1
|
Pérez-Baena MJ, Cordero-Pérez FJ, Pérez-Losada J, Holgado-Madruga M. The Role of GAB1 in Cancer. Cancers (Basel) 2023; 15:4179. [PMID: 37627207 PMCID: PMC10453317 DOI: 10.3390/cancers15164179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleckstrin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event recruits SH2 domain-containing proteins like SHP2, PI3K's p85 subunit, CRK, and others, thereby activating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin, limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer. GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend a worse prognosis in multiple cancer types. This review focuses on GAB1's influence on cellular transformation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis-each of these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies, making it a promising target for future anticancer strategies.
Collapse
Affiliation(s)
- Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
- Virtual Institute for Good Health and Well Being (GLADE), European Campus of City Universities (EC2U), 86073 Poitiers, France
| |
Collapse
|
2
|
Lv T, Xu J, Yuan H, Wang J, Jiang X. Dual Function of Par3 in Tumorigenesis. Front Oncol 2022; 12:915957. [PMID: 35875120 PMCID: PMC9305838 DOI: 10.3389/fonc.2022.915957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Cell maintenance and the establishment of cell polarity involve complicated interactions among multiple protein complexes as well as the regulation of different signaling pathways. As an important cell polarity protein, Par3 is evolutionarily conserved and involved in tight junction formation as well as tumorigenesis. In this review, we aimed to explore the function of Par3 in tumorigenesis. Research has shown that Par3 exhibits dual functions in human cancers, both tumor-promoting and tumor-suppressive. Here, we focus on the activities of Par3 in different stages and types of tumors, aiming to offer a new perspective on the molecular mechanisms that regulate the functions of Par3 in tumor development. Tumor origin, tumor microenvironment, tumor type, cell density, cell–cell contact, and the synergistic effect of Par3 and other tumor-associated signaling pathways may be important reasons for the dual function of Par3. The important role of Par3 in mammalian tumorigenesis and potential signaling pathways is context dependent.
Collapse
Affiliation(s)
- Tao Lv
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
- Key Laboratory of Yunnan Province Universities of Qujing Natural History and Early Vertebrate Evolution, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jiashun Xu
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Hemei Yuan
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| |
Collapse
|
3
|
Banerjee SL, Lessard F, Chartier FJM, Jacquet K, Osornio-Hernandez AI, Teyssier V, Ghani K, Lavoie N, Lavoie JN, Caruso M, Laprise P, Elowe S, Lambert JP, Bisson N. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep 2022; 40:111031. [PMID: 35793621 DOI: 10.1016/j.celrep.2022.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.
Collapse
Affiliation(s)
- Sara L Banerjee
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Ana I Osornio-Hernandez
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Karim Ghani
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Josée N Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Manuel Caruso
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Patrick Laprise
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Centre de recherche en données massives de l'Université Laval, Québec, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Endocrinologie-néphrologie, Québec, QC, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Di Meo D, Ravindran P, Sadhanasatish T, Dhumale P, Püschel AW. The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep 2021; 37:110141. [PMID: 34936879 DOI: 10.1016/j.celrep.2021.110141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neurons are highly polarized cells that display characteristic differences in the organization of their organelles in axons and dendrites. The kinases SadA and SadB (SadA/B) promote the formation of distinct axonal and dendritic extensions during the development of cortical and hippocampal neurons. Here, we show that SadA/B are required for the specific dynamics of axonal mitochondria. Ankyrin B (AnkB) stimulates the activity of SadA/B that function as regulators of mitochondrial dynamics through the phosphorylation of tau. Suppression of SadA/B or AnkB in cortical neurons induces the elongation of mitochondria by disrupting the balance of fission and fusion. SadA/B-deficient neurons show an accumulation of hyper-fused mitochondria and activation of the integrated stress response (ISR). The normal dynamics of axonal mitochondria could be restored by mild actin destabilization. Thus, the elongation after loss of SadA/B results from an excessive stabilization of actin filaments and reduction of Drp1 recruitment to mitochondria.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany
| | - Tanmay Sadhanasatish
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Pratibha Dhumale
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
5
|
Zhao X, Garcia JQ, Tong K, Chen X, Yang B, Li Q, Dai Z, Shi X, Seiple IB, Huang B, Guo S. Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. SCIENCE ADVANCES 2021; 7:eabg1244. [PMID: 34117063 PMCID: PMC8195473 DOI: 10.1126/sciadv.abg1244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In the developing embryos, the cortical polarity regulator Par-3 is critical for establishing Notch signaling asymmetry between daughter cells during asymmetric cell division (ACD). How cortically localized Par-3 establishes asymmetric Notch activity in the nucleus is not understood. Here, using in vivo time-lapse imaging of mitotic radial glia progenitors in the developing zebrafish forebrain, we uncover that during horizontal ACD along the anteroposterior embryonic axis, endosomes containing the Notch ligand DeltaD (Dld) move toward the cleavage plane and preferentially segregate into the posterior (subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and dynein motor complex. Using label retention expansion microscopy, we further detect Par-3 in the cytosol colocalizing the dynein light intermediate chain 1 (Dlic1) onto Dld endosomes. Par-3, Dlic1, and Dld are associated in protein complexes in vivo. Our data reveal an unanticipated mechanism by which cytoplasmic Par-3 directly polarizes Notch signaling components during ACD.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Tong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingye Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Yang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Qi Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhipeng Dai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
7
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
8
|
CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci U S A 2020; 117:2645-2655. [PMID: 31964836 DOI: 10.1073/pnas.1908787117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.
Collapse
|
9
|
Lu NN, Tan C, Sun NH, Shao LX, Liu XX, Gao YP, Tao RR, Jiang Q, Wang CK, Huang JY, Zhao K, Wang GF, Liu ZR, Fukunaga K, Lu YM, Han F. Cholinergic Grb2-Associated-Binding Protein 1 Regulates Cognitive Function. Cereb Cortex 2019; 28:2391-2404. [PMID: 28591834 DOI: 10.1093/cercor/bhx141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/21/2017] [Indexed: 12/21/2022] Open
Abstract
Grb2-associated-binding protein 1 (Gab1) is a docking/scaffolding molecule known to play an important role in cell growth and survival. Here, we report that Gab1 is decreased in cholinergic neurons in Alzheimer's disease (AD) patients and in a mouse model of AD. In mice, selective ablation of Gab1 in cholinergic neurons in the medial septum impaired learning and memory and hippocampal long-term potentiation. Gab1 ablation also inhibited SK channels, leading to an increase in firing in septal cholinergic neurons. Gab1 overexpression, on the other hand, improved cognitive function and restored hippocampal CaMKII autorphosphorylation in AD mice. These results suggest that Gab1 plays an important role in the pathophysiology of AD and may represent a novel therapeutic target for diseases involving cholinergic dysfunction.
Collapse
Affiliation(s)
- Nan-Nan Lu
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning-He Sun
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Xiao Shao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiu-Xiu Liu
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yin-Ping Gao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Rong-Rong Tao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Quan Jiang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Kun Wang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji-Yun Huang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kui Zhao
- Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guang-Fa Wang
- Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Rong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Key Laboratory of Medical Neurobiology of Ministry of Health of China, Department of Neurobiology,Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Han
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang X, Peng J, Yang Z, Zhou PJ, An N, Wei L, Zhu HH, Lu J, Fang YX, Gao WQ. Elevated expression of Gab1 promotes breast cancer metastasis by dissociating the PAR complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:27. [PMID: 30665442 PMCID: PMC6341703 DOI: 10.1186/s13046-019-1025-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Breast cancer (BCa) remains as the second leading cause of cancer-related death in women worldwide. The majority of the deaths are due to its progression to metastatic BCa. Although Grb2-associated binding protein 1 (Gab1) has been implicated in tumor proliferation and metastasis in multiple tumors including colorectal cancer, hepatocellular carcinoma and ovarian cancer, whether and how it regulates BCa metastasis are still poorly understood. METHODS Western blot assay and immunohistochemical (IHC) staining were performed to assess expression of Gab1 in primary and metastatic BCa clinical samples. Biological function assay studies in vitro and in vivo were employed to investigate the functions of Gab1 during BCa metastasis. Co-immunoprecipitation (co-IP) assessment, western blot assay and immunofluorescence (IF) staining were carried out to investigate the underlying mechanism for the function of Gab1 on BCa metastasis. RESULTS In this study, we found that expression level of Gab1 was increased significantly in BCa tissue samples compared to that in benign mammary hyperplastic tissues. Furthermore, elevated expression of Gab1 was positively associated with metastasis in HER2 and TNBC subtypes of BCa. In BCa cell line MDA-MB-231 and SK-BR3 cells, stable overexpression of Gab1 promoted, while knockdown of Gab1 inhibited cell migration in vitro and metastasis in vivo. Mechanistically, overexpression of Gab1 enhanced its interaction with Par3, a key component of the polarity-associated partitioning defective (PAR) complex, leading to a dissociation of the PAR complex. Consequently, dissociated PAR complex induced epithelial-to-mesenchymal transition (EMT) for breast tumor metastasis. By restoration assessment, we found that only re-expression of a fully functional Gab1, but not a mutant Gab1 that harbors either Par3 binding-deficiency or Par1b binding-deficiency, could reverse the repressive phenotype of cell migration in vitro and metastasis in vivo due to Gab1 knockdown. CONCLUSIONS Our findings indicate that elevated expression of Gab1 promotes BCa metastasis by dissociating the PAR complex that leads to EMT, implicating a role of Gab1 as a potential biomarker of metastatic BCa. Moreover, inhibition of Gab1 expression might be a promising therapeutic strategy for BCa metastasis.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jing Peng
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ziqiang Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Na An
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianzi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
11
|
Emptage RP, Lemmon MA, Ferguson KM, Marmorstein R. Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Structure 2018; 26:1137-1143.e3. [PMID: 30099988 DOI: 10.1016/j.str.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
The kinase associated-1 (KA1) domain is found at the C-terminus of multiple Ser/Thr protein kinases from yeast to humans, and has been assigned autoinhibitory, membrane-binding, and substrate-targeting roles. Here, we report the crystal structure of the MARK1 kinase/UBA domain bound to its autoinhibitory KA1 domain, revealing an unexpected interface at the αD helix and contacts with both the N- and C-lobes of the kinase domain. We confirm the binding interface location in kinetic studies of variants mutated on the kinase domain surface. Together with other MARK kinase structures, the data implicate that the KA1 domain blocks peptide substrate binding. The structure highlights the kinase-specific autoinhibitory binding modes of different KA1 domains, and provides potential new avenues by which to intervene therapeutically in Alzheimer's disease and cancers in which MARK1 or related kinases are implicated.
Collapse
Affiliation(s)
- Ryan P Emptage
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathryn M Ferguson
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Emptage RP, Schoenberger MJ, Ferguson KM, Marmorstein R. Intramolecular autoinhibition of checkpoint kinase 1 is mediated by conserved basic motifs of the C-terminal kinase-associated 1 domain. J Biol Chem 2017; 292:19024-19033. [PMID: 28972186 DOI: 10.1074/jbc.m117.811265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Precise control of the cell cycle allows for timely repair of genetic material prior to replication. One factor intimately involved in this process is checkpoint kinase 1 (Chk1), a DNA damage repair inducing Ser/Thr protein kinase that contains an N-terminal kinase domain and a C-terminal regulatory region consisting of a ∼100-residue linker followed by a putative kinase-associated 1 (KA1) domain. We report the crystal structure of the human Chk1 KA1 domain, demonstrating striking structural homology with other sequentially diverse KA1 domains. Separately purified Chk1 kinase and KA1 domains are intimately associated in solution, which results in inhibition of Chk1 kinase activity. Using truncation mutants and site-directed mutagenesis, we define the inhibitory face of the KA1 domain as a series of basic residues residing on two conserved regions of the primary structure. These findings point to KA1-mediated intramolecular autoinhibition as a key regulatory mechanism of human Chk1, and provide new therapeutic possibilities with which to attack this validated oncology target with small molecules.
Collapse
Affiliation(s)
- Ryan P Emptage
- From the Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| | - Megan J Schoenberger
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Kathryn M Ferguson
- the Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, .,the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
13
|
Chlapek P, Zitterbart K, Kren L, Filipova L, Sterba J, Veselska R. Uniformity under in vitro conditions: Changes in the phenotype of cancer cell lines derived from different medulloblastoma subgroups. PLoS One 2017; 12:e0172552. [PMID: 28231263 PMCID: PMC5322931 DOI: 10.1371/journal.pone.0172552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma comprises four main subgroups (WNT, SHH, Group 3 and Group 4) originally defined by transcriptional profiling. In primary medulloblastoma tissues, these groups are thought to be distinguishable using the immunohistochemical detection of β-catenin, filamin A, GAB1 and YAP1 protein markers. To investigate the utility of these markers for in vitro studies using medulloblastoma cell lines, immunoblotting and indirect immunofluorescence were employed for the detection of β-catenin, filamin A, GAB1 and YAP1 in both DAOY and D283 Med reference cell lines and the panel of six medulloblastoma cell lines derived in our laboratory from the primary tumor tissues of known molecular subgroups. Immunohistochemical detection of these markers was performed on formalin-fixed paraffin-embedded tissue of the matching primary tumors. The results revealed substantial divergences between the primary tumor tissues and matching cell lines in the immunoreactivity pattern of medulloblastoma-subgroup-specific protein markers. Regardless of the molecular subgroup of the primary tumor, all six patient-derived medulloblastoma cell lines exhibited a uniform phenotype: immunofluorescence showed the nuclear localization of YAP1, accompanied by strong cytoplasmic positivity for β-catenin and filamin A, as well as weak positivity for GAB1. The same immunoreactivity pattern was also found in both DAOY and D283 Med reference medulloblastoma cell lines. Therefore, we can conclude that various medulloblastoma cell lines tend to exhibit the same characteristics of protein marker expression under standard in vitro conditions. Such a finding emphasizes the importance of the analyses of primary tumors in clinically oriented medulloblastoma research and the urgent need to develop in vitro models of improved clinical relevance, such as 3D cultures and organotypic slice cultures.
Collapse
Affiliation(s)
- Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Zitterbart
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Filipova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
14
|
Abstract
PAR-1/MARK kinases are conserved serine/threonine kinases that are essential regulators of cell polarity. PAR-1/MARK kinases localize and function in opposition to the anterior PAR proteins to control the asymmetric distribution of factors in a wide variety polarized cells. In this review, we discuss the mechanisms that control the localization and activity of PAR-1/MARK kinases, including their antagonistic interactions with the anterior PAR proteins. We focus on the role PAR-1 plays in the asymmetric division of the Caenorhabditis elegans zygote, in the establishment of the anterior/posterior axis in the Drosophila oocyte and in the control of microtubule dynamics in mammalian neurons. In addition to conserved aspects of PAR-1 biology, we highlight the unique ways in which PAR-1 acts in these distinct cell types to orchestrate their polarization. Finally, we review the connections between disruptions in PAR-1/MARK function and Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Youjun Wu
- Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
15
|
Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Biochem J 2016; 474:385-398. [PMID: 27879374 DOI: 10.1042/bcj20160792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/11/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022]
Abstract
Protein kinases are frequently regulated by intramolecular autoinhibitory interactions between protein modules that are reversed when these modules bind other 'activating' protein or membrane-bound targets. One group of kinases, the MAP/microtubule affinity-regulating kinases (MARKs) contain a poorly understood regulatory module, the KA1 (kinase associated-1) domain, at their C-terminus. KA1 domains from MARK1 and several related kinases from yeast to humans have been shown to bind membranes containing anionic phospholipids, and peptide ligands have also been reported. Deleting or mutating the C-terminal KA1 domain has been reported to activate the kinase in which it is found - also suggesting an intramolecular autoinhibitory role. Here, we show that the KA1 domain of human MARK1 interacts with, and inhibits, the MARK1 kinase domain. Using site-directed mutagenesis, we identify residues in the KA1 domain required for this autoinhibitory activity, and find that residues involved in autoinhibition and in anionic phospholipid binding are the same. We also demonstrate that a 'mini' MARK1 becomes activated upon association with vesicles containing anionic phospholipids, but only if the protein is targeted to these vesicles by a second signal. These studies provide a mechanistic basis for understanding how MARK1 and its relatives may require more than one signal at the membrane surface to control their activation at the correct location and time. MARK family kinases have been implicated in a plethora of disease states including Alzheimer's, cancer, and autism, so advancing our understanding of their regulatory mechanisms may ultimately have therapeutic value.
Collapse
|
16
|
Zhang Y, Xu Y, Liu S, Guo X, Cen D, Xu J, Li H, Li K, Zeng C, Lu L, Zhou Y, Shen H, Cheng H, Zhang X, Ke Y. Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma. Cell Res 2016; 26:1226-1241. [PMID: 27811945 DOI: 10.1038/cr.2016.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Shuwan Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Dong Cen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Heyuan Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kaijun Li
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Chunlai Zeng
- Lishui Central Hospital, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, China
| | - Linrong Lu
- The Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
17
|
Zhang P, Wang S, Wang S, Qiao J, Zhang L, Zhang Z, Chen Z. Dual function of partitioning-defective 3 in the regulation of YAP phosphorylation and activation. Cell Discov 2016; 2:16021. [PMID: 27462467 PMCID: PMC4932730 DOI: 10.1038/celldisc.2016.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
Partitioning-defective 3 (Par3), a key component of the evolutionarily conserved polarity PAR complex (Par3/Par6/aPKC), controls cell polarity and contributes to cell migration, proliferation and tumor development. Emerging evidence indicates that cell polarity proteins function as upstream modulators that regulate the Hippo pathway. However, little is known about Par3’s involvement in the Hippo pathway. Here, we find Par3 and YAP dynamically co-localize in different subcellular compartments; that is, the membrane, cytoplasm and nucleus, in a cell-density-dependent manner. Interestingly, Par3 knockdown promotes YAP phosphorylation, leading to a significant impairment of YAP nuclear translocation at low cell density, but not at high density, in MDCK cells. Furthermore, via its third PDZ domain, Par3 directly binds to the PDZ-binding motif of YAP. The interaction is required for regulating YAP phosphorylation and nuclear localization. Mechanistically, Par3, as a scaffold protein, associates with LATS1 and protein phosphatase 1, α subunit (PP1A) in the cytoplasm and nucleus. Par3 promotes the dephosphorylation of LATS1 and YAP, thus enhancing YAP activation and cell proliferation. Strikingly, we also find that under the condition of PP1A knockdown, Par3 expression promotes YAP hyperphosphorylation, leading to the suppression of YAP activity and its downstream targets. Par3 expression results in differential effects on YAP phosphorylation and activation in different tumor cell lines. These findings indicate that Par3 may have a dual role in regulating the activation of the Hippo pathway, in a manner possibly dependent on cellular context or cell type in response to cell–cell contact and cell polarity signals.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sai Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Qiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhengjun Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Structural insight into the mechanism of synergistic autoinhibition of SAD kinases. Nat Commun 2015; 6:8953. [PMID: 26626945 PMCID: PMC4686854 DOI: 10.1038/ncomms9953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/20/2015] [Indexed: 11/10/2022] Open
Abstract
The SAD/BRSK kinases participate in various important life processes, including neural development, cell cycle and energy metabolism. Like other members of the AMPK family, SAD contains an N-terminal kinase domain followed by the characteristic UBA and KA1 domains. Here we identify a unique autoinhibitory sequence (AIS) in SAD kinases, which exerts autoregulation in cooperation with UBA. Structural studies of mouse SAD-A revealed that UBA binds to the kinase domain in a distinct mode and, more importantly, AIS nestles specifically into the KD-UBA junction. The cooperative action of AIS and UBA results in an ‘αC-out' inactive kinase, which is conserved across species and essential for presynaptic vesicle clustering in C. elegans. In addition, the AIS, along with the KA1 domain, is indispensable for phospholipid binding. Taken together, these data suggest a model for synergistic autoinhibition and membrane activation of SAD kinases. The SAD kinases contain a UBA domain that binds to the kinase domain and has a role in autoinhibition and allosteric activation of the AMPK homoenzyme. Here, the authors identify an autoinhibitory sequence in SAD and show that the UBA domain synergistically functions as an autoinhibitory domain.
Collapse
|
20
|
Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY, Guan KL. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 2015; 16:975-85. [PMID: 26116754 DOI: 10.15252/embr.201439951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway plays a major role in organ size control, and its dysregulation contributes to tumorigenesis. The major downstream effectors of the Hippo pathway are the YAP/TAZ transcription co-activators, which are phosphorylated and inhibited by the Hippo pathway kinase LATS1/2. Here, we report a novel mechanism of TAZ regulation by the tight junction protein PARD3. PARD3 promotes the interaction between PP1A and LATS1 to induce LATS1 dephosphorylation and inactivation, therefore leading to dephosphorylation and activation of TAZ. The cytoplasmic, but not the tight junction complex associated, PARD3 is responsible for TAZ regulation. Our study indicates a potential molecular basis for cell growth-promoting function of PARD3 by modulating the Hippo pathway signaling in response to cell contact and cell polarity signals.
Collapse
Affiliation(s)
- Xian-Bo Lv
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Shanghai Colorectal Cancer Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China School of Life Science, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun-Liang Guan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology Fudan University Shanghai Medical College, Shanghai, China Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene 2015; 35:1271-82. [DOI: 10.1038/onc.2015.184] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022]
|
22
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
23
|
Rewiring cell polarity signaling in cancer. Oncogene 2014; 34:939-50. [PMID: 24632617 DOI: 10.1038/onc.2014.59] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical-basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical-basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.
Collapse
|
24
|
Chatterjee SJ, McCaffrey L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. BREAST CANCER-TARGETS AND THERAPY 2014; 6:15-27. [PMID: 24648766 PMCID: PMC3929326 DOI: 10.2147/bctt.s43764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous group of diseases that frequently exhibits loss of growth control, and disrupted tissue organization and differentiation. Several recent studies indicate that apical–basal polarity provides a tumor-suppressive function, and that disrupting polarity proteins affects many stages of breast cancer progression from initiation through metastasis. In this review we highlight some of the recent advances in our understanding of the molecular mechanisms by which loss of apical–basal polarity deregulates apoptosis, proliferation, and promotes invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Sudipa June Chatterjee
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Forteza R, Wald FA, Mashukova A, Kozhekbaeva Z, Salas PJ. Par-complex aPKC and Par3 cross-talk with innate immunity NF-κB pathway in epithelial cells. Biol Open 2013; 2:1264-9. [PMID: 24244864 PMCID: PMC3828774 DOI: 10.1242/bio.20135918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 01/08/2023] Open
Abstract
Components of the Par-complex, atypical PKC and Par3, have been found to be downregulated upon activation of NF-κB in intestinal epithelial cells. To determine their possible role in pro-inflammatory responses we transduced Caco-2 human colon carcinoma cells with constitutively active (ca) PKCι or anti-Par3 shRNA-expressing lentiviral particles. Contrary to previous reports in other cell types, ca-PKCι did not activate, but rather decreased, baseline NF-κB activity in a luminiscence reporter assay. An identical observation applied to a PB1 domain deletion PKCι, which fails to localize to the tight-junction. Conversely, as expected, the same ca-PKCι activated NF-κB in non-polarized HEK293 cells. Likewise, knockdown of Par3 increased NF-κB activity and, surprisingly, greatly enhanced its response to TNFα, as shown by transcription of IL-8, GRO-1, GRO-2 and GRO-3. We conclude that aPKC and Par3 are inhibitors of the canonical NF-κB activation pathway, although perhaps acting through independent pathways, and may be involved in pro-inflammatory responses.
Collapse
Affiliation(s)
- Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine , 1600 NW 10th Avenue, Miami, FL 33136 , USA
| | | | | | | | | |
Collapse
|
26
|
Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126:3990-9. [PMID: 23813956 DOI: 10.1242/jcs.129387] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tight junction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting in increased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulation of a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | |
Collapse
|
27
|
McKinley RFA, Harris TJC. Displacement of basolateral Bazooka/PAR-3 by regulated transport and dispersion during epithelial polarization in Drosophila. Mol Biol Cell 2012; 23:4465-71. [PMID: 23015757 PMCID: PMC3496619 DOI: 10.1091/mbc.e12-09-0655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bazooka/PAR-3 apicolateral polarity landmarks are established by the combination of two basolateral displacement activities in the Drosophila embryo. Basolateral PAR-1 activity acts redundantly with a basal-to-apical transport mechanism. With disruption of either mechanism alone Bazooka can polarize, but disruption of both blocks polarization. Polarity landmarks guide epithelial development. In the early Drosophila ectoderm, the scaffold protein Bazooka (Drosophila PAR-3) forms apicolateral landmarks to direct adherens junction assembly. However, it is unclear how Bazooka becomes polarized. We report two mechanisms acting in concert to displace Bazooka from the basolateral membrane. As cells form during cellularization, basally localized Bazooka undergoes basal-to-apical transport. Bazooka requires its three postsynaptic density 95, discs large, zonula occludens-1 (PDZ) domains to engage the transport mechanism, but with the PDZ domains deleted, basolateral displacement still occurs by gastrulation. Basolateral PAR-1 activity appears to act redundantly with the transport mechanism. Knockdown of PAR-1 sporadically destabilizes cellularization furrows, but basolateral displacement of Bazooka still occurs by gastrulation. In contrast, basolateral Bazooka displacement is blocked with disruption of both the transport mechanism and phosphorylation by PAR-1. Thus Bazooka is polarized through a combination of transport and PAR-1–induced dispersion from basolateral membranes. Our work complements recent findings in Caenorhabditis elegans and thus suggests the coupling of transport and dispersion is a common protein polarization strategy.
Collapse
Affiliation(s)
- R F Andrew McKinley
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|