1
|
Assaf G, Liu F, Heiner M, Herajy M. Addressing data uncertainty of Caulobacter crescentus cell cycles using hybrid Petri nets with fuzzy kinetics. Comput Biol Med 2025; 186:109624. [PMID: 39827734 DOI: 10.1016/j.compbiomed.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Studying and analysing the various phases and key proteins of cell cycles is essential for the understanding of cell development and differentiation. To this end, mechanistic models play an important role towards a system level understanding of the interactions between cell cycle components. Many quantitative models of cell cycles have been previously constructed using either stochastic or deterministic approaches. However, cell cycle models are inherently hybrid requiring the full and accurate interplay of the continuous system dynamics and their corresponding discrete events. Moreover, not all required experimental data are usually available when designing in-silico experiments for these scenarios. In this paper, we employ hybrid Petri nets to implement a hybrid model of the Caulobacter crescentus cell cycle. The model handles all required logics of cell cycles in a very elegant way. We then extend this model to support fuzzy kinetics for those parts where sufficient experimental data are not available and thus precise kinetic parameters cannot be estimated. With some of the kinetic parameters being set as fuzzy numbers, the model produces uncertain bands of outputs reflecting different possibilities of an output comprising most likely the correct one.
Collapse
Affiliation(s)
- George Assaf
- Brandenburg Technical University (BTU Cottbus-Senftenberg), Cottbus, 03013, Brandenburg, Germany.
| | - Fei Liu
- South China University of Technology, Guangzhou, China.
| | - Monika Heiner
- Brandenburg Technical University (BTU Cottbus-Senftenberg), Cottbus, 03013, Brandenburg, Germany.
| | - Mostafa Herajy
- Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Street 15, Port Said, 42521, Egypt.
| |
Collapse
|
2
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
3
|
Ahmed YM, Brown LM, Varga K, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in Caulobacter crescentus. Nat Commun 2024; 15:9282. [PMID: 39468040 PMCID: PMC11519897 DOI: 10.1038/s41467-024-53395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. In Caulobacter crescentus, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, dephosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phospho-signaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Logan M Brown
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
4
|
Zappa S, Berne C, Morton III RI, Whitfield GB, De Stercke J, Brun YV. The HmrABCX pathway regulates the transition between motile and sessile lifestyles in Caulobacter crescentus by a mechanism independent of hfiA transcription. mBio 2024; 15:e0100224. [PMID: 39230277 PMCID: PMC11481889 DOI: 10.1128/mbio.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 09/05/2024] Open
Abstract
During its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA. IMPORTANCE Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For Caulobacter crescentus motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.
Collapse
Affiliation(s)
- Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Cécile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | | | - Gregory B. Whitfield
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jonathan De Stercke
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Pérez-Burgos M, Herfurth M, Kaczmarczyk A, Harms A, Huber K, Jenal U, Glatter T, Søgaard-Andersen L. A deterministic, c-di-GMP-dependent program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis. Nat Commun 2024; 15:6014. [PMID: 39019889 PMCID: PMC11255338 DOI: 10.1038/s41467-024-50444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Phenotypic heterogeneity in bacteria can result from stochastic processes or deterministic programs. The deterministic programs often involve the versatile second messenger c-di-GMP, and give rise to daughter cells with different c-di-GMP levels by deploying c-di-GMP metabolizing enzymes asymmetrically during cell division. By contrast, less is known about how phenotypic heterogeneity is kept to a minimum. Here, we identify a deterministic c-di-GMP-dependent program that is hardwired into the cell cycle of Myxococcus xanthus to minimize phenotypic heterogeneity and guarantee the formation of phenotypically similar daughter cells during division. Cells lacking the diguanylate cyclase DmxA have an aberrant motility behaviour. DmxA is recruited to the cell division site and its activity is switched on during cytokinesis, resulting in a transient increase in the c-di-GMP concentration. During cytokinesis, this c-di-GMP burst ensures the symmetric incorporation and allocation of structural motility proteins and motility regulators at the new cell poles of the two daughters, thereby generating phenotypically similar daughters with correct motility behaviours. Thus, our findings suggest a general c-di-GMP-dependent mechanism for minimizing phenotypic heterogeneity, and demonstrate that bacteria can ensure the formation of dissimilar or similar daughter cells by deploying c-di-GMP metabolizing enzymes to distinct subcellular locations.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marco Herfurth
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katrin Huber
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
6
|
Kaczmarczyk A, van Vliet S, Jakob RP, Teixeira RD, Scheidat I, Reinders A, Klotz A, Maier T, Jenal U. A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution. Nat Commun 2024; 15:3920. [PMID: 38724508 PMCID: PMC11082216 DOI: 10.1038/s41467-024-48295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.
Collapse
Affiliation(s)
- Andreas Kaczmarczyk
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Roman Peter Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | | | - Inga Scheidat
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alberto Reinders
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alexander Klotz
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Feng Q, Zhou J, Zhang L, Fu Y, Yang L. Insights into the molecular basis of c-di-GMP signalling in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:20-38. [PMID: 36539391 DOI: 10.1080/1040841x.2022.2154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can cause severe infections in immunocompromized people or cystic fibrosis (CF) patients. Because of its remarkable ability to invade the host and withstand the bacteriocidal effect of most conventional antibiotics, the infection caused by P. aeruginosa has become a major concern for human health. The switch from acute to chronic infection is governed by the second messenger bis-(3'-5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) in P. aeruginosa, and c-di-GMP is now recognized to regulate many important biological processes in pathogenesis. The c-di-GMP signalling mechanisms in P. aeruginosa have been studied extensively in the past decade, revealing complicated c-di-GMP metabolism and signalling network. In this review, the underlying mechanisms of this signalling network will be discussed, mainly focussing on how environmental cues regulate c-di-GMP signalling, protein-protein interaction mediated functional regulation, heterogeneity of c-di-GMP and cross talk between c-di-GMP signalling and other signalling systems. Understanding the molecular mechanism underlying the complex c-di-GMP signalling network would be beneficial for developing therapeutic approaches and antibacterial agents to combat the threat from P. aeruginosa.
Collapse
Affiliation(s)
- Qishun Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| |
Collapse
|
8
|
Zappa S, Berne C, Morton RI, De Stercke J, Brun YV. The HmrABCX pathway regulates the transition between motile and sessile lifestyles in Caulobacter crescentus by a HfiA-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571505. [PMID: 38168291 PMCID: PMC10760086 DOI: 10.1101/2023.12.13.571505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Through its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the motile to sessile lifestyle transition. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and activates the motile lifestyle: HmrA (Holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that regulate the proportion of cells harboring an active flagellum or a holdfast and that form a putative phosphorelay pathway with HmrA. Further genetic analysis indicates that the Hmr pathway is independent of the holdfast synthesis regulator HfiA and may impact c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Finally, we provide evidence that the Hmr pathway is involved in the regulation of sessile-to-motile lifestyle as a function of environmental stresses, namely excess copper and non-optimal temperatures.
Collapse
Affiliation(s)
- Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
| | - Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
| | - Robert I. Morton
- Department of Biology, Indiana University, Bloomington, IN, USA
- Present address: Boston Scientific, Yokneam, Northern, ISRAEL
| | - Jonathan De Stercke
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
- Present address: Unité de Recherche en Biologie des Micro-organismes, Université de Namur, 61 rue de Bruxelles, B-5000 Namur, BELGIUM
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
10
|
Ahmed YM, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in C. crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553945. [PMID: 37645878 PMCID: PMC10462113 DOI: 10.1101/2023.08.19.553945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. Curiously, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, de-phosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phosphosignaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| |
Collapse
|
11
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
12
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
13
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
14
|
Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A 2022; 119:2116830119. [PMID: 35131853 PMCID: PMC8833168 DOI: 10.1073/pnas.2116830119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial cells organized on solid surfaces are the most ancient form of biological communities. Yet how single cells interact with surfaces and integrate a variety of signals to establish a sessile lifestyle is poorly understood. We developed and used sensitive biosensors to determine the kinetics of second messengers’ responses to surface attachment. This allowed us to examine cell-by-cell variability of the initial signaling events and establish that some of these events depend on flagellar motor function while others do not. Environmentally determined factors, like the energetic status of the cell, can modulate all signaling events. The complex interplay between the surface interaction inputs and external conditions can now be studied using our system. Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein–based c-di-GMP–sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds’ timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes’ timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.
Collapse
|
15
|
Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cycle. PLoS Comput Biol 2022; 18:e1009847. [PMID: 35089921 PMCID: PMC8865702 DOI: 10.1371/journal.pcbi.1009847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/23/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms. Timed cellular events in both eukaryotes and prokaryotes, such as chromosome replication, transcription, cell differentiation, cytokinesis, and cell division, are controlled by remarkably complex genetic regulations and protein-protein interactions. In this work, we investigate the cell cycle of Caulobacter crescentus, an alphaproteobacterium undergoing asymmetric cell divisions, to understand mechanisms underlying temporal regulations of complex cellular events. The asymmetric lifestyle makes Caulobacter crescentus easily synchronized and tracked, which is the foundation of molecular data accumulation. Here, we utilize the mathematical modeling together with experimental information to systematically integrate the complex gene-protein and protein-protein interactions in cell cycle progression. Using the mathematical model, we capture core features of cell cycle-dependent methylation, transcription, and proteolysis. In mutant cases, we found the complex and redundant regulatory network ensure the robustness of Caulobacter crescentus system because the change of most molecules does not cause immediate mortality, although they influence the time points of cell differentiation and division. The overall model and individual modules such as simulating transcriptional regulations and protease complexes can be further extended to the study of cell development in other bacterial species.
Collapse
|
16
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Computational modeling of unphosphorylated CtrA: Cori binding in the Caulobacter cell cycle. iScience 2021; 24:103413. [PMID: 34901785 PMCID: PMC8640480 DOI: 10.1016/j.isci.2021.103413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
In the alphaproteobacterium, Caulobacter crescentus, phosphorylated CtrA (CtrA∼P), a master regulatory protein, binds directly to the chromosome origin (Cori) to inhibit DNA replication. Using a mathematical model of CtrA binding at Cori site [d], we provide computational evidence that CtrAU can displace CtrA∼P from Cori at the G1-S transition. Investigation of this interaction within a detailed model of the C. crescentus cell cycle suggests that CckA phosphatase may clear Cori of CtrA∼P by altering the [CtrAU]/[CtrA∼P] ratio rather than by completely depleting CtrA∼P. Model analysis reveals that the mechanism allows for a speedier transition into S phase, stabilizes the timing of chromosome replication under fluctuating rates of CtrA proteolysis, and may contribute to the viability of numerous mutant strains. Overall, these results suggest that CtrAU enhances the robustness of chromosome replication. More generally, our proposed regulation of CtrA:Cori dynamics may represent a novel motif for molecular signaling in cell physiology.
Collapse
|
18
|
Gillman AN, Helleux A, Abel S. A single step three-strain in vivo Gateway reaction. Plasmid 2021; 118:102608. [PMID: 34801582 DOI: 10.1016/j.plasmid.2021.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
We developed a simplified, highly efficient Gateway reaction that recombines target DNA to expression (destination) plasmids in vivo and subsequently conjugates the final vector into a recipient strain, all in a single step. This recipient strain does not need to contain any selective marker and can be freely chosen as long as it is sensitive to ccdB counterselection and can be targeted by the RP4α conjugation system. Our protocol is simple, robust, and cost effective. It works in 96-well plate format and performs across a range of temperatures. We designed modular, minimal destination vectors containing a modified Gateway insert to ease vector design by providing locations for insertion of tags, promoters, or conjugations. To demonstrate the utility of our system, we created destination vectors with split adenylate cyclase tags for bacterial two-hybrid (B2H) studies and screened a library of diguanylate cyclases for protein-protein interactions in a single step.
Collapse
Affiliation(s)
- Aaron Nicholas Gillman
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway; Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Alexandra Helleux
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sören Abel
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway; Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Reboul A, Carlier E, Stubbe FX, Barbieux E, Demars A, Ong PTA, Gerodez A, Muraille E, De Bolle X. PdeA is required for the rod shape morphology of Brucella abortus. Mol Microbiol 2021; 116:1449-1463. [PMID: 34662460 DOI: 10.1111/mmi.14833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Cyclic-di-GMP plays crucial role in the cell cycle regulation of the α-Proteobacterium Caulobacter crescentus. Here we investigated its role in the α-Proteobacterium Brucella abortus, a zoonotic intracellular pathogen. Surprisingly, deletion of all predicted cyclic-di-GMP synthesizing or degrading enzymes did not drastically impair the growth of B. abortus, nor its ability to grow inside cell lines. As other Rhizobiales, B. abortus displays unipolar growth from the new cell pole generated by cell division. We found that the phosphodiesterase PdeA, the ortholog of the essential polar growth factor RgsP of the Rhizobiale Sinorhizobium meliloti, is required for rod shape integrity but is not essential for B. abortus growth. Indeed, the radius of the pole is increased by 31 ± 1.7% in a ΔpdeA mutant, generating a coccoid morphology. A mutation in the cyclic-di-GMP phosphodiesterase catalytic site of PdeA does not generate the coccoid morphology and the ΔpdeA mutant kept the ability to recruit markers of new and old poles. However, the presence of PdeA is required in an intra-nasal mouse model of infection. In conclusion, we propose that PdeA contributes to bacterial morphology and virulence in B. abortus, but it is not crucial for polarity and asymmetric growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eric Muraille
- URBM, Narilis, University of Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | | |
Collapse
|
20
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
21
|
Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. INFECTION GENETICS AND EVOLUTION 2021; 94:105008. [PMID: 34284137 DOI: 10.1016/j.meegid.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease of rice worldwide, including China. The second messenger c-di-GMP plays an important role in the transduction of intercellular signals. However, little is known about the function of EAL domain protein in c-di-GMP that regulates the virulence in Xoc. In this study, the function of EAL domain protein encoded by pde (FE36_09715) gene in the regulation of c-di-GMP was investigated. Results of this study, showed that the deletion of pde gene led to a significant reduction in the virulence of Xoc and was positively related to the reduction of exopolysaccharides production, biofilm formation, and flagellar motility. However, these significantly impaired properties from the ∆pde mutant strain were partially recovered in the complementary strain. In addition, the deletion of pde gene in Xoc strain YM15 had no visible effect on the colony morphology, amylase, and protease activities of Xoc. It is concluded that, as a regulator for the c-di-GMP level, the pde gene plays an important role in partial biological processes in Xoc and is essential for its virulence.
Collapse
Affiliation(s)
- Xiaoyan Wan
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yanfang Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
22
|
Kunz S, Graumann PL. Spatial organization enhances versatility and specificity in cyclic di-GMP signaling. Biol Chem 2021; 401:1323-1334. [PMID: 32918803 DOI: 10.1515/hsz-2020-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Abstract
The second messenger cyclic di-GMP regulates a variety of processes in bacteria, many of which are centered around the decision whether to adopt a sessile or a motile life style. Regulatory circuits include pathogenicity, biofilm formation, and motility in a wide variety of bacteria, and play a key role in cell cycle progression in Caulobacter crescentus. Interestingly, multiple, seemingly independent c-di-GMP pathways have been found in several species, where deletions of individual c-di-GMP synthetases (DGCs) or hydrolases (PDEs) have resulted in distinct phenotypes that would not be expected based on a freely diffusible second messenger. Several recent studies have shown that individual signaling nodes exist, and additionally, that protein/protein interactions between DGCs, PDEs and c-di-GMP receptors play an important role in signaling specificity. Additionally, subcellular clustering has been shown to be employed by bacteria to likely generate local signaling of second messenger, and/or to increase signaling specificity. This review highlights recent findings that reveal how bacteria employ spatial cues to increase the versatility of second messenger signaling.
Collapse
Affiliation(s)
- Sandra Kunz
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| |
Collapse
|
23
|
Krol E, Schäper S, Becker A. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia. Biol Chem 2021; 401:1335-1348. [PMID: 32990642 DOI: 10.1515/hsz-2020-0232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger which has been associated with a motile to sessile lifestyle switch in many bacteria. Here, we review recent insights into c-di-GMP regulated processes related to environmental adaptations in alphaproteobacterial rhizobia, which are diazotrophic bacteria capable of fixing nitrogen in symbiosis with their leguminous host plants. The review centers on Sinorhizobium meliloti, which in the recent years was intensively studied for its c-di-GMP regulatory network.
Collapse
Affiliation(s)
- Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Simon Schäper
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032 Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
24
|
Schroeder K, Jonas K. The Protein Quality Control Network in Caulobacter crescentus. Front Mol Biosci 2021; 8:682967. [PMID: 33996917 PMCID: PMC8119881 DOI: 10.3389/fmolb.2021.682967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The asymmetric life cycle of Caulobacter crescentus has provided a model in which to study how protein quality control (PQC) networks interface with cell cycle and developmental processes, and how the functions of these systems change during exposure to stress. As in most bacteria, the PQC network of Caulobacter contains highly conserved ATP-dependent chaperones and proteases as well as more specialized holdases. During growth in optimal conditions, these systems support a regulated circuit of protein synthesis and degradation that drives cell differentiation and cell cycle progression. When stress conditions threaten the proteome, most components of the Caulobacter proteostasis network are upregulated and switch to survival functions that prevent, revert, and remove protein damage, while simultaneously pausing the cell cycle in order to regain protein homeostasis. The specialized physiology of Caulobacter influences how it copes with proteotoxic stress, such as in the global management of damaged proteins during recovery as well as in cell type-specific stress responses. Our mini-review highlights the discoveries that have been made in how Caulobacter utilizes its PQC network for regulating its life cycle under optimal and proteotoxic stress conditions, and discusses open research questions in this model.
Collapse
Affiliation(s)
- Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
A localized adaptor protein performs distinct functions at the Caulobacter cell poles. Proc Natl Acad Sci U S A 2021; 118:2024705118. [PMID: 33753507 PMCID: PMC8020655 DOI: 10.1073/pnas.2024705118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asymmetric cell division yields two distinct daughter cells by mechanisms that underlie stem cell behavior and cellular diversity in all organisms. The bacterium Caulobacter crescentus is able to orchestrate this complex process with less than 4,000 genes. This article describes a strategy deployed by Caulobacter where a regulatory protein, PopA, is programed to perform distinct roles based on its subcellular address. We demonstrate that, depending on the availability of a second messenger molecule, PopA adopts either a monomer or dimer form. The two oligomeric forms interact with different partners at the two cell poles, playing a critical role in the degradation of a master transcription factor at one pole and flagellar assembly at the other pole. Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Collapse
|
26
|
Hengge R. High-Specificity Local and Global c-di-GMP Signaling. Trends Microbiol 2021; 29:993-1003. [PMID: 33640237 DOI: 10.1016/j.tim.2021.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
The striking multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins in many bacteria has brought second messenger signaling back onto the agenda of contemporary microbiology. How can several signaling pathways act in parallel in a specific manner if all of them use the same diffusible second messenger present at a certain global cellular concentration? Recent research has now shown that bacteria achieve this by flexibly combining modes of local and global c-di-GMP signaling in complex signaling networks. Three criteria have to be met to define local c-di-GMP signaling: specific knockout phenotypes, direct interactions between proteins involved, and actual cellular c-di-GMP levels remaining below the Kd of effectors. Adaptive changes in signaling network architecture can further enhance signaling flexibility.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
27
|
Nuzzo D, Makitrynskyy R, Tsypik O, Bechthold A. Identification and Characterization of Four c-di-GMP-Metabolizing Enzymes from Streptomyces ghanaensis ATCC14672 Involved in the Regulation of Morphogenesis and Moenomycin A Biosynthesis. Microorganisms 2021; 9:microorganisms9020284. [PMID: 33573171 PMCID: PMC7911125 DOI: 10.3390/microorganisms9020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3'→5') GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in Streptomyces ghanaensis ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis. Here, we report the role of four c-di-GMP-metabolizing enzymes on MmA biosynthesis as well as morphological progression in S. ghanaensis. Functional characterization revealed that RmdAgh and CdgAgh are two active PDEs, while CdgEgh is a DGC. In vivo, overexpression of rmdAgh and cdgAgh led to precocious sporulation, whereas overexpression of cdgEgh and cdgDgh (encoding a predicted DGC) caused an arrest of morphological development. Furthermore, we demonstrated that individual deletion of rmdAgh, cdgAgh, and cdgDgh enhances MmA accumulation, whereas deletion of cdgEgh has no impact on antibiotic production. Conversely, an individual deletion of each studied gene does not affect morphogenesis. Altogether, our results show that manipulation of c-di-GMP-metabolizing enzymes represent a useful approach to improving MmA production titers in S. ghanaensis.
Collapse
|
28
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
29
|
Nordyke CT, Ahmed YM, Puterbaugh RZ, Bowman GR, Varga K. Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Feature. J Mol Biol 2020; 432:6092-6107. [PMID: 33058876 DOI: 10.1016/j.jmb.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/15/2022]
Abstract
The polar organizing protein Z (PopZ) is necessary for the formation of three-dimensional microdomains at the cell poles in Caulobacter crescentus, where it functions as a hub protein that recruits multiple regulatory proteins from the cytoplasm. Although a large portion of the protein is predicted to be natively unstructured, in reconstituted systems PopZ can self-assemble into a macromolecular scaffold that directly binds to at least ten different proteins. Here we report the solution NMR structure of PopZΔ134-177, a truncated form of PopZ that does not self-assemble but retains the ability to interact with heterologous proteins. We show that the unbound form of PopZΔ134-177 is unstructured in solution, with the exception of a small amphipathic α-helix in residues M10-I17, which is included within a highly conserved region near the N-terminal. In applying NMR techniques to map the interactions between PopZΔ134-177 and one of its binding partners, RcdA, we find evidence that the α-helix and adjoining amino acids extending to position E23 serve as the core of the binding motif. Consistent with this, a point mutation at position I17 severely compromises binding. Our results show that a partially structured Molecular Recognition Feature (MoRF) within an intrinsically disordered domain of PopZ contributes to the assembly of polar microdomains, revealing a structural basis for complex network assembly in Alphaproteobacteria that is analogous to those formed by intrinsically disordered hub proteins in other kingdoms.
Collapse
Affiliation(s)
- Christopher T Nordyke
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, United States
| | - Ryan Z Puterbaugh
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, United States.
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States.
| |
Collapse
|
30
|
Xu C, Weston BR, Tyson JJ, Cao Y. Cell cycle control and environmental response by second messengers in Caulobacter crescentus. BMC Bioinformatics 2020; 21:408. [PMID: 32998723 PMCID: PMC7526171 DOI: 10.1186/s12859-020-03687-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp accumulates under starvation, which helps bacteria to survive under stressful conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp responds to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine concentration using a nitrogen phosphotransferase system (PTS Ntr). This work relates the guanine nucleotide-based second messenger regulatory network with the bacterial PTS Ntr system and investigates how bacteria respond to nutrient availability. Results We propose a mathematical model for the dynamics of c-di-GMP and (p)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second messenger system responds to certain environmental changes communicated through the PTS Ntr system. Our mathematical model consists of seven ODEs describing the dynamics of nucleotides and PTS Ntr enzymes. Our simulations are consistent with experimental observations and suggest, among other predictions, that SpoT can effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and (p)ppGpp. Conclusions In this work, we integrate current knowledge and experimental observations from the literature to formulate a novel mathematical model. We analyze the model and demonstrate how the PTS Ntr system influences (p)ppGpp, c-di-GMP, GMP and GTP concentrations. While this model does not consider all aspects of PTS Ntr signaling, such as cross-talk with the carbon PTS system, here we present our first effort to develop a model of nutrient signaling in C. crescentus.
Collapse
Affiliation(s)
- Chunrui Xu
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Bronson R Weston
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, 24061, VA, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Yang Cao
- Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.
| |
Collapse
|
31
|
Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases. J Bacteriol 2020; 202:JB.00345-20. [PMID: 32571969 DOI: 10.1128/jb.00345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
In the model organism Caulobacter crescentus, a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G1 cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G1-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G1, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G1 cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of cckN restores most phenotypic defects of a pleC null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since cckN expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions.IMPORTANCE Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In Caulobacter crescentus, PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G1 phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G1 phase since both proteins are degraded by ClpXP protease before the G1-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.
Collapse
|
32
|
Richter AM, Possling A, Malysheva N, Yousef KP, Herbst S, von Kleist M, Hengge R. Local c-di-GMP Signaling in the Control of Synthesis of the E. coli Biofilm Exopolysaccharide pEtN-Cellulose. J Mol Biol 2020; 432:4576-4595. [PMID: 32534064 PMCID: PMC7397504 DOI: 10.1016/j.jmb.2020.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist.
Collapse
Affiliation(s)
- Anja M Richter
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Department of Materials and the Environment, Bundesanstalt für Materialforschung und -Prüfung, 12205 Berlin, Germany
| | - Alexandra Possling
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Nadezhda Malysheva
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; MF1 Bioinformatics, Robert-Koch-Institut, 13353 Berlin, Germany
| | - Kaveh P Yousef
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Susanne Herbst
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; MF1 Bioinformatics, Robert-Koch-Institut, 13353 Berlin, Germany
| | - Regine Hengge
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
33
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
34
|
Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter. Nat Commun 2020; 11:816. [PMID: 32041947 PMCID: PMC7010744 DOI: 10.1038/s41467-020-14585-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteria adapt their growth rate to their metabolic status and environmental conditions by modulating the length of their G1 period. Here we demonstrate that a gradual increase in the concentration of the second messenger c-di-GMP determines precise gene expression during G1/S transition in Caulobacter crescentus. We show that c-di-GMP stimulates the kinase ShkA by binding to its central pseudo-receiver domain, activates the TacA transcription factor, and initiates a G1/S-specific transcription program leading to cell morphogenesis and S-phase entry. Activation of the ShkA-dependent genetic program causes c-di-GMP to reach peak levels, which triggers S-phase entry and promotes proteolysis of ShkA and TacA. Thus, a gradual increase of c-di-GMP results in precise control of ShkA-TacA activity, enabling G1/S-specific gene expression that coordinates cell cycle and morphogenesis. Bacteria adapt their growth rate to their metabolic status and environmental conditions by modulating the length of their G1 period. Here the authors show that an increase in c-di-GMP concentration modulates the activity of kinase ShkA and transcription factor TacA, thus enabling G1/S transition in Caulobacter.
Collapse
|
35
|
Nord AL, Pedaci F. Mechanisms and Dynamics of the Bacterial Flagellar Motor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:81-100. [PMID: 32894478 DOI: 10.1007/978-3-030-46886-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many bacteria are able to actively propel themselves through their complex environment, in search of resources and suitable niches. The source of this propulsion is the Bacterial Flagellar Motor (BFM), a molecular complex embedded in the bacterial membrane which rotates a flagellum. In this chapter we review the known physical mechanisms at work in the motor. The BFM shows a highly dynamic behavior in its power output, its structure, and in the stoichiometry of its components. Changes in speed, rotation direction, constituent protein conformations, and the number of constituent subunits are dynamically controlled in accordance to external chemical and mechanical cues. The mechano-sensitivity of the motor is likely related to the surface-sensing ability of bacteria, relevant in the initial stage of biofilm formation.
Collapse
Affiliation(s)
- A L Nord
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France
| | - F Pedaci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
36
|
Analysis of Brevundimonas subvibrioides Developmental Signaling Systems Reveals Inconsistencies between Phenotypes and c-di-GMP Levels. J Bacteriol 2019; 201:JB.00447-19. [PMID: 31383736 DOI: 10.1128/jb.00447-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
The DivJ-DivK-PleC signaling system of Caulobacter crescentus is a signaling network that regulates polar development and the cell cycle. This system is conserved in related bacteria, including the sister genus Brevundimonas Previous studies had shown unexpected phenotypic differences between the C. crescentus divK mutant and the analogous mutant of Brevundimonas subvibrioides, but further characterization was not performed. Here, phenotypic assays analyzing motility, adhesion, and pilus production (the latter characterized by a newly discovered bacteriophage) revealed that divJ and pleC mutants have phenotypes mostly similar to their C. crescentus homologs, but divK mutants maintain largely opposite phenotypes than expected. Suppressor mutations of the B. subvibrioides divK motility defect were involved in cyclic di-GMP (c-di-GMP) signaling, including the diguanylate cyclase dgcB, and cleD which is hypothesized to affect flagellar function in a c-di-GMP dependent fashion. However, the screen did not identify the diguanylate cyclase pleD Disruption of pleD in B. subvibrioides caused no change in divK or pleC phenotypes, but did reduce adhesion and increase motility of the divJ strain. Analysis of c-di-GMP levels in these strains revealed incongruities between c-di-GMP levels and displayed phenotypes with a notable result that suppressor mutations altered phenotypes but had little impact on c-di-GMP levels in the divK background. Conversely, when c-di-GMP levels were artificially manipulated, alterations of c-di-GMP levels in the divK strain had minimal impact on phenotypes. These results suggest that DivK performs a critical function in the integration of c-di-GMP signaling into the B. subvibrioides cell cycle.IMPORTANCE Cyclic di-GMP and associated signaling proteins are widespread in bacteria, but their role in physiology is often complex and difficult to predict through genomic level analyses. In C. crescentus, c-di-GMP has been integrated into the developmental cell cycle, but there is increasing evidence that environmental factors can impact this system as well. The research presented here suggests that the integration of these signaling networks could be more complex than previously hypothesized, which could have a bearing on the larger field of c-di-GMP signaling. In addition, this work further reveals similarities and differences in a conserved regulatory network between organisms in the same taxonomic family, and the results show that gene conservation does not necessarily imply close functional conservation in genetic pathways.
Collapse
|
37
|
The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. J Bacteriol 2019; 201:JB.00071-19. [PMID: 31109992 DOI: 10.1128/jb.00071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation in Caulobacter crescentus Holdfast production is tightly controlled via developmental regulators, as well as via environmental and physical signals. Here, we identify a novel mode of regulation of holdfast synthesis that involves chemotaxis proteins. We characterized the two identified chemotaxis clusters of C. crescentus and showed that only the previously characterized major cluster is involved in the chemotactic response toward different carbon sources. However, both chemotaxis clusters encoded in the C. crescentus genome play a role in biofilm formation and holdfast production by regulating the expression of hfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner, as follows: while the two CheA proteins negatively regulate hfiA expression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCE Chemosensory systems constitute major signal transduction pathways in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as the production of adhesins to enable irreversible adhesion to a surface and surface colonization. The C. crescentus genome encodes two complete chemotaxis clusters. Here, we characterized the second novel chemotaxis-like cluster. While only the major chemotaxis cluster is involved in chemotaxis, both chemotaxis systems modulate C. crescentus adhesion by controlling expression of the holdfast synthesis inhibitor HfiA. Here, we identify a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms in response to the environment.
Collapse
|
38
|
Structural Basis for YjbH Adaptor-Mediated Recognition of Transcription Factor Spx. Structure 2019; 27:923-936.e6. [DOI: 10.1016/j.str.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
|
39
|
Li H, Xue D, Tian F, Yuan X, Yang F, Chen H, Hutchins W, Yang CH, He C. Xanthomonas oryzae pv. oryzae Response Regulator TriP Regulates Virulence and Exopolysaccharide Production Via Interacting With c-di-GMP Phosphodiesterase PdeR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:729-739. [PMID: 30589364 DOI: 10.1094/mpmi-09-18-0260-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PdeR, a response regulator of the two-component system (TCS) with the cognate histidine kinase PdeK, has been shown to be an active phosphodiesterase (PDE) for intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) turnover and positively regulates the virulence of Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial blight of rice. To further reveal the key components and pathways involved in the PdeR-mediated c-di-GMP regulation of virulence, 16 PdeR-interacting proteins were identified, using the yeast two-hybrid (Y2H) assay. Among them, PXO_04421 (named as TriP, a putative transcriptional regulator interacting with PdeR) was verified via Y2H and glutathione-S-transferase pull-down assays, and its regulatory functions in bacterial virulence and exopolysaccharide (EPS) production were assessed by biochemical and genetic analysis. The REC domain of TriP specifically interacted with the EAL domain of PdeR. TriP promoted the PDE activity of PdeR to degrade c-di-GMP in the presence of PdeK. In-frame deletion in triP abolished the polar localization of PdeR in the cell. Notably, the ∆triP mutant showed significantly reduced virulence on susceptible rice leaves and impaired EPS production compared with wild type, whereas the double mutant ∆triP∆pdeR, like ∆pdeR, caused shorter lesion lengths and produced less EPS than ∆triP. In addition, cross-complementation showed in trans expression of pdeR in ∆triP restored its EPS production to near wild-type levels but not vice versa. Taken together, our results suggest that TriP is a novel regulator that is epistatic to PdeR in positively regulating virulence expression in X. oryzae pv. oryzae.
Collapse
Affiliation(s)
- Haiyun Li
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- 2 Jingtang Port Office of Hebei Entry-Exit Inspection and Quarantine Bureau, Tangshan 063611, China
| | - Dingrong Xue
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochen Yuan
- 3 Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Fenghuan Yang
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Ching-Hong Yang
- 3 Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Chenyang He
- 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
40
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
41
|
Moya-Beltrán A, Rojas-Villalobos C, Díaz M, Guiliani N, Quatrini R, Castro M. Nucleotide Second Messenger-Based Signaling in Extreme Acidophiles of the Acidithiobacillus Species Complex: Partition Between the Core and Variable Gene Complements. Front Microbiol 2019; 10:381. [PMID: 30899248 PMCID: PMC6416229 DOI: 10.3389/fmicb.2019.00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Cyclic and linear nucleotides are key elements of the signal transduction networks linking perception of the environment to specific cellular behavior of prokaryotes. These molecular mechanisms are particularly important in bacteria exposed to different, and frequently simultaneous, types of extreme conditions. This is the case in acidithiobacilli, a group of extremophilic bacteria thriving in highly acidic biotopes, that must also cope with significant variations in temperature, osmotic potentials and concentrations of various transition metals and metalloids. Environmental cues sensed by bacteria are transduced into differential levels of nucleotides acting as intracellular second messengers, promoting the activation or inhibition of target components and eliciting different output phenotypes. Cyclic (c) di-GMP, one of the most common bacterial second messengers, plays a key role in lifestyle changes in many bacteria, including acidithiobacilli. The presence of functional c-di-GMP-dependent signal transduction pathways in representative strains of the best-known linages of this species complex has been reported. However, a comprehensive panorama of the c-di-GMP modulated networks, the cognate input signals and output responses, are still missing for this group of extremophiles. Moreover, little fundamental understanding has been gathered for other nucleotides acting as second messengers. Taking advantage of the increasing number of sequenced genomes of the taxon, here we address the challenge of disentangling the nucleotide-driven signal transduction pathways in this group of polyextremophiles using comparative genomic tools and strategies. Results indicate that the acidithiobacilli possess all the genetic elements required to establish functional transduction pathways based in three different nucleotide-second messengers: (p)ppGpp, cyclic AMP (cAMP), and c-di-GMP. The elements related with the metabolism and transduction of (p)ppGpp and cAMP appear highly conserved, integrating signals related with nutrient starvation and polyphosphate metabolism, respectively. In contrast, c-di-GMP networks appear diverse and complex, differing both at the species and strain levels. Molecular elements of c-di-GMP metabolism and transduction were mostly found scattered along the flexible genome of the acidithiobacilli, allowing the identification of probable control modules that could be critical for substrate colonization, biofilm development and intercellular interactions. These may ultimately convey increased endurance to environmental stress and increased potential for gene sharing and adaptation to changing conditions.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Camila Rojas-Villalobos
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Mauricio Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Matías Castro
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
42
|
Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, Eberl L, Tolker-Nielsen T. Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia. Front Microbiol 2019; 9:3286. [PMID: 30687272 PMCID: PMC6335245 DOI: 10.3389/fmicb.2018.03286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Burkholderia cenocepacia H111 is an opportunistic pathogen associated with chronic lung infections in cystic fibrosis patients. Biofilm formation, motility and virulence of B. cenocepacia are regulated by the second messenger cyclic di-guanosine monophosphate (c-di-GMP). In the present study, we analyzed the role of all 25 putative c-di-GMP metabolizing proteins of B. cenocepacia H111 with respect to motility, colony morphology, pellicle formation, biofilm formation, and virulence. We found that RpfR is a key regulator of c-di-GMP signaling in B. cenocepacia, affecting a broad spectrum of phenotypes under various environmental conditions. In addition, we identified Bcal2449 as a regulator of B. cenocepacia virulence in Galleria mellonella larvae. While Bcal2449 consists of protein domains that may catalyze both c-di-GMP synthesis and degradation, only the latter was essential for larvae killing, suggesting that a decreased c-di-GMP level mediated by the Bcal2449 protein is required for virulence of B. cenocepacia. Finally, our work suggests that some individual proteins play a role in regulating exclusively motility (CdpA), biofilm formation (Bcam1160) or both (Bcam2836).
Collapse
Affiliation(s)
- Anja M Richter
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Schmid
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Rebecca Shilling
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Angela Suppiger
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Leo Eberl
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Laventie BJ, Sangermani M, Estermann F, Manfredi P, Planes R, Hug I, Jaeger T, Meunier E, Broz P, Jenal U. A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa. Cell Host Microbe 2018; 25:140-152.e6. [PMID: 30581112 DOI: 10.1016/j.chom.2018.11.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa effectively colonizes host epithelia using pili as primary adhesins. Here we uncover a surface-specific asymmetric virulence program that enhances P. aeruginosa host colonization. We show that when P. aeruginosa encounters surfaces, the concentration of the second messenger c-di-GMP increases within a few seconds. This leads to surface adherence and virulence induction by stimulating pili assembly through activation of the c-di-GMP receptor FimW. Surface-attached bacteria divide asymmetrically to generate a piliated, surface-committed progeny (striker) and a flagellated, motile offspring that leaves the surface to colonize distant sites (spreader). Cell differentiation is driven by a phosphodiesterase that asymmetrically positions to the flagellated pole, thereby maintaining c-di-GMP levels low in the motile offspring. Infection experiments demonstrate that cellular asymmetry strongly boosts infection spread and tissue damage. Thus, P. aeruginosa promotes surface colonization and infection transmission through a cooperative virulence program that we termed Touch-Seed-and-Go.
Collapse
Affiliation(s)
| | - Matteo Sangermani
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Fabienne Estermann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Pablo Manfredi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Isabelle Hug
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Tina Jaeger
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Petr Broz
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Urs Jenal
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
44
|
Berne C, Ellison CK, Agarwal R, Severin GB, Fiebig A, Morton RI, Waters CM, Brun YV. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA. Mol Microbiol 2018; 110:219-238. [PMID: 30079982 DOI: 10.1111/mmi.14099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
To permanently attach to surfaces, Caulobacter crescentusproduces a strong adhesive, the holdfast. The timing of holdfast synthesis is developmentally regulated by cell cycle cues. When C. crescentusis grown in a complex medium, holdfast synthesis can also be stimulated by surface sensing, in which swarmer cells rapidly synthesize holdfast in direct response to surface contact. In contrast to growth in complex medium, here we show that when cells are grown in a defined medium, surface contact does not trigger holdfast synthesis. Moreover, we show that in a defined medium, flagellum synthesis and regulation of holdfast production are linked. In these conditions, mutants lacking a flagellum attach to surfaces over time more efficiently than either wild-type strains or strains harboring a paralyzed flagellum. Enhanced adhesion in mutants lacking flagellar components is due to premature holdfast synthesis during the cell cycle and is regulated by the holdfast synthesis inhibitor HfiA. hfiA transcription is reduced in flagellar mutants and this reduction is modulated by the diguanylate cyclase developmental regulator PleD. We also show that, in contrast to previous predictions, flagella are not necessarily required for C. crescentus surface sensing in the absence of flow, and that arrest of flagellar rotation does not stimulate holdfast synthesis. Rather, our data support a model in which flagellum assembly feeds back to control holdfast synthesis via HfiA expression in a c-di-GMP-dependent manner under defined nutrient conditions.
Collapse
Affiliation(s)
- Cécile Berne
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Radhika Agarwal
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Robert I Morton
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| |
Collapse
|
45
|
Polar Localization Hub Protein PopZ Restrains Adaptor-Dependent ClpXP Proteolysis in Caulobacter crescentus. J Bacteriol 2018; 200:JB.00221-18. [PMID: 30082457 DOI: 10.1128/jb.00221-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/27/2018] [Indexed: 01/20/2023] Open
Abstract
In Caulobacter crescentus, timely degradation of several proteins by the ClpXP protease is critical for proper cell cycle progression. During the cell cycle, the ClpXP protease, the substrate CtrA, and many other proteins are localized to the stalked pole dependent on a polar interaction hub composed of PopZ protein oligomers. Prior work suggests that the localization of ClpXP, protease substrates, and cofactors is needed for recognition of substrates, such as CtrA, by ClpXP. Here, we formally test this hypothesis by examining the role of PopZ in ClpXP activity and find, surprisingly, that CtrA degradation is enhanced in cells lacking polar localization due to loss of PopZ. The ClpXP adaptor CpdR is required for this enhanced degradation of CtrA and other adaptor-dependent substrates, but adaptor-independent substrate degradation is not affected upon loss of PopZ. We find that overexpression of PopZ also leads to faster degradation of CtrA but is likely due to nonphysiologically relevant recognition of CtrA by ClpXP alone, as loss of CpdR does not affect this enhancement. Our main conclusion is that loss of PopZ, and therefore loss of polar localization, does not result in the loss of ClpXP-regulated proteolysis, as would be predicted from a model which requires polar localization of ClpXP for its activation. Rather, our data point to a model where PopZ normally restrains ClpXP proteolysis by promoting the inactivation of the CpdR adaptor, perhaps through the activity and localization of the CckA kinase.IMPORTANCE Regulated proteolysis is critical for the cell cycle progression of bacteria, such as Caulobacter crescentus According to one model, this regulated proteolysis requires localization of the ClpXP protease at the stalked pole for its subsequent degradation of substrates, such as CtrA. This study offers evidence that supports an alternative model to explain how localization might influence protein degradation. Using a delocalized in vivo system created by the deletion of a polar organizing protein, PopZ, we show that activation of the ClpXP protease is independent of its polar localization. The data point to a role for PopZ in restraining ClpXP activity, likely by controlling the activity of upstream regulators of protease activity, such as CckA, though changes in its localization.
Collapse
|
46
|
Schäper S, Yau HCL, Krol E, Skotnicka D, Heimerl T, Gray J, Kaever V, Søgaard-Andersen L, Vollmer W, Becker A. Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLoS Genet 2018; 14:e1007594. [PMID: 30102748 PMCID: PMC6107284 DOI: 10.1371/journal.pgen.1007594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Members of the Rhizobiales (class of α-proteobacteria) display zonal peptidoglycan cell wall growth at one cell pole, contrasting with the dispersed mode of cell wall growth along the sidewalls of many other rod-shaped bacteria. Here we show that the seven-transmembrane receptor (7TMR) protein RgsP (SMc00074), together with the putative membrane-anchored peptidoglycan metallopeptidase RgsM (SMc02432), have key roles in unipolar peptidoglycan formation during growth and at mid-cell during cell division in Sinorhizobium meliloti. RgsP is composed of a periplasmic globular 7TMR-DISMED2 domain, a membrane-spanning region, and cytoplasmic PAS, GGDEF and EAL domains. The EAL domain confers phosphodiesterase activity towards the second messenger cyclic di-GMP, a key regulatory player in the transition between bacterial lifestyles. RgsP and RgsM localize to sites of zonal cell wall synthesis at the new cell pole and cell divison site, suggesting a role in cell wall biogenesis. The two proteins are essential for cell wall biogenesis and cell growth. Cells depleted of RgsP or RgsM had an altered muropeptide composition and RgsM binds to peptidoglycan. RgsP and RgsM orthologs are functional when interchanged between α-rhizobial species pointing to a conserved mechanism for cell wall biogenesis/remodeling within the Rhizobiales. Overall, our findings suggest that RgsP and RgsM contribute to the regulation of unipolar cell wall biogenesis in α-rhizobia.
Collapse
Affiliation(s)
- Simon Schäper
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Hamish C. L. Yau
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizaveta Krol
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Joe Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae. J Bacteriol 2018; 200:JB.00005-18. [PMID: 29610212 DOI: 10.1128/jb.00005-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
In Vibrio cholerae, high intracellular cyclic di-GMP (c-di-GMP) concentration are associated with a biofilm lifestyle, while low intracellular c-di-GMP concentrations are associated with a motile lifestyle. c-di-GMP also regulates other behaviors, such as acetoin production and type II secretion; however, the extent of phenotypes regulated by c-di-GMP is not fully understood. We recently determined that the sequence upstream of the DNA repair gene encoding 3-methyladenine glycosylase (tag) was positively induced by c-di-GMP, suggesting that this signaling system might impact DNA repair pathways. We identified a DNA region upstream of tag that is required for transcriptional induction by c-di-GMP. We further showed that c-di-GMP induction of tag expression was dependent on the c-di-GMP-dependent biofilm regulators VpsT and VpsR. In vitro binding assays and heterologous host expression studies show that VpsT acts directly at the tag promoter in response to c-di-GMP to induce tag expression. Last, we determined that strains with high c-di-GMP concentrations are more tolerant of the DNA-damaging agent methyl methanesulfonate. Our results indicate that the regulatory network of c-di-GMP in V. cholerae extends beyond biofilm formation and motility to regulate DNA repair through the VpsR/VpsT c-di-GMP-dependent cascade.IMPORTANCEVibrio cholerae is a prominent human pathogen that is currently causing a pandemic outbreak in Haiti, Yemen, and Ethiopia. The second messenger molecule cyclic di-GMP (c-di-GMP) mediates the transitions in V. cholerae between a sessile biofilm-forming state and a motile lifestyle, both of which are important during V. cholerae environmental persistence and human infections. Here, we report that in V. cholerae c-di-GMP also controls DNA repair. We elucidate the regulatory pathway by which c-di-GMP increases DNA repair, allowing this bacterium to tolerate high concentrations of mutagens at high intracellular levels of c-di-GMP. Our work suggests that DNA repair and biofilm formation may be linked in V. cholerae.
Collapse
|
48
|
Abstract
Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| |
Collapse
|
49
|
A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria. mBio 2018; 9:mBio.00809-18. [PMID: 29789370 PMCID: PMC5964349 DOI: 10.1128/mbio.00809-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The alphaproteobacterial general stress response is governed by a conserved partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. In the model organism Caulobacter crescentus, PhyR was proposed to be phosphorylated by the histidine kinase PhyK, but biochemical evidence in support of such a role of PhyK is missing. Here, we identify a single-domain response regulator, MrrA, that is essential for general stress response activation in C. crescentus We demonstrate that PhyK does not function as a kinase but accepts phosphoryl groups from MrrA and passes them on to PhyR, adopting the role of a histidine phosphotransferase. MrrA is phosphorylated by at least six histidine kinases that likely serve as stress sensors. MrrA also transfers phosphate to LovK, a histidine kinase involved in C. crescentus holdfast production and attachment, which also negatively regulates the general stress response. We show that LovK together with the response regulator LovR acts as a phosphate sink to redirect phosphate flux away from the PhyKR branch. In agreement with the biochemical data, an mrrA mutant is unable to activate the general stress response and shows a hyperattachment phenotype, which is linked to decreased expression of the major holdfast inhibitory protein HfiA. We propose that MrrA serves as a central phosphorylation hub that coordinates the general stress response with C. crescentus development and other adaptive behaviors. The characteristic bow-tie architecture of this phosphorylation network with MrrA as the central knot may expedite the evolvability and species-specific niche adaptation of this group of bacteria.IMPORTANCE Two-component systems (TCSs) consisting of a histidine kinase and a cognate response regulator are predominant signal transduction systems in bacteria. To avoid cross talk, TCSs are generally thought to be highly insulated from each other. However, this notion is based largely on studies of the HisKA subfamily of histidine kinases, while little information is available for the HWE and HisKA2 subfamilies. The latter have been implicated in the alphaproteobacterial general stress response. Here, we show that in the model organism Caulobacter crescentus an atypical FATGUY-type single-domain response regulator, MrrA, is highly promiscuous in accepting and transferring phosphoryl groups from and to multiple up- and downstream kinases, challenging the current view of strictly insulated TCSs. Instead, we propose that FATGUY response regulators have evolved in alphaproteobacteria as central phosphorylation hubs to broadly sample information and distribute phosphoryl groups between the general stress response pathway and other TCSs, thereby coordinating multiple cellular behaviors.
Collapse
|
50
|
Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U. Second messenger-mediated tactile response by a bacterial rotary motor. Science 2018; 358:531-534. [PMID: 29074777 DOI: 10.1126/science.aan5353] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/15/2017] [Indexed: 01/26/2023]
Abstract
When bacteria encounter surfaces, they respond with surface colonization and virulence induction. The mechanisms of bacterial mechanosensation and downstream signaling remain poorly understood. Here, we describe a tactile sensing cascade in Caulobacter crescentus in which the flagellar motor acts as sensor. Surface-induced motor interference stimulated the production of the second messenger cyclic diguanylate by the motor-associated diguanylate cyclase DgcB. This led to the allosteric activation of the glycosyltransferase HfsJ to promote rapid synthesis of a polysaccharide adhesin and surface anchoring. Although the membrane-embedded motor unit was essential for surface sensing, mutants that lack external flagellar structures were hypersensitive to mechanical stimuli. Thus, the bacterial flagellar motor acts as a tetherless sensor reminiscent of mechanosensitive channels.
Collapse
Affiliation(s)
- Isabelle Hug
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Switzerland
| | - Siddharth Deshpande
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Switzerland
| | - Kathrin S Sprecher
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Switzerland
| | - Thomas Pfohl
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Switzerland.
| |
Collapse
|