1
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
He W, Chao J, Gu A, Wang D. Evaluation of 6-PPD quinone toxicity on lung of male BALB/c mice by quantitative proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171220. [PMID: 38412880 DOI: 10.1016/j.scitotenv.2024.171220] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), a transformation product of tyre-derived 6-PPD, has been frequently detected in different environments. After 6-PPDQ exposure, we here aimed to examine dynamic lung bioaccumulation, lung injury, and the underlying molecular basis in male BALB/c mice. After single injection at concentration of 4 mg/kg, 6-PPDQ remained in lung up to day 28, and higher level of 6-PPDQ bioaccumulation in lung was observed after repeated injection. Severe inflammation was observed in lung after both single and repeated 6-PPDQ injection as indicated by changes of inflammatory cytokines (TNF-α, IL-6 and IL-10). Sirius red staining and hydroxyproline content analysis indicated that repeated rather than single 6-PPDQ injection induced fibrosis in lung. Repeated 6-PPDQ injection also severely impaired lung function in mice by influencing chord compliance (Cchord) and enhanced pause (Penh). Proteomes analysis was further carried out to identify molecular targets of 6-PPDQ after repeated injection, which was confirmed by transcriptional expression analysis and immunohistochemistry staining. Alterations in Ripk1, Fadd, Il-6st, and Il-16 expressions were identified to be associated with inflammation induction of lung after repeated 6-PPDQ injection. Alteration in Smad2 expression was identified to be associated with fibrosis formation in lung of 6-PPDQ exposed mice. Therefore, long-term and repeated 6-PPDQ exposure potentially resulted in inflammation and fibrosis in lung by affecting certain molecular signals in mammals. Our results suggested several aspects of lung injury caused by 6-PPDQ and provide the underlying molecular basis. These observations implied the possible risks of long-term 6-PPDQ exposure to human health.
Collapse
Affiliation(s)
- Wenmiao He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
4
|
Byun HS, Ju E, Park KA, Sohn KC, Jung CS, Hong JH, Ro H, Lee HY, Quan KT, Park I, Na M, Hur GM. Rubiarbonol B induces RIPK1-dependent necroptosis via NOX1-derived ROS production. Cell Biol Toxicol 2023; 39:1677-1696. [PMID: 36163569 DOI: 10.1007/s10565-022-09774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.
Collapse
Affiliation(s)
- Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Chan Seok Jung
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - InWha Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung, 25451, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
5
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
6
|
Sapuleni J, Szymanska M, Meidan R. Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reprod Biol Endocrinol 2022; 20:104. [PMID: 35840944 PMCID: PMC9284863 DOI: 10.1186/s12958-022-00970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.
| |
Collapse
|
7
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
8
|
McCann C, Matveeva A, McAllister K, Van Schaeybroeck S, Sessler T, Fichtner M, Carberry S, Rehm M, Prehn JHM, Longley DB. Development of a protein signature to enable clinical positioning of IAP inhibitors in colorectal cancer. FEBS J 2021; 288:5374-5388. [PMID: 33660894 DOI: 10.1111/febs.15801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Resistance to chemotherapy-induced cell death is a major barrier to effective treatment of solid tumours such as colorectal cancer, CRC. Herein, we present a study aimed at developing a proteomics-based predictor of response to standard-of-care (SoC) chemotherapy in combination with antagonists of IAPs (inhibitors of apoptosis proteins), which have been implicated as mediators of drug resistance in CRC. We quantified the absolute expression of 19 key apoptotic proteins at baseline in a panel of 12 CRC cell lines representative of the genetic diversity seen in this disease to identify which proteins promote resistance or sensitivity to a model IAP antagonist [birinapant (Bir)] alone and in combination with SoC chemotherapy (5FU plus oxaliplatin). Quantitative western blotting demonstrated heterogeneous expression of IAP interactome proteins across the CRC cell line panel, and cell death analyses revealed a widely varied response to Bir/chemotherapy combinations. Baseline protein expression of cIAP1, caspase-8 and RIPK1 expression robustly correlated with response to Bir/chemotherapy combinations. Classifying cell lines into 'responsive', 'intermediate' and 'resistant' groups and using linear discriminant analysis (LDA) enabled the identification of a 12-protein signature that separated responders to Bir/chemotherapy combinations in the CRC cell line panel with 100% accuracy. Moreover, the LDA model was able to predict response accurately when cells were cocultured with Tumour necrosis factor-alpha to mimic a pro-inflammatory tumour microenvironment. Thus, our study provides the starting point for a proteomics-based companion diagnostic that predicts response to IAP antagonist/SoC chemotherapy combinations in CRC.
Collapse
Affiliation(s)
- Christopher McCann
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Anna Matveeva
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Tamas Sessler
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Michael Fichtner
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Steven Carberry
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| |
Collapse
|
9
|
Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun Signal 2021; 19:10. [PMID: 33494775 PMCID: PMC7829650 DOI: 10.1186/s12964-020-00693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.
Collapse
Affiliation(s)
- Valérie Lannoy
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Anthony Côté-Biron
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada.
| |
Collapse
|
10
|
RIP1 promotes proliferation through G2/M checkpoint progression and mediates cisplatin-induced apoptosis and necroptosis in human ovarian cancer cells. Acta Pharmacol Sin 2020; 41:1223-1233. [PMID: 32242118 PMCID: PMC7608477 DOI: 10.1038/s41401-019-0340-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Receptor-interacting protein 1 (RIP1, also known as RIPK1) is not only a tumor-promoting factor in several cancers but also mediates either apoptosis or necroptosis in certain circumstances. In this study we investigated what role RIP1 plays in human ovarian cancer cells. We showed that knockout (KO) of RIP1 substantially suppressed cell proliferation, accompanied by the G2/M checkpoint arrest in two human ovarian cancer cell lines SKOV3 and A2780. On the other hand, RIP1 KO remarkably attenuated cisplatin-induced cytotoxicity, which was associated with reduction of the apoptosis markers PARP cleavage and the necroptosis marker phospho-MLKL. We found that RIP1 KO suppressed cisplatin-induced ROS accumulation in both SKOV3 and A2780 cells. ROS scavenger BHA, apoptosis inhibitor Z-VAD or necroptosis inhibitor NSA could effectively suppress cisplatin’s cytotoxicity in the control cells, suggesting that ROS-mediated apoptosis and necroptosis were involved in cisplatin-induced cell death. In addition, blocking necroptosis with MLKL siRNA effectively attenuated cisplatin-induced cytotoxicity. In human ovarian cancer A2780 cell line xenograft nude mice, RIP1 KO not only significantly suppressed the tumor growth but also greatly attenuated cisplatin’s anticancer activity. Our results demonstrate a dual role of RIP1 in human ovarian cancer: it acts as either a tumor-promoting factor to promote cancer cell proliferation or a tumor-suppressing factor to facilitate anticancer effects of chemotherapeutics such as cisplatin.
Collapse
|
11
|
Smith HG, Jamal K, Dayal JHS, Tenev T, Kyula‐Currie J, Guppy N, Gazinska P, Roulstone V, Liccardi G, Davies E, Roxanis I, Melcher AA, Hayes AJ, Inman GJ, Harrington KJ, Meier P. RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma. EMBO Mol Med 2020; 12:e10979. [PMID: 32419365 PMCID: PMC7278545 DOI: 10.15252/emmm.201910979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control. While the term "immunogenic cell death" is not fully defined, activation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) can induce a type of death that mobilises the immune system against cancer. However, no clinical treatment protocols have yet been established that would harness the immunogenic potential of RIPK1. Here, we report the first pre-clinical application of an in vivo treatment protocol for soft-tissue sarcoma that directly engages RIPK1-mediated immunogenic cell death. We find that RIPK1-mediated cell death significantly improves local disease control, increases activation of CD8+ T cells as well as NK cells, and enhances the survival benefit of immune checkpoint blockade. Our findings warrant a clinical trial to assess the survival benefit of RIPK1-induced cell death in patients with advanced disease at limb extremities.
Collapse
Affiliation(s)
- Henry G Smith
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Kunzah Jamal
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Patrycja Gazinska
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Emma Davies
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- Cancer Research UK Beatson InstituteGlasgowUK
- Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
- Royal Free London NHS Foundation TrustLondonUK
| | - Alan A Melcher
- The Translational Immunology TeamThe Institute of Cancer ResearchLondonUK
| | - Andrew J Hayes
- The Sarcoma and Melanoma UnitThe Royal Marsden HospitalLondonUK
| | - Gareth J Inman
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
12
|
Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Comput Biol 2019; 15:e1007374. [PMID: 31553717 PMCID: PMC6779275 DOI: 10.1371/journal.pcbi.1007374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation-exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform-has a key function in extrinsic apoptotic stimuli recognition.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine McAllister
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Marc Sturrock
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
13
|
Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN. J Ovarian Res 2019; 12:76. [PMID: 31412918 PMCID: PMC6694575 DOI: 10.1186/s13048-019-0549-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Background Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-κB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model. Results Employing immunohistochemistry, we observed cIAP1 expression in a tissue microarray (TMA) of 42 GCT samples. RT-PCR confirmed expression of cIAP1/2, as well as XIAP, in primary, patient-derived GCTs and in KGN. We therefore tested the ability of the bivalent SMAC mimetic BV-6, which is known to inhibit cIAP1/2 and XIAP, to induce cell death in KGN. A dose response study indicated an EC50 ≈ 8 μM for both, early (< 8) and advanced (> 80) passages, which differ in growth rate and presumably aggressiveness. Quantitative RT-PCR showed upregulation of NF-κB regulated genes in BV-6 stimulated cells. Blocking experiments with the pan-caspase inhibitor Z-VAD-FMK indicated caspase-dependence. A concentration of 20 μM Z-VAD-FMK was sufficient to significantly reduce apoptosis. This cell death was further substantiated by results of Western Blot studies. Cleaved caspase 3 and cleaved PARP became evident in the BV-6 treated group. Conclusions Taken together, the results show that BV-6 is able to induce apoptosis in KGN cells. This approach may therefore offer a promising therapeutic avenue to treat GCTs. Electronic supplementary material The online version of this article (10.1186/s13048-019-0549-6) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Xiong Y, Li L, Zhang L, Cui Y, Wu C, Li H, Chen K, Yang Q, Xiang R, Hu Y, Huang S, Wei Y, Yang S. The bromodomain protein BRD4 positively regulates necroptosis via modulating MLKL expression. Cell Death Differ 2019; 26:1929-1941. [PMID: 30644439 DOI: 10.1038/s41418-018-0262-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
Necroptosis is a programmed form of necrotic cell death, which is tightly regulated by the necroptotic signaling pathway containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL) protein. In addition to the RIP1-RIP3-MLKL axis, other factors regulating necroptosis are still largely unknown. Here a cell-based small-molecule screening led to the finding that BET inhibitors protected cells from necroptosis in the TNFα/Smac-mimetic/Z-VAD-FMK (TSZ)-induced cell necroptosis model. Mechanistic studies revealed that BET inhibitors acted by downregulating MLKL expression. Further research demonstrated that BRD4, IRF1, P-TEFb, and RNA polymerase II formed a transcription complex to regulate the expression of MLKL, and BET inhibitors interfered with the transcription complex formation. In necroptosis-related disease model, the BET inhibitor JQ-1 showed promising therapeutic effects. Collectively, our studies establish, for the first time, BRD4 as a new epigenetic factor regulating necroptosis, and highlight the potential of BET inhibitors in the treatment of necroptosis-related diseases.
Collapse
Affiliation(s)
- Yu Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yangyang Cui
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Qiuyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
15
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
16
|
Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis 2018; 9:114. [PMID: 29371597 PMCID: PMC5833784 DOI: 10.1038/s41419-017-0057-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Regulated Cell Death. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123501 DOI: 10.1007/978-3-319-78655-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this chapter, the various subroutines of regulated cell death are neatly described by highlighting apoptosis and subforms of regulated necrosis such as necroptosis, ferroptosis, pyroptosis, and NETosis. Typically, all forms of regulated necrosis are defined by finite rupture of the plasma cell membrane. Apoptosis is characterized by an enzymatic machinery that consists of caspases which cause the morphologic features of this type of cell death. Mechanistically, apoptosis can be instigated by two major cellular signalling pathways: an intrinsic pathway that is initiated inside cells by mitochondrial release of pro-apoptotic factors or an extrinsic pathway that is initiated at the cell surface by various death receptors. In necroptosis, the biochemical processes are distinct from those found in apoptosis; in particular, there is no caspase activation. As such, necroptosis is a kinase-mediated cell death that relies on “receptor-interacting protein kinase 3” which mediates phosphorylation of the pseudokinase “mixed lineage kinase domain-like protein.” While ferroptosis is an iron-dependent, oxidative form of regulated necrosis that is biochemically characterized by accumulation of ROS from iron metabolism, oxidase activity, and lipid peroxidation products, pyroptosis is defined as a form of cell death (predominantly of phagocytes) that develops during inflammasome activation and is executed by caspase-mediated cleavage of the pore-forming protein gasdermin D. Finally, NETosis refers to a regulated death of neutrophils that is characterized by the release of chromatin-derived weblike structures released into the extracellular space. The chapter ends up with a discussion on the characteristic feature of regulated necrosis: the passive release of large amounts of constitutive DAMPs as a consequence of final plasma membrane rupture as well as the active secretion of inducible DAMPs earlier during the dying process. Notably, per cell death subroutine, the active secretion of inducible DAMPs varies, thereby determining different immunogenicity of dying cells.
Collapse
|
18
|
Prigozhina TB, Szafer F, Aronin A, Tzdaka K, Amsili S, Makdasi E, Shani N, Dranitzki Elhalel M. Fn14·TRAIL fusion protein is oligomerized by TWEAK into a superefficient TRAIL analog. Cancer Lett 2017; 400:99-109. [DOI: 10.1016/j.canlet.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
|
19
|
Wassmer SJ, Leonard BC, Coupland SG, Baker AN, Hamilton J, Hauswirth WW, Tsilfidis C. Overexpression of the X-Linked Inhibitor of Apoptosis Protects Against Retinal Degeneration in a Feline Model of Retinal Detachment. Hum Gene Ther 2017; 28:482-492. [PMID: 28335619 PMCID: PMC5488383 DOI: 10.1089/hum.2016.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
Retinal detachment is an acute disorder in humans that is caused by trauma or disease, and it can often lead to permanent visual deficits that result from the death of photoreceptors in the retina. The final pathway for photoreceptor cell death is apoptosis and necroptosis. The X-linked inhibitor of apoptosis (XIAP) has been shown to block both of these cell death pathways. This study tested the effects of XIAP on photoreceptor survival in a feline model of retinal detachment. The study was performed in 12 cats, divided into two experimental groups. Six animals received a subretinal injection of adeno-associated virus (AAV) carrying XIAP, and six animals received AAV carrying green fluorescent protein (GFP) as a control. Three weeks after viral delivery, retinas were detached by injecting C3F8 gas into the subretinal space. Optical coherence tomography revealed that the retinal detachments resolved within 3-6 weeks as the gas was slowly resorbed. Analysis of histological sections through the plane of the detachment showed significant preservation of the photoreceptor layer in AAV-XIAP-treated animals compared to AAV-GFP-treated animals at 9 weeks after the detachment. XIAP-treated detached retinas were similar to intact controls. These studies support the potential for XIAP therapy in the treatment of human retinal detachment.
Collapse
Affiliation(s)
- Sarah J. Wassmer
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine, Ottawa, Canada
- Ottawa Hospital, Eye Institute, Ottawa, Canada
| | - Stuart G. Coupland
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine, Ottawa, Canada
- Ottawa Hospital, Eye Institute, Ottawa, Canada
| | - Adam N. Baker
- Ottawa Hospital Research Institute, Regenerative Medicine, Ottawa, Canada
| | | | - William W. Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida
| | - Catherine Tsilfidis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine, Ottawa, Canada
- Ottawa Hospital, Eye Institute, Ottawa, Canada
| |
Collapse
|
20
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
21
|
Targeting Thioredoxin-1 by dimethyl fumarate induces ripoptosome-mediated cell death. Sci Rep 2017; 7:43168. [PMID: 28233787 PMCID: PMC5324128 DOI: 10.1038/srep43168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023] Open
Abstract
Constitutively active NFκB promotes survival of many cancers, especially T-cell lymphomas and leukemias by upregulating antiapoptotic proteins such as inhibitors of apoptosis (IAPs) and FLICE-like inhibitory proteins (cFLIPs). IAPs and cFLIPs negatively regulate the ripoptosome, which mediates cell death in an apoptotic or necroptotic manner. Here, we demonstrate for the first time, that DMF antagonizes NFκB by suppressing Thioredoxin-1 (Trx1), a major regulator of NFκB transcriptional activity. DMF-mediated inhibition of NFκB causes ripoptosome formation via downregulation of IAPs and cFLIPs. In addition, DMF promotes mitochondrial Smac release and subsequent degradation of IAPs, further enhancing cell death in tumor cells displaying constitutive NFκB activity. Significantly, CTCL patients treated with DMF display substantial ripoptosome formation and caspase-3 cleavage in T-cells. DMF induces cell death predominantly in malignant or activated T-cells. Further, we show that malignant T-cells can die by both apoptosis and necroptosis, in contrast to resting T-cells, which are restricted to apoptosis upon DMF administration. In summary, our data provide new mechanistic insight in the regulation of cell death by targeting NFκB via Trx1 in cancer. Thus, interference with Trx1 activity is a novel approach for treatment of NFκB-dependent tumors.
Collapse
|
22
|
Al-Lamki RS, Lu W, Manalo P, Wang J, Warren AY, Tolkovsky AM, Pober JS, Bradley JR. Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death Dis 2016; 7:e2287. [PMID: 27362805 PMCID: PMC5108336 DOI: 10.1038/cddis.2016.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
We previously reported that renal clear cell carcinoma cells (RCC) express both tumor necrosis factor receptor (TNFR)-1 and -2, but that, in organ culture, a TNF mutein that only engages TNFR1, but not TNFR2, causes extensive cell death. Some RCC died by apoptosis based on detection of cleaved caspase 3 in a minority TUNEL-positive cells but the mechanism of death in the remaining cells was unexplained. Here, we underpin the mechanism of TNFR1-induced cell death in the majority of TUNEL-positive RCC cells, and show that they die by necroptosis. Malignant cells in high-grade tumors displayed threefold to four fold higher expression of both receptor-interacting protein kinase (RIPK)1 and RIPK3 compared with non-tumor kidney tubular epithelium and low-grade tumors, but expression of both enzymes was induced in lower grade tumors in organ culture in response to TNFR1 stimulation. Furthermore, TNFR1 activation induced significant MLKL(Ser358) and Drp1(Ser616) phosphorylation, physical interactions in RCC between RIPK1-RIPK3 and RIPK3-phospho-MLKL(Ser358), and coincidence of phospho-MLKL(ser358) and phospho-Drp1(Ser616) at mitochondria in TUNEL-positive RCC. A caspase inhibitor only partially reduced the extent of cell death following TNFR1 engagement in RCC cells, whereas three inhibitors, each targeting a different step in the necroptotic pathway, were much more protective. Combined inhibition of caspases and necroptosis provided additive protection, implying that different subsets of cells respond differently to TNF-α, the majority dying by necroptosis. We conclude that most high-grade RCC cells express increased amounts of RIPK1 and RIPK3 and are poised to undergo necroptosis in response to TNFR1 signaling.
Collapse
Affiliation(s)
- R S Al-Lamki
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - W Lu
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - P Manalo
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - J Wang
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A Y Warren
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A M Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - J S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - J R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
23
|
Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget 2015; 6:1640-51. [PMID: 25682199 PMCID: PMC4359321 DOI: 10.18632/oncotarget.2746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/08/2014] [Indexed: 01/26/2023] Open
Abstract
Drug resistance is a major hurdle in anticancer chemotherapy. Combined therapy using drugs with distinct mechanisms of function may increase anticancer efficacy. We have recently identified the novel chalcone derivative, chalcone-24 (Chal-24), as a potential therapeutic that kills cancer cells through activation of an autophagy-mediated necroptosis pathway. In this report, we investigated if Chal-24 can be combined with the frontline genotoxic anticancer drug, cisplatin for cancer therapy. The combination of Chal-24 and cisplatin synergistically induced apoptotic cytotoxicity in lung cancer cell lines, which was dependent on Chal-24-induced autophagy. While cisplatin slightly potentiated the JNK/Bcl2/Beclin1 pathway for autophagy activation, its combination with Chal-24 strongly triggered proteasomal degradation of the cellular inhibitor of apoptosis proteins (c-IAPs) and formation of the Ripoptosome complex that contains RIP1, FADD and caspase 8. Furthermore, the cisplatin and Chal-24 combination induced dramatic degradation of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein large (cFLIPL) which suppresses Ripoptosome-mediated apoptosis activation. These results establish a novel mechanism for potentiation of anticancer activity with the combination of Chal-24 and cisplatin: to enhance apoptosis signaling through Ripoptosome formation and to release the apoptosis brake through c-FLIPL degradation. Altogether, our work suggests that the combination of Chal-24 and cisplatin could be employed to improve chemotherapy efficacy.
Collapse
|
24
|
From nature to bedside: Pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32:1111-22. [DOI: 10.1016/j.biotechadv.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
|
25
|
Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 2014; 35:2-13. [PMID: 25160988 DOI: 10.1016/j.semcdb.2014.08.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Over the last decade, our picture of cell death signals involved in experimental disease models totally shifted. Indeed, in addition to apoptosis, multiple forms of regulated necrosis have been associated with an increasing number of pathologies such as ischemia-reperfusion injury in brain, heart and kidney, inflammatory diseases, sepsis, retinal disorders, neurodegenerative diseases and infectious disorders. Especially necroptosis is currently attracting the attention of the scientific community. However, the in vivo identification of ongoing necroptosis in experimental disease conditions remains troublesome, mainly due to the lack of specific biomarkers. Initially, Receptor-Interacting Protein Kinase 1 (RIPK1) and RIPK3 kinase activity were uniquely associated with induction of necroptosis, however recent evidence suggests pleiotropic functions in cell death, inflammation and survival, obscuring a clear picture. In this review, we will present the last methodological advances for in vivo necroptosis identification and discuss past and recent data to provide an update of the so-called "necroptosis-associated pathologies".
Collapse
|
26
|
Lu JV, Chen HC, Walsh CM. Necroptotic signaling in adaptive and innate immunity. Semin Cell Dev Biol 2014; 35:33-9. [PMID: 25042848 DOI: 10.1016/j.semcdb.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/17/2023]
Abstract
The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity.
Collapse
Affiliation(s)
- Jennifer V Lu
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Helen C Chen
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States
| | - Craig M Walsh
- Institute for Immunology, Department of Molecular Biology and Biochemistry, 3215 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
27
|
Abstract
Necroptosis has emerged as an important facet of both host defense and inflammatory disease. In this issue, Rodrigue-Gervais et al. (2014) demonstrate a role for the cell death regulator cIAP2 in maintaining lung homeostasis during influenza infection. Loss of cIAP2 promotes necroptosis of lung tissues, leading to host death.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway, Stop A5000, Austin, TX 78712-1191, USA.
| | - Haripriya Sridharan
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway, Stop A5000, Austin, TX 78712-1191, USA
| |
Collapse
|
28
|
Wang D, Zhao M, Chen G, Cheng X, Han X, Lin S, Zhang X, Yu X. The histone deacetylase inhibitor vorinostat prevents TNFα-induced necroptosis by regulating multiple signaling pathways. Apoptosis 2014; 18:1348-1362. [PMID: 23708756 DOI: 10.1007/s10495-013-0866-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are novel anticancer reagents that have recently been reported to have anti-inflammatory and neuroprotective effects; however, the mechanisms underlying their activities are largely undefined. The data from this study show that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can protect L929 cells from TNFα-induced necroptosis. This effect involves multiple mechanisms, including the upregulation of cFLIPL expression, the enhanced activation of NFκB and p38 MAPK, and the inactivation of JNK. In addition, SAHA could initiate cell autophagy by inhibiting Akt and mTOR, which also play important roles in protecting cells from necroptosis. Because cell necroptosis is important for inflammation-related deterioration and neurodegenerative disease, our results indicate that preventing cell necrosis may be an important mechanism through which HDAC inhibitor compounds exert their anti-inflammatory or neuroprotective effects.
Collapse
Affiliation(s)
- Di Wang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Ming Zhao
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Guozhu Chen
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiang Cheng
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiaoxi Han
- Department of Biochemistry, China Medical University, Shenyang, China
| | - Song Lin
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xuhui Zhang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China
| | - Xiaodan Yu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, Cognitive and Mental Health Research Center, #27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
29
|
Pan Q, Huang Y, Chen L, Gu J, Zhou X. SMAC-armed vaccinia virus induces both apoptosis and necroptosis and synergizes the efficiency of vinblastine in HCC. Hum Cell 2014; 27:162-71. [PMID: 24771354 DOI: 10.1007/s13577-014-0093-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/24/2014] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) has particularly high incidence rate in Asia and its resistance to the chemotherapeutic drugs and cell death make it intractable. Vaccinia virus (VV) is a potential vehicle and has been widely used in cancer therapy. SMAC/DIABLO is a critical factor in activating caspases and eliminating inhibition of IAPs when the programmed cell death is promoted. In this study, we constructed a tumor-targeted vaccinia virus carrying SMAC/DIABLO gene that was knocked in the region of viral thymidine kinase gene (VV-SMAC). Our results showed that VV-SMAC efficiently infected and destroyed HCC cells via triggering both caspase-dependent apoptosis and necroptosis with depletion of IAPs. Furthermore, ripoptosome, a prerequisite complex of necroptosis, was assembled and induced by VV-SMAC. In addition, the combination of VV-SMAC and vinblastine represented a synergistic effect on HCC cells. In summary, our data suggest that VV-SMAC is a potential candidate and combination of VV-SMAC and vinblastine may provide a new avenue in treatment of HCC.
Collapse
Affiliation(s)
- Qiang Pan
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Room 217, Building No. 6, Xiasha, Hangzhou, 310018, China
| | | | | | | | | |
Collapse
|
30
|
MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, Alpi AF. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res 2014; 74:2246-2257. [PMID: 24686174 DOI: 10.1158/0008-5472.can-13-2131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genotoxin cisplatin is commonly used in chemotherapy to treat solid tumors, yet our understanding of the mechanism underlying the drug response is limited. In a focused siRNA screen, using an siRNA library targeting genes involved in ubiquitin and ubiquitin-like signaling, we identified the E3 ubiquitin ligase HOIP as a key regulator of cisplatin-induced genotoxicity. HOIP forms, with SHARPIN and HOIL-1L, the linear ubiquitin assembly complex (LUBAC). We show that cells deficient in the HOIP ligase complex exhibit hypersensitivity to cisplatin. This is due to a dramatic increase in caspase-8/caspase-3-mediated apoptosis that is strictly dependent on ATM-, but not ATR-mediated DNA damage checkpoint activation. Moreover, basal and cisplatin-induced activity of the stress response kinase JNK is enhanced in HOIP-depleted cells and, conversely, JNK inhibition can increase cellular resistance to cisplatin and reverse the apoptotic hyperactivation in HOIP-depleted cells. Furthermore, we show that HOIP depletion sensitizes cancer cells, derived from carcinomas of various origins, through an enhanced apoptotic cell death response. We also provide evidence that ovarian cancer cells classified as cisplatin-resistant can regain sensitivity following HOIP downregulation. Cumulatively, our study identifies a HOIP-regulated antiapoptotic signaling pathway, and we envisage HOIP as a potential target for the development of combinatorial chemotherapies to potentiate the efficacy of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Craig MacKay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Eilís Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Amit Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Gareth J Inman
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ronald T Hay
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, UK
| | - Arno F Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| |
Collapse
|
31
|
Schilling R, Geserick P, Leverkus M. Characterization of the ripoptosome and its components: implications for anti-inflammatory and cancer therapy. Methods Enzymol 2014; 545:83-102. [PMID: 25065887 DOI: 10.1016/b978-0-12-801430-1.00004-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most intracellular signaling cascades rely on the formation of multiprotein signaling complexes assembled in large protein signaling platforms. Especially in cell death signaling, there is a large variety of these complexes, including the apoptosome, the necrosome, or the death-inducing signaling complex (DISC), to name only a few. During the last years, a number of cellular conditions were identified that lead to the formation of another signaling platform, the so-called ripoptosome. Diverse stimuli such as genotoxic stress, death receptor or Toll-like-receptor (TLR) ligation, or degradation of cellular inhibitor of apoptosis proteins (cIAPs) are able to induce ripoptosome formation. The ripoptosome is tightly regulated by cIAPs that control intracellular RIP1 assembly and the association with other cell death-regulating proteins, most likely by ubiquitin linkage. The suppression of cIAP activity results in accumulation of RIP1 platforms that ultimately triggers necroptosis by activation of RIP3-MLKL-dependent necrosis signaling pathways. The ripoptosome is a 2-MDa protein complex, which consists of the core components caspase-8, FADD, different cFLIP isoforms, and RIP1. It represents one of the rheostats in cell death signaling, as it can activate apoptotic and necroptotic cell death responses. The specific formation and activation of the ripoptosome in cancer but not in primary cells suggests that this complex is a potential novel target for cancer or anti-inflammatory therapy, as suggested by the potential proinflammatory effects of necroptosis. Therefore, the better understanding and characterization of this signaling platform is of enormous importance for the development of novel cancer therapeutics. In this chapter, we describe several methods for purification and investigation of the ripoptosome in human cells. We also describe methods for monitoring apoptotic as well as necroptotic cell death.
Collapse
Affiliation(s)
- Ramon Schilling
- Section of Molecular Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| | - Peter Geserick
- Section of Molecular Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| | - Martin Leverkus
- Section of Molecular Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Abstract
Apoptosis is a tightly regulated cell suicide process used by metazoans to eliminate unwanted or damaged cells that pose a threat to the organism. Caspases-specialized proteolytic enzymes that are responsible for apoptosis initiation and execution-can be activated through two signaling mechanisms: (1) the cell-intrinsic pathway, consisting of Bcl-2 family proteins and initiated by internal sensors for severe cell distress and (2) the cell-extrinsic pathway, triggered by extracellular ligands through cognate death receptors at the surface of target cells. Proapoptotic ligands are often expressed on the surface of cytotoxic cells, for example, certain types of activated immune cells. Alternatively, these ligands can function in shed, soluble form. The mode of ligand presentation can substantially alter the cell response to receptor stimulation. Once receptor ligation on the target cell occurs, a number of intracellular signaling cascades may be initiated. These can lead to a variety of cellular outcomes, including caspase-mediated apoptosis, a distinct type of regulated cell death called necroptosis, or antiapoptotic or inflammatory responses. Death receptor signaling is kept tightly in check and plays critical homeostatic roles during embryonic development and throughout life.
Collapse
|
33
|
Puliyappadamba VT, Chakraborty S, Chauncey SS, Li L, Hatanpaa KJ, Mickey B, Noorani S, Shu HKG, Burma S, Boothman DA, Habib AA. Opposing effect of EGFRWT on EGFRvIII-mediated NF-κB activation with RIP1 as a cell death switch. Cell Rep 2013; 4:764-75. [PMID: 23972990 DOI: 10.1016/j.celrep.2013.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/08/2013] [Accepted: 07/18/2013] [Indexed: 01/15/2023] Open
Abstract
RIP1 is a central mediator of cell death in response to cell stress but can also mediate cell survival by activating NF-κB. Here, we show that RIP1 acts as a switch in EGFR signaling. EGFRvIII is an oncogenic mutant that does not bind ligand and is coexpressed with EGFRWT in glioblastoma multiforme (GBM). EGFRvIII recruits ubiquitin ligases to RIP1, resulting in K63-linked ubiquitination of RIP1. RIP1 binds to TAK1 and NEMO, forming an EGFRvIII-RIP1 signalosome that activates NF-κB. RIP1 is essential for EGFRvIII-mediated oncogenicity and correlates with NF-κB activation in GBM. Surprisingly, activation of EGFRWT with EGF results in a negative regulation of EGFRvIII, with dissociation of the EGFRvIII-RIP1 signalosome, loss of RIP1 ubiquitination and NF-κB activation, and association of RIP1 with FADD and caspase-8. If EGFRWT is overexpressed with EGFRvIII, the addition of EGF leads to a RIP1 kinase-dependent cell death. The EGFRWT-EGFRvIII-RIP1 interplay may regulate oncogenicity and vulnerability to targeted treatment in GBM.
Collapse
|
34
|
Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62:1062-71. [PMID: 22689519 DOI: 10.1136/gutjnl-2011-301364] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cells (IEC) are organised as a single cell layer which covers the intestine. Their primary task is to absorb nutrients present in the intestinal lumen. However, IEC also play an important role in the immune defence of our body by building a barrier that separates the bowel wall from potentially hazardous bacteria present in the gut lumen. The life cycle of IEC is determined by the time span in which cells migrate from their place of origin at the crypt base to the villus tip, from where they are shed into the lumen. Cell death in the intestinal epithelium has to be tightly regulated and irregularities might cause pathologies. Excessive cell death has been associated with chronic inflammation as seen in patients with Crohn's disease and ulcerative colitis. While until recently apoptosis was discussed as being essential for epithelial turnover and tissue homeostasis in the intestinal epithelium, recent data using gene deficient mice have challenged this concept. Moreover, an apoptosis-independent mode of programmed cell death, termed necroptosis, has been identified and described in the intestinal epithelium. The following article reviews previous studies on cell death regulation in IEC and a potential role of necroptosis for gut homeostasis.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine, University of Erlangen-Nuremberg, Hartmannstrasse 14, 91 054 Erlangen, Germany
| | | | | | | |
Collapse
|
35
|
Hirsch B, von der Wall E, Hummel M, Dürkop H. RIP1 expression is necessary for CD30-mediated cell death induction in anaplastic large-cell lymphoma cells. J Transl Med 2013; 93:677-89. [PMID: 23545938 DOI: 10.1038/labinvest.2013.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CD30, a member of the tumor necrosis factor receptor (TNFR) superfamily, is consistently expressed by tumor cells of anaplastic large-cell lymphoma (ALCL). CD30 stimulation induces massive caspase-dependent cell death of ALCL cells in case of canonical NFκB inhibition or proteasome inhibition. However, CD30, a TNFR lacking a death domain (DD), is unable to recruit a death inducing complex containing TRADD (TNFR1-associated DD-protein) or FADD (FAS-associated DD-domain protein) together with the receptor-interacting protein 1 (RIP1) and caspase-8. Thus, the mechanism explaining CD30-induced cell death of lymphocytes remains obscure. Here, we demonstrate that blockage of RIP1 by siRNA or pharmacological inhibition of RIP1 by Necrostatin-1 almost completely prevented CD30-induced cell death. In addition, we revealed CD30-induced accumulation of RIP1 at the cytoplasma membrane of NFκB-inhibited ALCL cells by confocal laser scanning microscopy. Finally, primary ALCL cases can be subdivided into two groups based on the presence or absence of RIP1 as revealed by immunohistology. Taken together, our study identified RIP1 as a crucial mediator of CD30-induced cell death that bears features of apoptosis as well as necroptosis. RIP1 expression in ALCL tumor cells might eligible for the therapeutic application of CD30 antibodies in combination with NFκB/proteasome inhibitors that should result in CD30-induced cell death.
Collapse
Affiliation(s)
- Burkhard Hirsch
- Department of Experimental Haematology, Institute of Pathology, Charité-University Medicine Berlin, Campus Benjamin Franklin, D-12200 Berlin, Germany.
| | | | | | | |
Collapse
|
36
|
Abstract
Virus-induced apoptosis is thought to be the primary mechanism of cell death following reovirus infection. Induction of cell death following reovirus infection is initiated by the incoming viral capsid proteins during cell entry and occurs via NF-κB-dependent activation of classical apoptotic pathways. Prototype reovirus strain T3D displays a higher cell-killing potential than strain T1L. To investigate how signaling pathways initiated by T3D and T1L differ, we methodically analyzed cell death pathways activated by these two viruses in L929 cells. We found that T3D activates NF-κB, initiator caspases, and effector caspases to a significantly greater extent than T1L. Surprisingly, blockade of NF-κB or caspases did not affect T3D-induced cell death. Cell death following T3D infection resulted in a reduction in cellular ATP levels and was sensitive to inhibition of the kinase activity of receptor interacting protein 1 (RIP1). Furthermore, membranes of T3D-infected cells were compromised. Based on the dispensability of caspases, a requirement for RIP1 kinase function, and the physiological status of infected cells, we conclude that reovirus can also induce an alternate, necrotic form of cell death described as necroptosis. We also found that induction of necroptosis requires synthesis of viral RNA or proteins, a step distinct from that necessary for the induction of apoptosis. Thus, our studies reveal that two different events in the reovirus replication cycle can injure host cells by distinct mechanisms. Virus-induced cell death is a determinant of pathogenesis. Mammalian reovirus is a versatile experimental model for identifying viral and host intermediaries that contribute to cell death and for examining how these factors influence viral disease. In this study, we identified that in addition to apoptosis, a regulated form of cell death, reovirus is capable of inducing an alternate form of controlled cell death known as necroptosis. Death by this pathway perturbs the integrity of host membranes and likely triggers inflammation. We also found that apoptosis and necroptosis following viral infection are activated by distinct mechanisms. Our results suggest that host cells can detect different stages of viral infection and attempt to limit viral replication through different forms of cellular suicide. While these death responses may aid in curbing viral spread, they can also exacerbate tissue injury and disease following infection.
Collapse
|
37
|
Becker C, Watson AJ, Neurath MF. Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology 2013; 144:283-293. [PMID: 23219999 DOI: 10.1053/j.gastro.2012.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Caspases are cysteine proteases that regulate embryonic development, cell differentiation, tissue homoeostasis, and removal of damaged and harmful cells from the intestine and other parts of the body. Caspase activity is mainly regulated at the posttranslational level, which allows their rapid activation and response to cellular stress and pathogenic stimuli. In most cell types, caspases are initially expressed as inactive proenzymes, which undergo proteolytic cleavage to become functional enzymes. Caspase dysfunction has been associated with intestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer. Although the roles of caspases have been studied extensively in regulation of apoptosis, recent discoveries have highlighted cell death-independent functions of this protein family. In particular, caspase-1, caspase-4, caspase-5, and caspase-12 are activated during innate immune responses and participate in the formation of the inflammasome. Caspase-8 controls necroptosis of Paneth cells and potentially the death of intestinal epithelial cells in patients with Crohn's disease and appears to be involved in mucosal inflammation. Regulators of caspase-8 might therefore be used to prevent cell death in patients with IBD. Improving our understanding of the regulation and function of caspases in the intestine might lead to new therapeutics for chronic intestinal inflammation and inflammation-associated cancer.
Collapse
Affiliation(s)
- Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Alastair J Watson
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, England
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
38
|
Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013; 17:12-29. [PMID: 23301705 PMCID: PMC3823134 DOI: 10.1111/jcmm.12001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer- and anti-ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia-induced damage. However, initial clinical studies on apoptosis-modulating drugs led to unexpected results in different clinical conditions and this may have been due to co-effects on non-apoptotic interconnected cell death mechanisms and the ‘yin-yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2-family members and p53). We also briefly highlight stress-induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation-induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.
Collapse
Affiliation(s)
- Mayur V Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 2012. [PMID: 23190609 PMCID: PMC3542611 DOI: 10.1038/cddis.2012.176] [Citation(s) in RCA: 465] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models.
Collapse
|
40
|
Marivin A, Berthelet J, Plenchette S, Dubrez L. The Inhibitor of Apoptosis (IAPs) in Adaptive Response to Cellular Stress. Cells 2012; 1:711-37. [PMID: 24710527 PMCID: PMC3901146 DOI: 10.3390/cells1040711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
Cells are constantly exposed to endogenous and exogenous cellular injuries. They cope with stressful stimuli by adapting their metabolism and activating various "guardian molecules." These pro-survival factors protect essential cell constituents, prevent cell death, and possibly repair cellular damages. The Inhibitor of Apoptosis (IAPs) proteins display both anti-apoptotic and pro-survival properties and their expression can be induced by a variety of cellular stress such as hypoxia, endoplasmic reticular stress and DNA damage. Thus, IAPs can confer tolerance to cellular stress. This review presents the anti-apoptotic and survival functions of IAPs and their role in the adaptive response to cellular stress. The involvement of IAPs in human physiology and diseases in connection with a breakdown of cellular homeostasis will be discussed.
Collapse
Affiliation(s)
- Arthur Marivin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Stéphanie Plenchette
- Institut Fédératif de Recherche (IFR), Université de Bourgogne, 100, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
41
|
Abstract
In this issue of Kidney International, Linkermann, et al. provide the first evidence for a possible biochemical mechanism of necrotic kidney cell death associated with renal ischemia/reperfusion-induced acute kidney injury. The mechanisms of several pathways resulting in programmed necrosis were recently elucidated and rely on receptor-interacting protein kinases 1 and 3. Using an inhibitor of one of these kinases, Linkermann was able to ameliorate functional and morphologic kidney damage after ischemia/reperfusion.
Collapse
|
42
|
Abstract
A role for polyubiquitination in the activation of inhibitor of NF-κB (IκB) kinase (IKK) through a proteasome-independent mechanism was first reported in 1996, but the physiological significance of this finding was not clear until 2000 when TRAF6 was found to be a ubiquitin E3 ligase that catalyzes lysine-63 (K63) polyubiquitination. Since then, several proteins known to regulate IKK have been linked to the ubiquitin pathway. These include the deubiquitination enzymes CYLD and A20 that inhibit IKK, and the ubiquitin binding proteins NEMO and TAB2 which are the regulatory subunits of IKK and TAK1 kinase complexes, respectively. Now accumulating evidence strongly supports a central role of K63 polyubiquitination in IKK activation by multiple immune and inflammatory pathways. Interestingly, recent research suggests that some alternative ubiquitin chains such as linear or K11 ubiquitin chains may also play a role in certain pathways such as the TNF pathway. Here I present a historical narrative of the discovery of the role of ubiquitin in IKK activation, review recent advances in understanding the role and mechanism of ubiquitin-mediated IKK activation, and raise some questions to be resolved in future research.
Collapse
Affiliation(s)
- Zhijian J Chen
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
43
|
Subramaniam K, Hirpara JL, Tucker-Kellogg L, Tucker-Kellogg G, Pervaiz S. FLIP: a flop for execution signals. Cancer Lett 2012; 332:151-5. [PMID: 22781394 DOI: 10.1016/j.canlet.2012.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 02/06/2023]
Abstract
Resistance to apoptosis is one of the established hallmarks of cancer cells. This is a function of an imbalance between the proteins that facilitate death execution and those that inhibit apoptosis or promote cell proliferation. The anti-apoptotic protein, FLICE inhibitory protein (FLIP), first identified as a viral protein, is over-expressed in a variety of human pathologies. Initial observations linked FLIP expression to inhibition of death receptor induced apoptosis, due to its structural homology to the cysteine protease, caspase-8. FLIP impedes full processing of pro-caspase-8 to its active form and its release to the cytosol, and by doing so blocks apoptotic signaling downstream of the membrane death initiating signaling complex (DISC). Recent observations have highlighted the complex regulation of this protein and its cross talk with diverse signaling networks and metabolic processes. As FLIP expression is directly associated with chemotherapy resistance, a better understanding of its genomic organization, gene transcription, as well as post-transcriptional regulation could yield novel targets with potential therapeutic implications against drug refractory cancers. In this short review, we provide a brief overview of the structural and functional biology of this somewhat complex protein with direct relevance to carcinogenesis.
Collapse
Affiliation(s)
- Kothandharaman Subramaniam
- Apoptosis, ROS and Cancer Biology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
44
|
Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, Schwabe JWR, Cain K, Macfarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47:291-305. [PMID: 22683266 PMCID: PMC3477315 DOI: 10.1016/j.molcel.2012.05.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/24/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.
Collapse
Affiliation(s)
- Laura S Dickens
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fluorescence polarization assay for inhibitors of the kinase domain of receptor interacting protein 1. Anal Biochem 2012; 427:164-74. [PMID: 22658960 DOI: 10.1016/j.ab.2012.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/18/2012] [Accepted: 05/21/2012] [Indexed: 01/07/2023]
Abstract
Necrotic cell death is prevalent in many different pathological disease states and in traumatic injury. Necroptosis is a form of necrosis that stems from specific signaling pathways, with the key regulator being receptor interacting protein 1 (RIP1), a serine/threonine kinase. Specific inhibitors of RIP1, termed necrostatins, are potent inhibitors of necroptosis. Necrostatins are structurally distinct from one another yet still possess the ability to inhibit RIP1 kinase activity. To further understand the differences in the binding of the various necrostatins to RIP1 and to develop a robust high-throughput screening (HTS) assay, which can be used to identify new classes of RIP1 inhibitors, we synthesized fluorescein derivatives of Necrostatin-1 (Nec-1) and Nec-3. These compounds were used to establish a fluorescence polarization (FP) assay to directly measure the binding of necrostatins to RIP1 kinase. The fluorescein-labeled compounds are well suited for HTS because the assays have a dimethyl sulfoxide (DMSO) tolerance up to 5% and Z' scores of 0.62 (fluorescein-Nec-1) and 0.57 (fluorescein-Nec-3). In addition, results obtained from the FP assays and ligand docking studies provide insights into the putative binding sites of Nec-1, Nec-3, and Nec-4.
Collapse
|
46
|
Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 2012; 81:751-61. [PMID: 22237751 DOI: 10.1038/ki.2011.450] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of kidney function in renal ischemia/reperfusion injury is due to programmed cell death, but the contribution of necroptosis, a newly discovered form of programmed necrosis, has not been evaluated. Here, we identified the presence of death receptor-mediated but caspase-independent cell death in murine tubular cells and characterized it as necroptosis by the addition of necrostatin-1, a highly specific receptor-interacting protein kinase 1 inhibitor. The detection of receptor-interacting protein kinase 1 and 3 in whole-kidney lysates and freshly isolated murine proximal tubules led us to investigate the contribution of necroptosis in a mouse model of renal ischemia/reperfusion injury. Treatment with necrostatin-1 reduced organ damage and renal failure, even when administered after reperfusion, resulting in a significant survival benefit in a model of lethal renal ischemia/reperfusion injury. Unexpectedly, specific blockade of apoptosis by zVAD, a pan-caspase inhibitor, did not prevent the organ damage or the increase in urea and creatinine in vivo in renal ischemia/reperfusion injury. Thus, necroptosis is present and has functional relevance in the pathophysiological course of ischemic kidney injury and shows the predominance of necroptosis over apoptosis in this setting. Necrostatin-1 may have therapeutic potential to prevent and treat renal ischemia/reperfusion injury.
Collapse
|
47
|
Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 2012; 19:75-86. [PMID: 22075985 PMCID: PMC3252835 DOI: 10.1038/cdd.2011.164] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022] Open
Abstract
The lab of Jürg Tschopp was the first to report on the crucial role of receptor-interacting protein kinase 1 (RIPK1) in caspase-independent cell death. Because of this pioneer finding, regulated necrosis and in particular RIPK1/RIPK3 kinase-mediated necrosis, referred to as necroptosis, has become an intensively studied form of regulated cell death. Although necrosis was identified initially as a backup cell death program when apoptosis is blocked, it is now recognized as a cellular defense mechanism against viral infections and as being critically involved in ischemia-reperfusion damage. The observation that RIPK3 ablation rescues embryonic lethality in mice deficient in caspase-8 or Fas-associated-protein-via-a-death-domain demonstrates the crucial role of this apoptotic platform in the negative control of necroptosis during development. Here, we review and discuss commonalities and differences of the increasing list of inducers of regulated necrosis ranging from cytokines, pathogen-associated molecular patterns, to several forms of physicochemical cellular stress. Since the discovery of the crucial role of RIPK1 and RIPK3 in necroptosis, these kinases have become potential therapeutic targets. The availability of new pharmacological inhibitors and transgenic models will allow us to further document the important role of this form of cell death in degenerative, inflammatory and infectious diseases.
Collapse
Affiliation(s)
- N Vanlangenakker
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - T Vanden Berghe
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - P Vandenabeele
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| |
Collapse
|