination therapies to overcome these limitations. USP47 has been identified as a regulator of cancer-related signaling pathways such as Wnt, Hippo, and p53. However, its role in the KRAS signaling pathway remains largely unexplored and USP47 inhibitors are less developed than those targeting its homolog, USP7. Here, we identify USP47 as a novel therapeutic target in KRASG12C-mutated NSCLC and report K-552, a selective USP47 inhibitor, as a potential treatment strategy. We demonstrate that USP47 stabilizes c-Myc by preventing its proteasomal degradation through deubiquitination, thereby promoting NSCLC cell proliferation. Additionally, the compound K-552, a USP47 inhibitor identified through virtual screening, effectively destabilizes c-Myc and inhibits KRASG12C-mutated NSCLC cell proliferation. Furthermore, USP47 inhibition-either by siRNA knockdown or K-552 treatment-enhances the efficacy of Sotorasib in vitro and in vivo. Together, our findings establish USP47 as a promising therapeutic target in KRASG12C-mutated NSCLC and introduce K-552 as a USP47 inhibitor with potential for combination therapy with KRASG12C inhibitors.
Collapse
Affiliation(s)
- Hyungkyung Shin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - SuA Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeonji Oh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyeok Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyunah Choo
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Song Y, Ren X, Xiong J, Wang W, Zhao Q, Chang J, Yu B. Ubiquitin-Specific Protease 7 (USP7) as a Promising Therapeutic Target for Drug Discovery: From Mechanisms to Therapies. J Med Chem 2025; 68:7914-7931. [PMID: 40237780 DOI: 10.1021/acs.jmedchem.5c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Protein ubiquitination is a reversible post-translational modification regulated by ubiquitin-conjugating and deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 7 (USP7), a well-characterized DUB, plays multifaceted roles in various cellular processes, making it a promising therapeutic target. The plasticity of its catalytic domain and unique allosteric regulation by substrates or external or intramolecular factors facilitate the identification of highly selective USP7 inhibitors. These inhibitors can engage distinct ubiquitin-binding sites through covalent or non-covalent mechanisms. Despite its therapeutic promise, no USP7 inhibitors have entered clinical trials, underscoring the urgent need for novel therapeutics. Here we provide a crystallographic and functional landscape of USP7's multilayer regulation and analyze the structure-activity relationship of inhibitors by chemotypes. Additionally, we explore USP7's roles in diseases and discuss the challenges in USP7-targeted drug discovery and future directions for therapeutic development. This Perspective aims to provide a systematic overview of USP7, from its regulatory mechanisms to its therapeutic potential.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinbo Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianyan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Korchak EJ, Sharafi M, Maisonet IJ, Caro P, Schaaf CP, Buhrlage SJ, Bezsonova I. Functional Spectrum of USP7 Pathogenic Variants in Hao-Fountain Syndrome: Insights into the Enzyme's Activity, Stability, and Allosteric Modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644318. [PMID: 40166258 PMCID: PMC11957113 DOI: 10.1101/2025.03.20.644318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hao-Fountain syndrome is a rare neurodevelopmental disorder caused by mutations in the de-ubiquitinating enzyme USP7 (Ubiquitin Specific Protease 7). Due to the novelty of the disease and its poorly understood molecular mechanisms, treatments for the syndrome are currently lacking. This study examines the effects of 11 patient-derived variants located within the catalytic domain of USP7, focusing on their impact on the enzyme's activity, thermodynamic stability, and substrate recognition. Our findings reveal a spectrum of functional consequences, ranging from complete inactivation to hyperactivation of USP7. Notably, we identify a specific subset of pathogenic variants whose catalytic activity can be significantly boosted using a novel allosteric activator. These results provide the first insight into USP7 malfunction in Hao-Fountain syndrome-linked variants and pave the way for improved prognostic approaches and targeted treatments in the future.
Collapse
Affiliation(s)
- Emilie J. Korchak
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut 06032, United States
| | - Mona Sharafi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Isabella Jaen Maisonet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut 06032, United States
| |
Collapse
|
7
|
Guo Y, Wan R, Duan J, Yuan L, Wang Z, Zhong J, Zhang X, Ma Z, Bai H, Wang J. Targeting tumor-intrinsic S100 calcium-binding protein A1 augments antitumor immunity and potentiates immunotherapy efficacy. Signal Transduct Target Ther 2025; 10:99. [PMID: 40090947 PMCID: PMC11911448 DOI: 10.1038/s41392-025-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, but the therapeutic response is highly heterogeneous, which highlights the necessity for developing predictive biomarkers and overcoming ICB resistance. Cancer cell-intrinsic features, especially those that can be dynamically monitored via liquid biopsy, represent a broader scope for biomarker development. In addition, a potential mode of ICB resistance is tumor-intrinsic mechanisms leading to an immunosuppressive tumor microenvironment (TME). However, the underlying interactive network remains elusive, and the generalizable biomarkers and targeting strategies are still lacking. Here, we uncovered the potential of plasma S100 calcium-binding protein A1 (S100A1) for determining ICB efficacy via liquid biopsy of patients with lung cancer. Multiomics and functional studies have suggested that tumor-intrinsic S100A1 expression correlated with an immunologically "cold" TME and resistance to ICB in multiple syngeneic murine tumors and tissue samples from patients with lung cancer. Mechanistic investigations demonstrated that interfering with the tumor-intrinsic S100A1/ubiquitin-specific protease 7/p65/granulocyte-macrophage colony-stimulating factor (GM-CSF) modulatory axis could potentiate an inflamed TME by promoting M1-like macrophage polarization and T cell function. GM-CSF priming was sufficient to enhance the ICB response in tumors with high S100A1 expression in preclinical models. These findings define S100A1 as a potential blood-based biomarker and a novel synergistic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yufeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Wan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Jaen Maisonet I, Sharafi M, Korchak EJ, Salazar-Chaparro A, Bratt A, Parikh T, Varca AC, Shah B, Darnowski M, Chung M, Teh WP, Che J, Bezsonova I, Buhrlage SJ. Small-molecule allosteric activator of ubiquitin-specific protease 7 (USP7). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643379. [PMID: 40161813 PMCID: PMC11952563 DOI: 10.1101/2025.03.14.643379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitylase essential for cell homeostasis, DNA repair, and regulation of both tumor suppressors and oncogenes. Inactivating USP7 mutations have been associated with Hao-Fountain Syndrome (HAFOUS), a rare neurodevelopmental disorder. Although a range of USP7 inhibitors have been developed over the last decade, in the context of HAFOUS as well as oncogene regulation, USP7 activators may represent a more relevant approach. To address this challenge, we report the discovery and characterization of a small-molecule activator of USP7 called MS-8. We showed that MS-8 activates USP7 by engaging the allosteric C-terminal binding pocket of USP7, thus mimicking the allosteric autoactivation by the USP7 C-terminal tail. We observed that MS-8 engages and activates mutant USP7 in a cellular context, impacting downstream proteins. Taken together, our study provides validation of the USP7 activator that paves the way towards novel activation-driven USP7 pharmacology.
Collapse
|
9
|
Shi L, Xu Z, Chen X, Meng Q, Zhou H, Xiong B, Zhang N. Sertraline and Astemizole Enhance the Deubiquitinase Activity of USP7 by Binding to Its Switching Loop Region. J Med Chem 2025; 68:5874-5890. [PMID: 39999290 DOI: 10.1021/acs.jmedchem.5c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The heterozygous loss-of-function mutations of USP7 lead to the occurrence of Hao-Fountain syndrome, and chemical activators targeting USP7 could potentially serve as a treatment option for the disease. Here, in this study, two drugs Sertraline and Astemizole were identified to act as the agonists of USP7 by binding to its switching loop region. Moreover, although two compounds and USP7's self-activation C-terminal peptide (CTP) share the same binding pocket in the enzyme, joint activation toward full-length USP7 was observed for sertraline/astemizole and the CTP. According to the published data and our results, we propose that two chemical activators activate USP7 through interacting with those USP7 molecules with the binding pocket unoccupied by the CTP and thus promote their transition to active conformation. Finally, as anticipated, Sertraline and Astemizole were demonstrated to enhance the enzymatic activities of USP7 pathogenic mutants, and this observation sheds a light on the treatment against Hao-Fountain syndrome.
Collapse
Affiliation(s)
- Li Shi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhuo Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoyu Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qian Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Bing Xiong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
10
|
Yin J, Waman VP, Sen N, Firdaus-Raih M, Lam SD, Orengo C. Understanding the structural and functional diversity of ATP-PPases using protein domains and functional families in the CATH database. Structure 2025; 33:613-631.e6. [PMID: 39826548 DOI: 10.1016/j.str.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
ATP-pyrophosphatases (ATP-PPases) are the most primordial lineage of the large and diverse HUP (high-motif proteins, universal stress proteins, ATP-pyrophosphatase) superfamily. There are four different ATP-PPase substrate-specificity groups (SSGs), and members of each group show considerable sequence variation across the domains of life despite sharing the same catalytic function. Owing to the expansion in the number of ATP-PPase domain structures from advances in protein structure prediction by AlphaFold2 (AF2), we have characterized the two most populated ATP-PPase SSGs, the nicotinamide adenine dinucleotide synthases (NADSs) and guanosine monophosphate synthases (GMPSs). Local structural and sequence comparisons of NADS and GMPS identified taxonomic-group-specific functional motifs. As GMPS and NADS are potential drug targets of pathogenic microorganisms including Mycobacterium tuberculosis, bacterial GMPS and NADS specific functional motifs reported in this study, may contribute to antibacterial-drug development.
Collapse
Affiliation(s)
- Jialin Yin
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Vaishali P Waman
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, UK; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
11
|
Saha G, Ghosh MK. The key vulnerabilities and therapeutic opportunities in the USP7-p53/MDM2 axis in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119908. [PMID: 39880128 DOI: 10.1016/j.bbamcr.2025.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The MDM2/MDMX-p53 circuitry is essential for controlling the development, apoptosis, immune response, angiogenesis, senescence, cell cycle progression, and proliferation of cancer cells. Research has demonstrated that USP7 exerts strong control over p53, MDM2, and MDMX stability, with multiple mediator proteins influencing the USP7-p53-MDM2/MDMX axis to modify p53 expression level and function. In cases where p53 is of the wild type (Wt-p53) in tumors, inhibiting USP7 promotes the degradation of MDM2/MDMX, leading to the activation of p53 signaling. This, in turn, results in cell cycle arrest and apoptosis. Hence, targeting USP7 presents a promising avenue for cancer therapy. Targeting USP7 in tumors that harbor mutant p53 (Mut-p53) is unlikely and remains largely unexplored due to the existence of numerous USP7 targets that function independently of p53. Considering that Mut-p53 exhibits resistance to degradation by MDM2 and other E3 ligases and also shares the same signaling pathways as Wt-p53, it is reasonable to suggest that USP7 may play a role in stabilizing Mut-p53. However, there is still much to be done in this area. If the hypothesis is correct, USP7 may be a potent target in cancers containing both Wt-p53 and Mut-p53.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
12
|
da Silva Fernandes T, Gillard BM, Dai T, Martin JC, Chaudhry KA, Dugas SM, Fisher AA, Sharma P, Wu R, Attwood KM, Dasgupta S, Takabe K, Rosario SR, Bianchi-Smiraglia A. Inosine monophosphate dehydrogenase 2 (IMPDH2) modulates response to therapy and chemo-resistance in triple negative breast cancer. Sci Rep 2025; 15:1061. [PMID: 39774345 PMCID: PMC11707137 DOI: 10.1038/s41598-024-85094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Triple negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer, whose high frequency of relapse is often due to resistance to chemotherapy. Here, we identify inosine monophosphate dehydrogenase 2 (IMPDH2) as a contributor to doxorubicin resistance, in multiple TNBC models. Analysis of publicly available datasets reveals elevated IMPDH2 expression to associate with worse overall TNBC prognosis in the clinic, including lower recurrence-free survival post adjuvant/neoadjuvant therapy. Importantly, both genetic depletion and pharmacological inhibition of IMPDH2 leads to reduction of pro-tumorigenic phenotypes in multiple doxorubicin-resistant TNBC models, both in vitro and in vivo. Overall, we propose IMPDH2 as a novel vulnerability that could be leveraged therapeutically to suppress and/or prevent the growth of chemo-resistant lesions.
Collapse
Affiliation(s)
- Tatiane da Silva Fernandes
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Bryan M Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Jeffrey C Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Kanita A Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Scott M Dugas
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Alyssa A Fisher
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Pia Sharma
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - RongRong Wu
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher M Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, RSC R-410, Buffalo, NY, 14263, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R Rosario
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, RSC R-410, Buffalo, NY, 14263, USA.
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, CGP L3-317, Buffalo, NY, 14263, USA.
| |
Collapse
|
13
|
Yoshioka K, Nakagawa R, Nguyen CLK, Suzuki H, Ishigaki K, Mizuno S, Okiyoneda T, Ebihara S, Murata K. Proximity-dependent biotinylation reveals an interaction between ubiquitin-specific peptidase 46 and centrosome-related proteins. FEBS Open Bio 2025; 15:151-164. [PMID: 39482856 PMCID: PMC11705415 DOI: 10.1002/2211-5463.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Protein ubiquitination extensively modulates protein functions and controls various biological processes, such as protein degradation, signal transduction, transcription, and DNA repair. Ubiquitination is a reversible post-translational modification, and deubiquitinating enzymes cleave ubiquitin from proteins. Ubiquitin-specific peptidase 46 (USP46), a deubiquitinase, is highly expressed in the brain and regulates neural functions. Deleting lysine 92 (ΔK92) in USP46 reduces murine depression-like behavior in the tail suspension test. However, the molecular basis for USP46's role in regulating neural function has not yet been fully understood. Here we employed a proximity-dependent biotinylation approach to characterize the USP46 protein interaction partners. Using homology-independent targeted integration (HITI), a genome editing technique, we established knockin cell lines that stably express USP46 wildtype- or ΔK92-biotin ligase fusion protein. We identified 286 candidate interaction partners, including well-known binding partners of USP46. Although there were no obvious differences in the interactome of USP46 between wildtype and ΔK92, a gene ontology analysis revealed that centrosome-related proteins were significantly enriched in the proximal proteins of USP46. Several centrosome-related proteins were bound to USP46 in Neuro2a cells, but their protein expression levels were not affected in the brains of USP46-deficient mice. These results uncover a potential relationship between USP46 and centrosome regulation independently of protein stabilization.
Collapse
Affiliation(s)
- Kazuma Yoshioka
- Department of Biomedical Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Reiko Nakagawa
- Laboratory for Cell‐Free Protein SynthesisRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Chi Lieu Kim Nguyen
- Doctoral Program in Human Biology, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaJapan
| | - Hayate Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of MedicineUniversity of TsukubaJapan
| | - Kiyohiro Ishigaki
- Department of Biomedical Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of MedicineUniversity of TsukubaJapan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental SciencesKwansei Gakuin UniversitySandaJapan
| | - Shizufumi Ebihara
- Department of Biomedical Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
| | - Kazuya Murata
- Department of Biomedical Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of MedicineUniversity of TsukubaJapan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced StudyGifu UniversityJapan
| |
Collapse
|
14
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Keshri S, Vicinanza M, Takla M, Rubinsztein DC. USP7 protects TFEB from proteasome-mediated degradation. Cell Rep 2024; 43:114872. [PMID: 39412987 DOI: 10.1016/j.celrep.2024.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy. We identify a distinct nuclear interactome of TFEB, with ubiquitin-specific protease 7 (USP7) emerging as a key post-translational modulator of TFEB. Genetic depletion and inhibition of USP7 reveal its critical role in preserving TFEB stability within both nuclear and cytoplasmic compartments. Specifically, USP7 is identified as the deubiquitinase responsible for removing the K48-linked polyubiquitination signal from TFEB at lysine residues K116, K264, and K274, thereby preventing its proteasomal degradation. Functional assays demonstrate the involvement of USP7 in preserving TFEB-mediated transcriptional responses to nutrient deprivation while also modulating autophagy flux and lysosome biogenesis. As USP7 is a deubiquitinase that protects TFEB from proteasomal degradation, these findings provide the foundation for therapeutic targeting of the USP7-TFEB axis in conditions characterized by TFEB dysregulation and metabolic abnormalities, particularly in certain cancers.
Collapse
Affiliation(s)
- Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariella Vicinanza
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
16
|
Ojedele OA, Umar HI, Baammi S, Metouekel A, Mengistie AA, Bin Jardan YA, Shazly GA, Victor O. Cheminformatics-aided discovery of potential allosteric site modulators of ubiquitin-specific protease 7. Sci Rep 2024; 14:24995. [PMID: 39443474 PMCID: PMC11499889 DOI: 10.1038/s41598-024-74851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Ubiquitin-specific peptidase 7 (USP7) is a deubiquitinating enzyme that mediates the stability and activity of numerous proteins. At basal expression levels, USP7 stabilizes p53 protein, even in the presence of excess MDM2. However, its overexpression leads to the deubiquitination of MDM2 at a rate faster than p53, leading to p53 degradation and pro-tumorigenic roles. Consequently, it is an attractive target for anticancer drug discovery via the modulation of its allosteric site from which the protein is activated. In this study, molecular modeling techniques and cheminformatics approaches were employed to unravel the potential of eighty compounds to serve as its allosteric site modulators. The compounds were initially subjected to virtual screening. Subsequently, the binding free energies of the top four compounds with the highest binding affinities were calculated, and their drug-likeness, and pharmacokinetic and toxicity profiles were evaluated. Ultimately, the complexes of the protein and hit compounds were subjected to a 100 nanoseconds (ns) molecular dynamics simulation. The results of the study revealed eight compounds from the compound library with docking scores ranging from - 7.491 to -11.43 kcal/mol, compared to P217564, which exhibited a docking score of -5.671 kcal/mol. The top four compounds with the highest affinities possessed drug-like properties, and good pharmacokinetic and toxicity profiles, and their predicted inhibitory potentials showed they will be effective at minimal concentration. Also, molecular dynamics simulation confirmed the stability of the protein-ligand complexes. Conclusively, the compounds identified in this study are worthy of further evaluation for the development of allosteric site modulators of USP7.
Collapse
Affiliation(s)
- Olayinka Abraham Ojedele
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Soukayna Baammi
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Amira Metouekel
- University of Technology of Compiègne, EA 4297 TIMR, Compiègne Cedex, 60205, France
| | | | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, 11451, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, 11451, Saudi Arabia
| | - Omoboyede Victor
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| |
Collapse
|
17
|
Caba C, Black M, Liu Y, DaDalt AA, Mallare J, Fan L, Harding RJ, Wang YX, Vacratsis PO, Huang R, Zhuang Z, Tong Y. Autoinhibition of ubiquitin-specific protease 8: Insights into domain interactions and mechanisms of regulation. J Biol Chem 2024; 300:107727. [PMID: 39214302 PMCID: PMC11467669 DOI: 10.1016/j.jbc.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Megan Black
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley A DaDalt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada; Department of Biology, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Josh Mallare
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Yun-Xing Wang
- Center for Structural Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | | | - Rui Huang
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| |
Collapse
|
18
|
Rennie ML, Gundogdu M, Arkinson C, Liness S, Frame S, Walden H. Structural and Biochemical Insights into the Mechanism of Action of the Clinical USP1 Inhibitor, KSQ-4279. J Med Chem 2024; 67:15557-15568. [PMID: 39190802 PMCID: PMC11403619 DOI: 10.1021/acs.jmedchem.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
DNA damage triggers cell signaling cascades that mediate repair. This signaling is frequently dysregulated in cancers. The proteins that mediate this signaling are potential targets for therapeutic intervention. Ubiquitin-specific protease 1 (USP1) is one such target, with small-molecule inhibitors already in clinical trials. Here, we use biochemical assays and cryo-electron microscopy (cryo-EM) to study the clinical USP1 inhibitor, KSQ-4279 (RO7623066), and compare this to the well-established tool compound, ML323. We find that KSQ-4279 binds to the same cryptic site of USP1 as ML323 but disrupts the protein structure in subtly different ways. Inhibitor binding drives a substantial increase in thermal stability of USP1, which may be mediated through the inhibitors filling a hydrophobic tunnel-like pocket in USP1. Our results contribute to the understanding of the mechanism of action of USP1 inhibitors at the molecular level.
Collapse
Affiliation(s)
- Martin Luke Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Mehmet Gundogdu
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Steven Liness
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Sheelagh Frame
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
19
|
Tang K, Yin T, Deng B, Wang M, Ren Z, Wang S, Liu X, Li H, Wang J, Du Y, Zhou J, Chen Y, Wang Y. USP7 deubiquitinates epigenetic reader ZMYND8 to promote breast cancer cell migration and invasion. J Biol Chem 2024; 300:107672. [PMID: 39128723 PMCID: PMC11403496 DOI: 10.1016/j.jbc.2024.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS), which involves E3 ligases and deubiquitinates (DUBs), is critical for protein homeostasis. The epigenetic reader ZMYND8 (zinc finger MYND-type containing 8) has emerged as an oncoprotein, and its protein levels are elevated in various types of cancer, including breast cancer. However, the mechanism by which ZMYND8 protein levels are increased in cancer remains elusive. Although ZMYND8 has been reported to be regulated by the E3 ligase FBXW7, it is still unknown whether ZMYND8 could be modulated by DUBs. Here, we identified USP7 (ubiquitin carboxyl-terminal hydrolase 7) as a bona fide DUB for ZMYND8. Mechanically, USP7 directly binds to the PBP (PHD-BRD-PWWP) domain of ZMYND8 via its TRAF (tumor necrosis factor receptor-associated factor) domain and UBL (ubiquitin-like) domain and removes F-box and WD repeat domain containing 7 (FBXW7)-catalyzed poly-ubiquitin chains on lysine residue 1034 (K1034) within ZMYND8, thereby stabilizing ZMYND8 and stimulating the transcription of ZMYND8 target genes ZEB1 (zinc finger E-box binding homeobox 1) and VEGFA (Vascular Endothelial Growth Factor A). Consequently, USP7 enhances the capacity of breast cancer cells for migration and invasion through antagonizing FBXW7-mediated ZMYND8 degradation. Importantly, the protein levels of USP7 positively correlates with those of ZMYND8 in breast cancer tissues. These findings delineate an important layer of migration and invasion regulation by the USP7-ZMYND8 axis in breast cancer cells.
Collapse
Affiliation(s)
- Kexin Tang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Tingting Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Bo Deng
- Department of General Surgery, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Zixuan Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Huiyan Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jingjing Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yating Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China; School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Modem Industry Institute of Biomedicine, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
20
|
Llerena Schiffmacher DA, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal ACO, Hoeijmakers JHJ, Marteijn JA, Lans H, Demmers JAA, Vermeulen M, Sixma TK, Ogi T, Vermeulen W, Pines A. The small CRL4 CSA ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics. Nat Commun 2024; 15:6374. [PMID: 39075067 PMCID: PMC11286758 DOI: 10.1038/s41467-024-50584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931, Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Klett T, Schwer M, Ernst LN, Engelhardt MU, Jaag SJ, Masberg B, Knappe C, Lämmerhofer M, Gehringer M, Boeckler FM. Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53. Drug Des Devel Ther 2024; 18:2653-2679. [PMID: 38974119 PMCID: PMC11226190 DOI: 10.2147/dddt.s466829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.
Collapse
Affiliation(s)
- Theresa Klett
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Martin Schwer
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Larissa N Ernst
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Marc U Engelhardt
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Simon J Jaag
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Cornelius Knappe
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Matthias Gehringer
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Medicinal Chemistry, Institute for Biomedical Engineering, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
22
|
Velázquez-Libera JL, Caballero J, Alzate-Morales J, Ruiz-Pernía JJ, Tuñón I. Understanding the Interactions of Ubiquitin-Specific Protease 7 with Its Substrates through Molecular Dynamics Simulations: Insights into the Role of Its C-Terminal Domains in Substrate Recognition. J Chem Inf Model 2024; 64:4134-4148. [PMID: 38703206 DOI: 10.1021/acs.jcim.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinase enzyme that plays a critical role in regulating various cellular processes by cleaving ubiquitin molecules from target proteins. The C-terminal loop (CTL) motif is a specific region at the C-terminal end of the USP7 enzyme. Recent experiments suggest that the CTL motif plays a role in USP7's catalytic activity by contributing to the enzyme's structural stability, substrate recognition, and catalytic efficiency. The objective of this work is to elucidate these roles through the utilization of computational methods for molecular simulations. For this, we conducted extensive molecular dynamics (MD) simulations to investigate the conformational dynamics and protein-protein interactions within the USP7 enzyme-substrate complex with the substrate consisting of the ubiquitin tagged with the fluorescent label rhodamine 110-gly (Ub-Rho). Our results demonstrate that the CTL motif plays a crucial role in stabilizing the Ubl domains' conformation and augmenting the stability of active conformations within the enzyme-substrate complex. Conversely, the absence of the CTL motif results in increased flexibility and variability in Ubl domains' motion, leading to a reduced percentage of active conformations. Furthermore, our analysis of protein-protein interactions highlights the significance of the CTL motif in anchoring the Ubl45 domains to the catalytic domain (CD), thereby facilitating stable interactions with the substrate. Overall, our findings provide valuable insights into the conformational dynamics and protein-protein interactions inherent in the USP7 enzyme-substrate complex. These insights shed light on some mechanistic details of USP7 concerning the substrate's recognition before its catalytic action.
Collapse
Affiliation(s)
- José Luis Velázquez-Libera
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Jans Alzate-Morales
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | | | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, Valencia 46100, Spain
| |
Collapse
|
23
|
Salomonsson J, Wallner B, Sjöstrand L, D'Arcy P, Sunnerhagen M, Ahlner A. Transient interdomain interactions in free USP14 shape its conformational ensemble. Protein Sci 2024; 33:e4975. [PMID: 38588275 PMCID: PMC11001199 DOI: 10.1002/pro.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.
Collapse
Affiliation(s)
- Johannes Salomonsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
24
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
25
|
Keijzer N, Priyanka A, Stijf-Bultsma Y, Fish A, Gersch M, Sixma TK. Variety in the USP deubiquitinase catalytic mechanism. Life Sci Alliance 2024; 7:e202302533. [PMID: 38355287 PMCID: PMC10867860 DOI: 10.26508/lsa.202302533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The ubiquitin-specific protease (USP) family of deubiquitinases (DUBs) controls cellular ubiquitin-dependent signaling events. This generates therapeutic potential, with active-site inhibitors in preclinical and clinical studies. Understanding of the USP active site is primarily guided by USP7 data, where the catalytic triad consists of cysteine, histidine, and a third residue (third critical residue), which polarizes the histidine through a hydrogen bond. A conserved aspartate (fourth critical residue) is directly adjacent to this third critical residue. Although both critical residues accommodate catalysis in USP2, these residues have not been comprehensively investigated in other USPs. Here, we quantitatively investigate their roles in five USPs. Although USP7 relies on the third critical residue for catalysis, this residue is dispensable in USP1, USP15, USP40, and USP48, where the fourth critical residue is vital instead. Furthermore, these residues vary in importance for nucleophilic attack. The diverging catalytic mechanisms of USP1 and USP7 are independent of substrate and retained in cells for USP1. This unexpected variety of catalytic mechanisms in this well-conserved protein family may generate opportunities for selective targeting of individual USPs.
Collapse
Affiliation(s)
- Niels Keijzer
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anu Priyanka
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yvette Stijf-Bultsma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
26
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
28
|
Moghadasi SA, Moraes SN, Harris RS. Cellular Assays for Dynamic Quantification of Deubiquitinase Activity and Inhibition. J Mol Biol 2023; 435:168316. [PMID: 37858708 DOI: 10.1016/j.jmb.2023.168316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Deubiquitinases (DUBs) are proteolytic enzymes that catalyze the removal of ubiquitin from protein substrates. The critical role of DUBs in regulating protein ubiquitination makes them attractive drug targets in oncology, neurodegenerative disease, and antiviral development. Biochemical assays for quantifying DUB activity have enabled characterization of substrate preferences and discovery of small molecule inhibitors. However, assessing the efficacy of these inhibitors in cellular contexts to support clinical drug development has been limited by a lack of tractable cell-based assays. To address this gap, we developed a two-color flow cytometry-based assay that allows for sensitive quantification of DUB activity and inhibition in living cells. The utility of this system was demonstrated by quantifying the potency of GRL0617 against the viral DUB SARS-CoV-2 PLpro, identifying potential GRL0617 resistance mutations, and performing structure-function analysis of the vOTU domain from the recently emerged Yezo virus. In addition, the system was optimized for cellular DUBs by modifying a GFP-targeting nanobody to recruit USP7 and USP28 to benchmark a panel of reported inhibitors and assess inhibition kinetics. Together, these results demonstrate the utility of these assays for studying DUB biology in a cellular context with potential to aid in inhibitor discovery and development.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
29
|
Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ, Kim EE. Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol 2023; 6:970. [PMID: 37740002 PMCID: PMC10516900 DOI: 10.1038/s42003-023-05345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Collapse
Affiliation(s)
- Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Research Resources Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kyung Hee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Min Yoon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yeonji Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyunah Choo
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
30
|
Ballut L, Violot S, Kumar S, Aghajari N, Balaram H. GMP Synthetase: Allostery, Structure, and Function. Biomolecules 2023; 13:1379. [PMID: 37759779 PMCID: PMC10526850 DOI: 10.3390/biom13091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamine amidotransferases (GATs) catalyze the hydrolysis of glutamine and transfer the generated ammonia to diverse metabolites. The two catalytic activities, glutaminolysis and the subsequent amination of the acceptor substrate, happen in two distinct catalytic pockets connected by a channel that facilitates the movement of ammonia. The de novo pathway for the synthesis of guanosine monophosphate (GMP) from xanthosine monophosphate (XMP) is enabled by the GAT GMP synthetase (GMPS). In most available crystal structures of GATs, the ammonia channel is evident in their native state or upon ligand binding, providing molecular details of the conduit. In addition, conformational changes that enable the coordination of the two catalytic chemistries are also informed by the available structures. In contrast, despite the first structure of a GMPS being published in 1996, the understanding of catalysis in the acceptor domain and inter-domain crosstalk became possible only after the structure of a glutamine-bound mutant of Plasmodium falciparum GMPS was determined. In this review, we present the current status of our understanding of the molecular basis of catalysis in GMPS, becoming the first comprehensive assessment of the biochemical function of this intriguing enzyme.
Collapse
Affiliation(s)
- Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sanjeev Kumar
- Trivedi School of Biosciences, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India;
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur 560064, Bangalore, India
| |
Collapse
|
31
|
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res 2023; 42:225. [PMID: 37658402 PMCID: PMC10472646 DOI: 10.1186/s13046-023-02805-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Tumors have evolved in various mechanisms to evade the immune system, hindering the antitumor immune response and facilitating tumor progression. Immunotherapy has become a potential treatment strategy specific to different cancer types by utilizing multifarious molecular mechanisms to enhance the immune response against tumors. Among these mechanisms, the ubiquitin-proteasome system (UPS) is a significant non-lysosomal pathway specific to protein degradation, regulated by deubiquitinating enzymes (DUBs) that counterbalance ubiquitin signaling. Ubiquitin-specific proteases (USPs), the largest DUB family with the strongest variety, play critical roles in modulating immune cell function, regulating immune response, and participating in antigen processing and presentation during tumor progression. According to recent studies, the expressions of some USP family members in tumor cells are involved in tumor immune escape and immune microenvironment. This review explores the potential of targeting USPs as a new approach for cancer immunotherapy, highlighting recent basic and preclinical studies investigating the applications of USP inhibitors. By providing insights into the structure and function of USPs in cancer immunity, this review aims at assisting in developing new therapeutic approaches for enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
32
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
33
|
Xu J, Wang Y, Zhang J, Abdelmoneim AA, Liang Z, Wang L, Jin J, Dai Q, Ye F. Elastic network models and molecular dynamic simulations reveal the molecular basis of allosteric regulation in ubiquitin-specific protease 7 (USP7). Comput Biol Med 2023; 162:107068. [PMID: 37290391 DOI: 10.1016/j.compbiomed.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the most abundant deubiquitinases and plays an important role in various malignant tumors. However, the molecular mechanisms underlying USP7's structures, dynamics, and biological significance are yet to be investigated. In this study, we constructed the full-length models of USP7 in both the extended and compact state, and applied elastic network models (ENM), molecular dynamics (MD) simulations, perturbation response scanning (PRS) analysis, residue interaction networks as well as allosteric pocket prediction to investigate allosteric dynamics in USP7. Our analysis of intrinsic and conformational dynamics revealed that the structural transition between the two states is characterized by global clamp motions, during which the catalytic domain (CD) and UBL4-5 domain exhibit strong negative correlations. The PRS analysis, combined with the analysis of disease mutations and post-translational modifications (PTMs) further highlighted the allosteric potential of the two domains. The residue interaction network based on MD simulations captured an allosteric communication path which starts at CD domain and ends at UBL4-5 domain. Moreover, we identified a pocket at the TRAF-CD interface as a high-potential allosteric site for USP7. Overall, our studies not only provide molecular insights into the conformational changes of USP7, but also aid in the design of allosteric modulators that target USP7.
Collapse
Affiliation(s)
- Jing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jiali Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Amr Abbas Abdelmoneim
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
34
|
Kang S, Kim G, Choi M, Jeong M, van der Heden van Noort GJ, Roh SH, Shin D. Structural insights into ubiquitin chain cleavage by Legionella ovarian tumor deubiquitinases. Life Sci Alliance 2023; 6:e202201876. [PMID: 37100438 PMCID: PMC10133868 DOI: 10.26508/lsa.202201876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Although ubiquitin is found only in eukaryotes, several pathogenic bacteria and viruses possess proteins that hinder the host ubiquitin system. Legionella, a gram-negative intracellular bacterium, possesses an ovarian tumor (OTU) family of deubiquitinases (Lot DUBs). Herein, we describe the molecular characteristics of Lot DUBs. We elucidated the structure of the LotA OTU1 domain and revealed that entire Lot DUBs possess a characteristic extended helical lobe that is not found in other OTU-DUBs. The structural topology of an extended helical lobe is the same throughout the Lot family, and it provides an S1' ubiquitin-binding site. Moreover, the catalytic triads of Lot DUBs resemble those of the A20-type OTU-DUBs. Furthermore, we revealed a unique mechanism by which LotA OTU domains cooperate together to distinguish the length of the chain and preferentially cleave longer K48-linked polyubiquitin chains. The LotA OTU1 domain itself cleaves K6-linked ubiquitin chains, whereas it is also essential for assisting the cleavage of longer K48-linked polyubiquitin chains by the OTU2 domain. Thus, this study provides novel insights into the structure and mechanism of action of Lot DUBs.
Collapse
Affiliation(s)
- Sangwoo Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gyuhee Kim
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Minhyeong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minwoo Jeong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Soung-Hun Roh
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
36
|
Hu H, Zhao K, Fang D, Wang Z, Yu N, Yao B, Liu K, Wang F, Mei Y. The RNA binding protein RALY suppresses p53 activity and promotes lung tumorigenesis. Cell Rep 2023; 42:112288. [PMID: 36952348 DOI: 10.1016/j.celrep.2023.112288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
The tumor suppressor p53 plays a pivotal role in tumor prevention. The activity of p53 is mainly restrained by the ubiquitin E3 ligase Mdm2. However, it is not well understood how the Mdm2-p53 pathway is intricately regulated. Here we report that the RNA binding protein RALY functions as an oncogenic factor in lung cancer. RALY simultaneously binds to Mdm2 and the deubiquitinating enzyme USP7. Via these interactions, RALY not only stabilizes Mdm2 by stimulating the deubiquitinating activity of USP7 toward Mdm2 but also increases the trans-E3 ligase activity of Mdm2 toward p53. Consequently, RALY enhances Mdm2-mediated ubiquitination and degradation of p53. Functionally, RALY promotes lung tumorigenesis, at least partially, via negative regulation of p53. These findings suggest that RALY destabilizes p53 by modulating the function of Mdm2 at multiple levels. Our study also indicates a critical role for RALY in promoting lung tumorigenesis via p53 inhibition.
Collapse
Affiliation(s)
- Hao Hu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kailiang Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Debao Fang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Ning Yu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Bo Yao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kaiyue Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
37
|
Park J, Shin SC, Jin KS, Lim MJ, Kim Y, Kim EE, Song EJ. USP35 dimer prevents its degradation by E3 ligase CHIP through auto-deubiquitinating activity. Cell Mol Life Sci 2023; 80:112. [PMID: 37004621 PMCID: PMC11073304 DOI: 10.1007/s00018-023-04740-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.
Collapse
Affiliation(s)
- Jinyoung Park
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Sang Chul Shin
- Research Resources Division, Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Kyungbuk, Korea
| | - Min Joon Lim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yeojin Kim
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
38
|
Song Y, Wang S, Zhao M, Yu B. Development of a robust HTRF assay with USP7 full length protein expressed in E. coli prokaryotic system for the identification of USP7 inhibitors. J Pharm Biomed Anal 2023; 227:115305. [PMID: 36812797 DOI: 10.1016/j.jpba.2023.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) is a promising therapeutic target. Several USP7 inhibitors accommodated in the catalytic triad of USP7 have been reported with the aid of high-throughput screening (HTS) methods using USP7 catalytic domain truncation. However, the drawbacks of previously reported biochemical cleavage assays, including poor stability, fluorescence interference, time-consuming, expensive, more importantly the selectivity issue, have challenged the USP7-targeted drug discovery. In this work, we demonstrated the functional heterogeneity and essential role of different structural elements in the USP7 full activation, highlighting the necessity of USP7 full length in drug discovery. Apart from reported two pockets in the catalytic triad, five additional ligandable pockets were predicted based on the proposed USP7 full length models by AlphaFold and homology modelling. A reliable homogeneous time-resolved fluorescence (HTRF) HTS method was established based on the cleavage mechanism of USP7 towards the ubiquitin precursor UBA10. The USP7 full length protein was successfully expressed in the relatively cost-effective E. coli prokaryotic system and used to simulate the auto-activated USP7 in nature. Via screening our in-house library (∼ 1500 compounds), 19 hit compounds with >20% of inhibition rate were identified for further optimization. This assay will enrich the toolbox for the identification of highly potent and selective USP7 inhibitors for clinical use.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
39
|
Chi L, Wang H, Yu F, Gao C, Dai H, Si X, Liu L, Wang Z, Zheng J, Ke Y, Liu H, Zhang Q. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
40
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
41
|
Valles GJ, Jaiswal N, Korzhnev DM, Bezsonova I. Activation Dynamics of Ubiquitin Specific Protease 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523550. [PMID: 36711877 PMCID: PMC9882073 DOI: 10.1101/2023.01.11.523550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme responsible for the regulation of key human oncoproteins and tumor suppressors including Mdm2 and p53, respectively. Unlike other members of the USP family of proteases, the isolated catalytic domain of USP7 adopts an enzymatically inactive conformation that has been well characterized using X-ray crystallography. The catalytic domain also samples an active conformation, which has only been captured upon USP7 substrate-binding. Here, we utilized CPMG NMR relaxation dispersion studies to observe the dynamic motions of USP7 in solution. Our results reveal that the catalytic domain of USP7 exchanges between two distinct conformations, the inactive conformation populated at 95% and the active conformation at 5%. The largest structural changes are localized within functionally important regions of the enzyme including the active site, the ubiquitin-binding fingers, and the allosteric helix of the enzyme, suggesting that USP7 can adopt its active conformation in the absence of a substrate. Furthermore, we show that the allosteric L299A activating mutation disturbs this equilibrium, slows down the exchange, and increases the residence time of USP7 in its active conformation, thus, explaining the elevated activity of the mutant. Overall, this work shows that the isolated USP7 catalytic domain pre-samples its "invisible" active conformation in solution, which may contribute to its activation mechanism.
Collapse
|
42
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
43
|
USP7 Inhibitors in Cancer Immunotherapy: Current Status and Perspective. Cancers (Basel) 2022; 14:cancers14225539. [PMID: 36428632 PMCID: PMC9688046 DOI: 10.3390/cancers14225539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular proteins involved in the suppression of anti-tumor immune responses and its overexpression is associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach, though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the therapeutic potential of targeting USP7 functions.
Collapse
|
44
|
Sijm A, Atlasi Y, van der Knaap JA, Wolf van der Meer J, Chalkley GE, Bezstarosti K, Dekkers DHW, Doff WAS, Ozgur Z, van IJcken WFJ, Demmers JAA, Verrijzer CP. USP7 regulates the ncPRC1 Polycomb axis to stimulate genomic H2AK119ub1 deposition uncoupled from H3K27me3. SCIENCE ADVANCES 2022; 8:eabq7598. [PMID: 36332031 PMCID: PMC9635827 DOI: 10.1126/sciadv.abq7598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.
Collapse
Affiliation(s)
- Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Jan A. van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Gillian E. Chalkley
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dick H. W. Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wouter A. S. Doff
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jeroen A. A. Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - C. Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
45
|
Rovers E, Liu L, Schapira M. ProxyBind: a Compendium of Binding Sites for Proximity-Induced Pharmacology. Comput Struct Biotechnol J 2022; 20:6163-6171. [PMID: 36420167 PMCID: PMC9674861 DOI: 10.1016/j.csbj.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Proximity-induced pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 236 kinases, 45 phosphatases, 37 deubiquitinases, 14 methyltransferases, 11 acetyltransferases, 13 glycosyltransferases, 4 deacetylases, 7 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential and reveals novel opportunities to pharmacologically rewire molecular circuitries. All data is available from the ProxyBind database at https://polymorph.sgc.utoronto.ca/proxybind/index.php.
Collapse
|
46
|
Valles G, Pozhidaeva A, Korzhnev DM, Bezsonova I. Backbone and ILV side-chain NMR resonance assignments of the catalytic domain of human deubiquitinating enzyme USP7. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:197-203. [PMID: 35536398 PMCID: PMC9529858 DOI: 10.1007/s12104-022-10079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme, which removes ubiquitin tag from numerous protein substrates involved in diverse cellular processes such as cell cycle regulation, apoptosis and DNA damage response. USP7 affects stability, interaction network and cellular localization of its cellular and viral substrates by controlling their ubiquitination status. The large 41 kDa catalytic domain of USP7 harbors the active site of the enzyme. Here we present a nearly complete (93%) NMR resonance assignment of isoleucine, leucine and valine (ILV) side-chains of the USP7 catalytic domain along with a refined nearly complete (93%) assignment of its backbone resonances. The reported ILV methyl group assignment will facilitate further NMR investigations of structure, interactions and conformational dynamics of the USP7 enzyme.
Collapse
Affiliation(s)
- Gabrielle Valles
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alexandra Pozhidaeva
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT, 06032, USA.
| |
Collapse
|
47
|
Qin X, Wang R, Xu H, Tu L, Chen H, Li H, Liu N, Wang J, Li S, Yin F, Xu N, Li Z. Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Autophagy 2022; 18:2178-2197. [PMID: 34989313 PMCID: PMC9397470 DOI: 10.1080/15548627.2021.2022360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial-anchored deubiquitinating enzyme USP30 (ubiquitin specific peptidase 30) antagonizes PRKN/parkin-mediated mitophagy, making it a potential target for treating Parkinson disease. However, few inhibitors targeting USP30 have been reported. Here, we report a novel peptide (Q14) derived from the transmembrane (TM) domain of USP30 that can target mitochondrial-anchored USP30 directly and increase mitophagy through two intriguing and distinct mechanisms: a novel autoinhibition mechanism in USP30 and accelerated autophagosome formation via the LC3-interacting region (LIR) of the Q14 peptide. We identified the potential binding sites between the Q14 peptide and USP30 and postulated that an allosteric autoinhibition mechanism regulates USP30 activity. Furthermore, the LIR motif in the Q14 peptide offers additional binding with LC3 and accelerated autophagosome formation. The two mechanisms synergistically enhance mitophagy. Our work provides novel insight and direction to the design of inhibitors for USP30 or other deubiquitinating enzymes (DUBs).Abbreviations: 3-MA: 3-methyladenine; ATTEC: autophagosome-tethering compound; BafA1: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; FP: fluorescence polarization; FUNDC1: FUN14 domain containing 1; HCQ: hydroxychloroquine; LIR: LC3-interacting region; MST: microscale thermophoresis; mtDNA: mitochondrial DNA; mtPA-GFP: mitochondria-targeted photoactive fluorescence protein; OMM: outer mitochondrial membrane; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; Rap: rapamycin; SA: streptavidin; TM: transmembrane; Ub: ubiquitin; Ub-AMC: Ub-7-amido-4-methylcoumarin; UPS: ubiquitin-protease system; USP: ubiquitin specific peptidase; USP30: ubiquitin specific peptidase 30.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Heng Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,CONTACT Feng Yin Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Naihan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Naihan Xu Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China,Zigang Li State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
48
|
Kaushal K, Kim EJ, Tyagi A, Karapurkar JK, Haq S, Jung HS, Kim KS, Ramakrishna S. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis. Cell Death Differ 2022; 29:1689-1704. [PMID: 35273362 PMCID: PMC9433428 DOI: 10.1038/s41418-022-00956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Proteins expressed by the paired box gene 9 (PAX9) and Msh Homeobox 1 (MSX1) are intimately involved in tooth development (odontogenesis). The regulation of PAX9 and MSX1 protein turnover by deubiquitinating enzymes (DUBs) plausibly maintain the required levels of PAX9 and MSX1 during odontogenesis. Herein, we used a loss-of-function CRISPR-Cas9-mediated DUB KO library kit to screen for DUBs that regulate PAX9 and MSX1 protein levels. We identify and demonstrate that USP49 interacts with and deubiquitinates PAX9 and MSX1, thereby extending their protein half-lives. On the other hand, the loss of USP49 reduces the levels of PAX9 and MSX1 proteins, which causes transient retardation of odontogenic differentiation in human dental pulp stem cells and delays the differentiation of human pluripotent stem cells into the neural crest cell lineage. USP49 depletion produced several morphological defects during tooth development, such as reduced dentin growth with shrunken enamel space, and abnormal enamel formation including irregular mineralization. In sum, our results suggest that deubiquitination of PAX9 and MSX1 by USP49 stabilizes their protein levels to facilitate successful odontogenesis.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | | | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea. .,College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea. .,College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
49
|
Srivastava M, Mittal L, Kumari A, Agrahari AK, Singh M, Mathur R, Asthana S. Characterizing (un)binding mechanism of USP7 inhibitors to unravel the cause of enhanced binding potencies at allosteric checkpoint. Protein Sci 2022; 31:e4398. [PMID: 36629250 PMCID: PMC9835771 DOI: 10.1002/pro.4398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.
Collapse
Affiliation(s)
- Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
- Delhi Pharmaceutical Sciences and Research University (DPSRU)New DelhiIndia
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Anita Kumari
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | | | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| | - Rajani Mathur
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR)New DelhiIndia
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI)FaridabadIndia
| |
Collapse
|
50
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|