1
|
Yang C, Yu W, Dang C, Zhang J, Lu J, Xue J. FEM1B enhances TRAIL-induced apoptosis in T lymphocytes and monocytes. FEBS Open Bio 2025. [PMID: 40392678 DOI: 10.1002/2211-5463.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
FEM1B is recognized for its significant pro-apoptotic function in colorectal cancer; however, its influence and mechanisms regarding apoptosis in immune cells remain inadequately elucidated. In this study, we demonstrated that FEM1B enhances TRAIL-induced apoptosis in Molt-4, Jurkat, THP-1, and U937 cell lines. Notably, the knockdown of FEM1B in transfected cells resulted in a reversal of the observed increase in cell apoptosis. Our findings indicate that FEM1B activates caspase-3 and caspase-8, but not caspase-9, in response to TRAIL stimulation, suggesting its involvement in the extrinsic caspase-dependent apoptotic pathway. Furthermore, we found that FEM1B interacted with TRAF2 and downregulates its expression in Molt-4 and Jurkat cells, thereby diminishing TRAF2's inhibitory effect on caspase-8. In THP-1 and U937 cells, FEM1B was found to upregulate TRAIL-R2, thereby promoting TRAIL-induced apoptosis. Knockout studies in murine models further corroborated that FEM1B facilitates TRAIL-induced apoptosis. These results demonstrate that FEM1B enhances TRAIL-induced apoptosis in T lymphocytes and monocytes through a caspase-dependent mechanism involving TRAF2 or TRAIL receptors.
Collapse
Affiliation(s)
- Chenbo Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cui Dang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahan Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Albini A, Di Paola L, Mei G, Baci D, Fusco N, Corso G, Noonan D. Inflammation and cancer cell survival: TRAF2 as a key player. Cell Death Dis 2025; 16:292. [PMID: 40229245 PMCID: PMC11997178 DOI: 10.1038/s41419-025-07609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
TNF receptor-associated factor 2 (TRAF2) plays a crucial role in both physiological and pathological processes. It takes part in the regulation of cell survival and death, tissue regeneration, development, endoplasmic reticulum stress response, autophagy, homeostasis of the epithelial barrier and regulation of adaptive and innate immunity. Initially identified for its interaction with TNF receptor 2 (TNFR2), TRAF2 contains a TRAF domain that enables homo- and hetero-oligomerization, allowing it to interact with multiple receptors and signaling molecules. While best known for mediating TNFR1 and TNFR2 signaling, TRAF2 also modulates other receptor pathways, including MAPK, NF-κB, and Wnt/β-catenin cascades. By regulating NF-κB-inducing kinase (NIK), TRAF2 is a key activator of the alternative NF-κB pathway, linking it to inflammatory diseases, immune dysfunction, and tumorigenesis. In the innate immune system, TRAF2 influences macrophage differentiation, activation, and survival and stimulates natural killer cell cytotoxicity. In the adaptive immune system, it represses effector B- and T-cell activity while sustaining regulatory T-cell function, thus promoting immune suppression. The lack of fine-tuning of TRAF2 activity leads to excessive NF-kB activation, driving chronic inflammation and autoimmunity. Although TRAF2 can act as a tumor suppressor, it is predominantly described as a tumor promoter, as its expression has been correlated with increased metastatic potential and poorer prognosis in several types of cancer. Targeting TRAF2 or TRAF2-dependent signaling pathways might represent a promising anti-cancer therapeutic strategy.
Collapse
Grants
- The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022, grant 2022PJKF88 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- "Umberto Veronesi" Foundation project: "Massive CDH1 genetic screening in the so-called hereditary breast-gastric cancer syndrome". The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Nicola Fusco
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Douglas Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
3
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
4
|
Ying YT, Yang J, Ye HW, Chen MY, Liu X, Chen W, Xu JX, Tan X. Staphylococcus aureus reprograms CASP8 (caspase 8) signaling to evade cell death and Xenophagy. Autophagy 2025:1-14. [PMID: 40143428 DOI: 10.1080/15548627.2025.2483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Regulated cell death and xenophagy constitute fundamental cellular mechanisms against invading microorganisms. Staphylococcus aureus, a notorious pathogen, can invade and persist within host cells for extended periods. Here, we describe a novel mechanism by which S. aureus subverts these host defenses through the manipulation of the CASP8 (caspase 8) signaling pathway. Upon invasion, S. aureus triggers the assembly of a RIPK3 (receptor interacting serine/threonine kinase 3) complex to induce CASP8 autoprocessing. However, the bacterium inhibits CUL3 (cullin 3)-dependent K63-linked ubiquitination, leading to an atypical activation of CASP8. This non-canonical activation does not initiate the CASP8-CASP3 cascade but instead suppresses RIPK3-dependent necroptosis, a regulated cell death pathway typically activated when apoptosis fails. The resulting non-apoptotic, cleaved CASP8 redirects its enzymatic activity toward cleaving SQSTM1/p62, a selective macroautophagy/autophagy receptor, thus enabling S. aureus to evade antimicrobial xenophagy. The results of this study suggest that S. aureus reprograms the CASP8 signaling pathway from inducing cell death to preserving cell survival and inhibiting xenophagy, a critical strategy that supports its stealthy replication and persistence within host cells.Abbreviations: CASP3: caspase 3; CASP8: caspase 8; CFU: colony-forming units; CUL3: cullin 3; DUB: deubiquitinating enzyme; MAP1LC3B-II/LC3B-II: microtubule associated protein 1 light chain 3 beta-II; MOI: multiplicity of infection; RIPK1: receptor interacting protein kinase 1; RIPK3: receptor interacting protein kinase 3; S. aureus: Staphylococcus aureus.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Hui-Wen Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Mei-Yi Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Jin-Xin Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
7
|
Xu H, Chen F, Liu Z, Gao R, He J, Li F, Li N, Mu X, Liu T, Wang Y, Chen X. B(a)P induces ovarian granulosa cell apoptosis via TRAF2-NFκB-Caspase1 axis during early pregnancy. ENVIRONMENTAL RESEARCH 2024; 252:118865. [PMID: 38583661 DOI: 10.1016/j.envres.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangyuan Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhihao Liu
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Nanyan Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
8
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Ren J, Huang J, Yang Z, Sun M, Yang J, Lin C, Jin F, Liu Y, Tang L, Hu J, Wei X, Chen X, Yuan Z, Yang Z, Chen Y, Zhang L. Cytoplasmic TP53INP2 acts as an apoptosis partner in TRAIL treatment: the synergistic effect of TRAIL with venetoclax in TP53INP2-positive acute myeloid leukemia. J Exp Clin Cancer Res 2024; 43:176. [PMID: 38909249 PMCID: PMC11193246 DOI: 10.1186/s13046-024-03100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor outcomes, especially in older AML patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer drug because it selectively induces the extrinsic apoptosis of tumor cells without affecting normal cells. However, clinical trials have shown that the responses of patients to TRAIL are significantly heterogeneous. It is necessary to explore predictable biomarkers for the preselection of AML patients with better responsiveness to TRAIL. Here, we investigated the critical role of tumor protein p53 inducible nuclear protein 2 (TP53INP2) in the AML cell response to TRAIL treatment. METHODS First, the relationship between TP53INP2 and the sensitivity of AML cells to TRAIL was determined by bioinformatics analysis of Cancer Cell Line Encyclopedia datasets, Cell Counting Kit-8 assays, flow cytometry (FCM) and cell line-derived xenograft (CDX) mouse models. Second, the mechanisms by which TP53INP2 participates in the response to TRAIL were analyzed by Western blot, ubiquitination, coimmunoprecipitation and immunofluorescence assays. Finally, the effect of TRAIL alone or in combination with the BCL-2 inhibitor venetoclax (VEN) on cell survival was explored using colony formation and FCM assays, and the effect on leukemogenesis was further investigated in a patient-derived xenograft (PDX) mouse model. RESULTS AML cells with high TP53INP2 expression were more sensitive to TRAIL in vitro and in vivo. Gain- and loss-of-function studies demonstrated that TP53INP2 significantly enhanced TRAIL-induced apoptosis, especially in AML cells with nucleophosmin 1 (NPM1) mutations. Mechanistically, cytoplasmic TP53INP2 maintained by mutant NPM1 functions as a scaffold bridging the ubiquitin ligase TRAF6 to caspase-8 (CASP 8), thereby promoting the ubiquitination and activation of the CASP 8 pathway. More importantly, simultaneously stimulating extrinsic and intrinsic apoptosis signaling pathways with TRAIL and VEN showed strong synergistic antileukemic activity in AML cells with high levels of TP53INP2. CONCLUSION Our findings revealed that TP53INP2 is a predictor of responsiveness to TRAIL treatment and supported a potentially individualized therapeutic strategy for TP53INP2-positive AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Animals
- Mice
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Apoptosis/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Drug Synergism
- Cell Line, Tumor
- Nucleophosmin
- Xenograft Model Antitumor Assays
- Cytoplasm/metabolism
- Female
- Nuclear Proteins
Collapse
Affiliation(s)
- Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Fangfang Jin
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lisha Tang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuan Hu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingyu Wei
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihao Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanmeng Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Zi G, Chen J, Peng Y, Wang Y, Peng B. Hyperthermia and cisplatin combination therapy promotes caspase-8 accumulation and activation to enhance apoptosis and pyroptosis in cancer cells. Int J Hyperthermia 2024; 41:2325489. [PMID: 38632954 DOI: 10.1080/02656736.2024.2325489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.
Collapse
Affiliation(s)
- Guanghui Zi
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Jin Chen
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | | | - Yue Wang
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Baowei Peng
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| |
Collapse
|
12
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
13
|
Yao J, Liang X, Xu S, Liu Y, Shui L, Li S, Guo H, Xiao Z, Zhao Y, Zheng M. TRAF2 inhibits senescence in hepatocellular carcinoma cells via regulating the ROMO1/ NAD +/SIRT3/SOD2 axis. Free Radic Biol Med 2024; 211:47-62. [PMID: 38043870 DOI: 10.1016/j.freeradbiomed.2023.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The suppression of tumor proliferation via cellular senescence has emerged as a promising approach for anti-tumor therapy. Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adaptor protein involved in the NF-κB signaling pathway and reactive oxygen species (ROS) production, has been implicated in hepatocellular carcinoma (HCC) proliferation. However, little is currently known about whether TRAF2 promotes HCC development by inhibiting cellular senescence. Replicative senescence model and IR-induced mouse model demonstrated that TRAF2 expression was decrease in senescence cells or liver tissues. Depletion of TRAF2 could inhibit proliferation and arrest the cell cycle via activating p53/p21WAF1 and p16INK4a/pRb signaling pathways in HCC cells and eventually lead to cellular senescence. Mechanistically, TRAF2 deficiency increased the expression of mitochondrial protein reactive oxygen species modulator 1 (ROMO1) and subsequently activated the NAD+/SIRT3/SOD2 pathway to promote the production of ROS and cause mitochondrial dysfunction, which eventually contributed to DNA damage response (DDR). Our findings demonstrate that TRAF2 deficiency inhibits the proliferation of HCC by promoting senescence. Therefore, targeting TRAF2 through various approaches holds therapeutic potential for treating HCC.
Collapse
Affiliation(s)
- Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siduo Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Huiting Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Zhengyun Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
14
|
Shin GC, Lee HM, Kim N, Seo SU, Kim KP, Kim KH. PRKCSH contributes to TNFSF resistance by extending IGF1R half-life and activation in lung cancer. Exp Mol Med 2024; 56:192-209. [PMID: 38200153 PMCID: PMC10834952 DOI: 10.1038/s12276-023-01147-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) resistance contributes to the development and progression of tumors and resistance to various cancer therapies. Tumor-intrinsic alterations involved in the adaptation to the TNFSF response remain largely unknown. Here, we demonstrate that protein kinase C substrate 80K-H (PRKCSH) abundance in lung cancers boosts oncogenic IGF1R activation, leading to TNFSF resistance. PRKCSH abundance is correlated with IGF1R upregulation in lung cancer tissues. Specifically, PRKCSH interacts with IGF1R and extends its half-life. The PRKCSH-IGF1R axis in tumor cells impairs caspase-8 activation, increases Mcl-1 expression, and inhibits caspase-9, leading to an imbalance between cell death and survival. PRKCSH deficiency augmented the antitumor effects of natural killer (NK) cells, representative TNFSF effector cells, in a tumor xenograft IL-2Rg-deficient NOD/SCID (NIG) mouse model. Our data suggest that PRKCSH plays a critical role in TNFSF resistance and may be a potential target to improve the efficacy of NK cell-based cancer therapy.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Nayeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Brokowska J, Gaffke L, Pierzynowska K, Węgrzyn G. Enhanced Efficiency of the Basal and Induced Apoptosis Process in Mucopolysaccharidosis IVA and IVB Human Fibroblasts. Int J Mol Sci 2023; 24:14119. [PMID: 37762422 PMCID: PMC10531891 DOI: 10.3390/ijms241814119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Morquio disease, also called mucopolysaccharidosis IV (MPS IV), belongs to the group of lysosomal storage diseases (LSD). Due to deficiencies in the activities of galactose-6-sulfate sulfatase (in type A) or β-galactosidase (in type B), arising from mutations in GALNS or GLB1, respectively, keratan sulfate (one of glycosaminoglycans, GAGs) cannot be degraded efficiently and accumulates in lysosomes. This primary defect leads to many cellular dysfunctions which then cause specific disease symptoms. Recent works have indicated that different secondary effects of GAG accumulation might significantly contribute to the pathomechanisms of MPS. Apoptosis is among the cellular processes that were discovered to be affected in MPS cells on the basis of transcriptomic studies and some cell biology experiments. However, Morquio disease is the MPS type which is the least studied in light of apoptosis dysregulation, while RNA-seq analyses suggested considerable changes in the expression of genes involved in apoptosis in MPS IVA and IVB fibroblasts. Here we demonstrate that cytochrome c release from mitochondria is more efficient in MPS IVA and IVB fibroblasts relative to control cells, both under the standard cultivation conditions and after treatment with staurosporine, an apoptosis inducer. This indication of apoptosis stimulation was corroborated by measurements of the levels of caspases 9, 3, 6, and 7, as well as PARP, cleaved at specific sites, in Morquio disease and control fibroblasts. The more detailed analyses of the transcriptomic data revealed which genes related to apoptosis are down- and up-regulated in MPS IVA and IVB fibroblasts. We conclude that apoptosis is stimulated in Morquio disease under both standard cell culture conditions and after induction with staurosporine which may contribute to the pathomechanism of this disorder. Dysregulation of apoptosis in other MPS types is discussed.
Collapse
Affiliation(s)
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (L.G.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (L.G.)
| |
Collapse
|
17
|
Zhu L, Liu H, Dou Y, Luo Q, Gu L, Liu X, Zhou Q, Han J, Wang F. A Photoactivated Ru (II) Polypyridine Complex Induced Oncotic Necrosis of A549 Cells by Activating Oxidative Phosphorylation and Inhibiting DNA Synthesis as Revealed by Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24097756. [PMID: 37175463 PMCID: PMC10178167 DOI: 10.3390/ijms24097756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.
Collapse
Affiliation(s)
- Li Zhu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
| | - Hui Liu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
18
|
Liang X, Yao J, Cui D, Zheng W, Liu Y, Lou G, Ye B, Shui L, Sun Y, Zhao Y, Zheng M. The TRAF2-p62 axis promotes proliferation and survival of liver cancer by activating mTORC1 pathway. Cell Death Differ 2023:10.1038/s41418-023-01164-7. [PMID: 37081115 DOI: 10.1038/s41418-023-01164-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
TRAF2 (Tumor necrosis factor receptor-associated factor 2) is a dual function protein, acting as an adaptor protein and a ubiquitin E3 ligase, which plays an essential role in mediating the TNFα-NFκB signal pathway. Dysregulated expression of TRAF2 has been reported in a variety of human cancers. Whether and how TRAF2 regulates the growth of liver cancer cells remains elusive. The goal of this study is to investigate potential dysregulation of TRAF2 and its biological function in liver cancer, and to elucidate the underlying mechanism, leading to validation of TRAF2 as an attractive liver cancer target. Here, we reported TRAF2 is up-regulated in human liver cancer cell lines and tissues, and high TRAF2 expression is associated with a poor prognosis of HCC patients. Proteomics profiling along with Co-immunoprecipitation analysis revealed that p62 is a new substrate of TRAF2, which is subjected to TRAF2-induced polyubiquitination via the K63 linkage at the K420 residue. A strong negative correlation was found between the protein levels of p62 and TRAF2 in human HCC samples. TRAF2 depletion inhibited growth and survival of liver cancer cells both in vitro and in vivo by causing p62 accumulation, which is partially rescued by simultaneous p62 knockdown. Mechanistically, TRAF2-mediated p62 polyubiquitylation activates the mTORC1 by forming the p62-mTORC1-Rag complex, which facilitates the lysosome localization of mTORC1. TRAF2 depletion inhibited mTORC1 activity through the disruption of interaction between p62 and the mTORC1 complex. In conclusion, our study provides the proof-of-concept evidence that TRAF2 is a valid target for liver cancer.
Collapse
Affiliation(s)
- Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weiyang Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Bingjue Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
19
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Bock FJ, Riley JS. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ 2023; 30:293-303. [PMID: 36376381 PMCID: PMC9661468 DOI: 10.1038/s41418-022-01082-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.
Collapse
Affiliation(s)
- Florian J Bock
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
21
|
Montinaro A, Walczak H. Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries. Cell Death Differ 2023; 30:237-249. [PMID: 36195672 PMCID: PMC9950482 DOI: 10.1038/s41418-022-01059-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/10/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) can induce apoptosis in a wide variety of cancer cells, both in vitro and in vivo, importantly without killing any essential normal cells. These findings formed the basis for the development of TRAIL-receptor agonists (TRAs) for cancer therapy. However, clinical trials conducted with different types of TRAs have, thus far, afforded only limited therapeutic benefit, as either the respectively chosen agonist showed insufficient anticancer activity or signs of toxicity, or the right TRAIL-comprising combination therapy was not employed. Therefore, in this review we will discuss molecular determinants of TRAIL resistance, the most promising TRAIL-sensitizing agents discovered to date and, importantly, whether any of these could also prove therapeutically efficacious upon cancer relapse following conventional first-line therapies. We will also discuss the more recent progress made with regards to the clinical development of highly active non-immunogenic next generation TRAs. Based thereupon, we next propose how TRAIL resistance might be successfully overcome, leading to the possible future development of highly potent, cancer-selective combination therapies that are based on our current understanding of biology TRAIL-induced cell death. It is possible that such therapies may offer the opportunity to tackle one of the major current obstacles to effective cancer therapy, namely overcoming chemo- and/or targeted-therapy resistance. Even if this were achievable only for certain types of therapy resistance and only for particular types of cancer, this would be a significant and meaningful achievement.
Collapse
Affiliation(s)
- Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
- CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany.
- Center for Biochemistry, Medical Faculty, Joseph-Stelzmann-Str. 52, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
22
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
23
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
24
|
Semba M, Takamatsu S, Komazawa-Sakon S, Miyoshi E, Nishiyama C, Nakano H, Moriwaki K. Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. Int J Mol Sci 2022; 23:6973. [PMID: 35805980 PMCID: PMC9266755 DOI: 10.3390/ijms23136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic cytokine that induces cancer cell death by binding to TRAIL receptors. Because of its selective cytotoxicity toward cancer cells, TRAIL therapeutics, such as recombinant TRAIL and agonistic antibodies targeting TRAIL receptors, have garnered attention as promising cancer treatment agents. However, many cancer cells acquire resistance to TRAIL-induced cell death. To overcome this issue, we searched for agents to sensitize cancer cells to TRAIL-induced cell death by screening a small-molecule chemical library consisting of diverse compounds. We identified a cardiac glycoside, proscillaridin A, as the most effective TRAIL sensitizer in colon cancer cells. Proscillaridin A synergistically enhanced TRAIL-induced cell death in TRAIL-sensitive and -resistant colon cancer cells. Additionally, proscillaridin A enhanced cell death in cells treated with TRAIL and TRAIL sensitizer, the second mitochondria-derived activator of caspase mimetic. Proscillaridin A upregulated TRAIL receptor expression, while downregulating the levels of the anti-cell death molecules, cellular FADD-like IL-1β converting enzyme-like inhibitor protein and Mcl1, in a cell type-dependent manner. Furthermore, proscillaridin A enhanced TRAIL-induced cell death partly via O-glycosylation. Taken together, our findings suggest that proscillaridin A is a promising agent that enhances the anti-cancer efficacy of TRAIL therapeutics.
Collapse
Affiliation(s)
- Manami Semba
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (S.T.); (E.M.)
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Hiroyasu Nakano
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| | - Kenta Moriwaki
- Department of Biochemistry, Graduate School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; (M.S.); (S.K.-S.); (H.N.)
| |
Collapse
|
25
|
Biswas DD, Martin RK, Brown LN, Mockenhaupt K, Gupta AS, Surace MJ, Tharakan A, Yester JW, Bhardwaj R, Conrad DH, Kordula T. Cellular inhibitor of apoptosis 2 (cIAP2) restricts neuroinflammation during experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:158. [PMID: 35718775 PMCID: PMC9208101 DOI: 10.1186/s12974-022-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown.
Methods We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. Results cIAP2−/− mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. Conclusions Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02527-6.
Collapse
Affiliation(s)
- Debolina D Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Anuj Tharakan
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Role of Apoptosis in HIV Pathogenesis. Adv Virol 2022; 2022:8148119. [PMID: 35462964 PMCID: PMC9023228 DOI: 10.1155/2022/8148119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
The apoptotic pathway is an important cell death pathway that contributes to the maintenance of homeostasis in living systems. However, variations in apoptosis have been linked to many diseases such as cancers and chronic infections. The HIV infection has contributed to increase mortality and morbidity worldwide, predominantly through the induction of gradual depletion of CD4+ T cells. The induction and mediation of both the intrinsic and extrinsic apoptotic pathways are crucial in HIV pathogenesis and intracellular survival. Consequently, a deep molecular understanding of how apoptosis is induced and modulated in HIV-mediated CD4+ T cell depletion is paramount, as this can lead to new portals of therapeutic intervention and control.
Collapse
|
27
|
Lee SH, Cho WJ, Najy AJ, Saliganan AD, Pham T, Rakowski J, Loughery B, Ji CH, Sakr W, Kim S, Kato I, Chung WK, Kim HE, Kwon YT, Kim HRC. p62/SQSTM1-induced caspase-8 aggresomes are essential for ionizing radiation-mediated apoptosis. Cell Death Dis 2021; 12:997. [PMID: 34697296 PMCID: PMC8546074 DOI: 10.1038/s41419-021-04301-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022]
Abstract
The autophagy–lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Won Jin Cho
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen-Dexter Saliganan
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Tri Pham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Joseph Rakowski
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Brian Loughery
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Chang Hoon Ji
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Harold E Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Yong Tae Kwon
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea. .,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
28
|
Koschel J, Nishanth G, Just S, Harit K, Kröger A, Deckert M, Naumann M, Schlüter D. OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation. Cell Death Differ 2021; 28:2257-2275. [PMID: 33712742 PMCID: PMC8257688 DOI: 10.1038/s41418-021-00752-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
In bacterial and sterile inflammation of the liver, hepatocyte apoptosis is, in contrast to necroptosis, a common feature. The molecular mechanisms preventing hepatocyte necroptosis and the potential consequences of hepatocyte necroptosis are largely unknown. Apoptosis and necroptosis are critically regulated by the ubiquitination of signaling molecules but especially the regulatory function of deubiquitinating enzymes (DUBs) is imperfectly defined. Here, we addressed the role of the DUB OTU domain aldehyde binding-1 (OTUB1) in hepatocyte cell death upon both infection with the hepatocyte-infecting bacterium Listeria monocytogenes (Lm) and D-Galactosamine (DGal)/Tumor necrosis factor (TNF)-induced sterile inflammation. Combined in vivo and in vitro experiments comprising mice lacking OTUB1 specifically in liver parenchymal cells (OTUB1LPC-KO) and human OTUB1-deficient HepG2 cells revealed that OTUB1 prevented hepatocyte necroptosis but not apoptosis upon infection with Lm and DGal/TNF challenge. Lm-induced necroptosis in OTUB1LPC-KO mice resulted in increased alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release and rapid lethality. Treatment with the receptor-interacting serine/threonine-protein kinase (RIPK) 1 inhibitor necrostatin-1s and deletion of the pseudokinase mixed lineage kinase domain-like protein (MLKL) prevented liver damage and death of infected OTUB1LPC-KO mice. Mechanistically, OTUB1 reduced K48-linked polyubiquitination of the cellular inhibitor of apoptosis 1 (c-IAP1), thereby diminishing its degradation. In the absence of OTUB1, c-IAP1 degradation resulted in reduced K63-linked polyubiquitination and increased phosphorylation of RIPK1, RIPK1/RIPK3 necrosome formation, MLKL-phosphorylation and hepatocyte death. Additionally, OTUB1-deficiency induced RIPK1-dependent extracellular-signal-regulated kinase (ERK) activation and TNF production in Lm-infected hepatocytes. Collectively, these findings identify OTUB1 as a novel regulator of hepatocyte-intrinsic necroptosis and a critical factor for survival of bacterial hepatitis and TNF challenge.
Collapse
Affiliation(s)
- Josephin Koschel
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Sissy Just
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Innate Immunity and Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
29
|
Zhang P, Zhang Z, Fu Y, Zhang Y, Washburn MP, Florens L, Wu M, Huang C, Hou Z, Mohan M. K63-linked ubiquitination of DYRK1A by TRAF2 alleviates Sprouty 2-mediated degradation of EGFR. Cell Death Dis 2021; 12:608. [PMID: 34117217 PMCID: PMC8196033 DOI: 10.1038/s41419-021-03887-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Dual specificity tyrosine phosphorylation regulated kinase 1A, DYRK1A, functions in multiple cellular pathways, including signaling, endocytosis, synaptic transmission, and transcription. Alterations in dosage of DYRK1A leads to defects in neurogenesis, cell growth, and differentiation, and may increase the risk of certain cancers. DYRK1A localizes to a number of subcellular structures including vesicles where it is known to phosphorylate a number of proteins and regulate vesicle biology. However, the mechanism by which it translocates to vesicles is poorly understood. Here we report the discovery of TRAF2, an E3 ligase, as an interaction partner of DYRK1A. Our data suggest that TRAF2 binds to PVQE motif residing in between the PEST and histidine repeat domain (HRD) of DYRK1A protein, and mediates K63-linked ubiquitination of DYRK1A. This results in translocation of DYRK1A to the vesicle membrane. DYRK1A increases phosphorylation of Sprouty 2 on vesicles, leading to the inhibition of EGFR degradation, and depletion of TRAF2 expression accelerates EGFR degradation. Further, silencing of DYRK1A inhibits the growth of glioma cells mediated by TRAF2. Collectively, these findings suggest that the axis of TRAF2-DYRK1A-Sprouty 2 can be a target for new therapeutic development for EGFR-mediated human pathologies.
Collapse
Affiliation(s)
- Pengshan Zhang
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yinkun Fu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhaoyuan Hou
- Tongren Hospital/Faculty of Basic Medicine, Hongqiao Institute of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Man Mohan
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
30
|
Oh YT, Sun SY. Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| |
Collapse
|
31
|
Hashemi S, Hosseini SM, Ghalyanchilangeroudi A, Sheikhi N. Transcriptome based analysis of apoptosis genes in chickens co-infected with avian infectious bronchitis virus and pathogenic Escherichia coli. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:17-22. [PMID: 33889358 PMCID: PMC8043830 DOI: 10.18502/ijm.v13i1.5487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Infection with Infectious bronchitis virus (IBV) and avian pathogenic Escherichia coli (APEC) is an important respiratory infection worldwide. Apoptosis is a physiological process of cell death that occurs as part of normal development and responds to a variety of physiological and pathophysiological stimuli. The identification of molecular mechanisms of action or inaction of key apoptotic proteins is important. This study aimed to investigate apoptotic related genes in the trachea tissue of infected (IBV variant 2, and APEC serotype O78: K80) SPF chickens group compared to the control group. MATERIALS AND METHODS Forty SPF chickens was divided into 2 groups. Differential transcriptional profile in the infected SPF chickens trachea tissue was compared to those of control group in the early stage of infection by Illumina RNA-seq technique paired-end and strand-specific sequencing. Differentially expressed genes (DEGs) of transcriptome profiling of the trachea from the infected group were identified. Gene ontology category, KEGG pathway, and STRING analysis were analyzed to identify relationships among differentially expressed genes. RESULTS Twenty-eight apoptotic genes were identified. They consisted of six pathways related to cell death: the extrinsic pathway, intrinsic pathway, endoplasmic reticulum stress pathway, MAPK signaling pathway, and cell death by NFkB and activates mTOR pathway and some regulator and apoptosis inhibitors. CONCLUSION All of the apoptotic genes in our study were up-regulated. Among these genes, the more fold change value was for TRADD and BCL2A1 genes, and the less fold change value was for MAP3K14, NFKB1, PIK3CB, and ITPR2 genes.
Collapse
Affiliation(s)
- Shabnam Hashemi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nariman Sheikhi
- Department of Clinical Sciences, College of Veterinary, Tehran Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Ye Y, Ye F, Li X, Yang Q, Zhou J, Xu W, Aschner M, Lu R, Miao S. 3,3'-diindolylmethane exerts antiproliferation and apoptosis induction by TRAF2-p38 axis in gastric cancer. Anticancer Drugs 2021; 32:189-202. [PMID: 33315588 PMCID: PMC7790923 DOI: 10.1097/cad.0000000000000997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,3'-diindolylmethane (DIM), an active phytochemical derivative extracted from cruciferous vegetables, possesses anticancer effects. However, the underlying anticancer mechanism of DIM in gastric cancer remains unknown. Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), one of the signal transduction proteins, plays critical role in proliferation and apoptosis of human gastric cancer cells, but there are still lack of practical pharmacological modulators for potential clinical application. Here, we further explored the role of TRAF2 in inhibiting cell proliferation and inducing apoptosis by DIM in human gastric cancer BGC-823 and SGC-7901 cells. After treating BGC-823 and SGC-7901 cells with DIM for 24 h, cell proliferation, apoptosis and TRAF2-related protein were measured. Our findings showed that DIM inhibited the expressions of TRAF2, activated p-p38 and its downstream protein p-p53, which were paralleled with DIM-triggered cells proliferation, inhibition and apoptosis induction. These effects of DIM were reversed by TRAF2 overexpression or p38 mitogen-activated protein kinase (MAPK)-specific inhibitor (SB203580). Taken together, our data suggest that regulating TRAF2/p38 MAPK signaling pathway is essential for inhibiting gastric cancer proliferation and inducing apoptosis by DIM. These findings broaden the understanding of the pharmacological mechanism of DIM's action as a new modulator of TRAF2, and provide a new therapeutic target for human gastric cancer.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fen Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qi Yang
- Department of Pathology, Zhenjiang First People's Hospital, Zhenjiang 212002, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University School of Medicine, Kunshan, Suzhou, Jiangsu 215132, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang 212001, China
| |
Collapse
|
33
|
Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol 2021; 17:581-596. [PMID: 33401962 DOI: 10.2217/fon-2020-0727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, can induce apoptosis in cancer cells, sparing normal cells when bound to its associated death receptors (DR4/DR5). This unique mechanism makes TRAIL a potential anticancer therapeutic agent. However, clinical trials of recombinant TRAIL protein and TRAIL receptor agonist monoclonal antibodies have shown disappointing results due to its short half-life, poor pharmacokinetics and the resistance of the cancer cells. This review summarizes TRAIL-induced apoptotic and survival pathways as well as mechanisms leading to apoptotic resistance. Recent development of methods to overcome cancer cell resistance to TRAIL-induced apoptosis, such as protein modification, combination therapy and TRAIL-based gene therapy, appear promising. We also discuss the challenges and opportunities in the development of TRAIL-based therapies for the treatment of human cancers.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
34
|
Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, Hirata Y, Matsuzawa A. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci 2020; 45:219-226. [PMID: 32238696 DOI: 10.2131/jts.45.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.
Collapse
Affiliation(s)
- Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
35
|
TRAF2 Knockdown in Nasopharyngeal Carcinoma Induced Cell Cycle Arrest and Enhanced the Sensitivity to Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1641340. [PMID: 32566659 PMCID: PMC7277071 DOI: 10.1155/2020/1641340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
TRAF2 is a crucial adaptor protein involved in various signaling pathways. However, its biological functions in nasopharyngeal carcinoma (NPC) remain largely unknown. In the present study, we found that TRAF2 was overexpressed in nasopharyngeal carcinoma (NPC) cells. Knockdown of TRAF2 with shRNA significantly suppressed NPC cell proliferation and colony formation. The growth of xenograft tumor significantly reduced after TRAF2 was silenced. Conversely, the ectopic overexpression of TRAF2 significantly promoted cell proliferation and anchorage-independent growth. In TRAF2 knockdown cells, EGF-induced activation of transcriptional factors, including MSK1, CREB, and ATF2, markedly decreased. Accordingly, the transcriptional activity of AP-1 was substantially decreased in TRAF2-deficient cells. With the suppression of gene transcription, the expression of cyclin D1 was significantly impaired, which gave rise to the G0/G1 cell cycle arrest. Moreover, the overexpression of TRAF2 in NPC cells was associated with resistance to irradiation, and the potency of irradiation was substantially enhanced after TRAF2 was knocked down. Briefly, our studies demonstrated that TRAF2 had a crucial role in NPC development, and it might be of great potential to targeting TRAF2 for NPC prevention and treatment.
Collapse
|
36
|
Lafont E. Stress Management: Death Receptor Signalling and Cross-Talks with the Unfolded Protein Response in Cancer. Cancers (Basel) 2020; 12:E1113. [PMID: 32365592 PMCID: PMC7281445 DOI: 10.3390/cancers12051113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout tumour progression, tumour cells are exposed to various intense cellular stress conditions owing to intrinsic and extrinsic cues, to which some cells are remarkably able to adapt. Death Receptor (DR) signalling and the Unfolded Protein Response (UPR) are two stress responses that both regulate a plethora of outcomes, ranging from proliferation, differentiation, migration, cytokine production to the induction of cell death. Both signallings are major modulators of physiological tissue homeostasis and their dysregulation is involved in tumorigenesis and the metastastic process. The molecular determinants of the control between the different cellular outcomes induced by DR signalling and the UPR in tumour cells and their stroma and their consequences on tumorigenesis are starting to be unravelled. Herein, I summarize the main steps of DR signalling in relation to its cellular and pathophysiological roles in cancer. I then highlight how the UPR and DR signalling control common cellular outcomes and also cross-talk, providing potential opportunities to further understand the development of malignancies.
Collapse
Affiliation(s)
- Elodie Lafont
- Inserm U1242, Université de Rennes, 35042 Rennes, France;
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| |
Collapse
|
37
|
Roberts JZ, Holohan C, Sessler T, Fox J, Crawford N, Riley JS, Khawaja H, Majkut J, Evergren E, Humphreys LM, Ferris J, Higgins C, Espona-Fiedler M, Moynagh P, McDade SS, Longley DB. The SCF Skp2 ubiquitin ligase complex modulates TRAIL-R2-induced apoptosis by regulating FLIP(L). Cell Death Differ 2020; 27:2726-2741. [PMID: 32313199 PMCID: PMC7429845 DOI: 10.1038/s41418-020-0539-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
TRAIL-R2 (DR5) is a clinically-relevant therapeutic target and a key target for immune effector cells. Herein, we identify a novel interaction between TRAIL-R2 and the Skp1-Cullin-1-F-box (SCF) Cullin-Ring E3 Ubiquitin Ligase complex containing Skp2 (SCFSkp2). We find that SCFSkp2 can interact with both TRAIL-R2’s pre-ligand association complex (PLAC) and ligand-activated death-inducing signalling complex (DISC). Moreover, Cullin-1 interacts with TRAIL-R2 in its active NEDDylated form. Inhibiting Cullin-1’s DISC recruitment using the NEDDylation inhibitor MLN4924 (Pevonedistat) or siRNA increased apoptosis induction in response to TRAIL. This correlated with enhanced levels of the caspase-8 regulator FLIP at the TRAIL-R2 DISC, particularly the long splice form, FLIP(L). We subsequently found that FLIP(L) (but not FLIP(S), caspase-8, nor the other core DISC component FADD) interacts with Cullin-1 and Skp2. Importantly, this interaction is enhanced when FLIP(L) is in its DISC-associated, C-terminally truncated p43-form. Prevention of FLIP(L) processing to its p43-form stabilises the protein, suggesting that by enhancing its interaction with SCFSkp2, cleavage to the p43-form is a critical step in FLIP(L) turnover. In support of this, we found that silencing any of the components of the SCFSkp2 complex inhibits FLIP ubiquitination, while overexpressing Cullin-1/Skp2 enhances its ubiquitination in a NEDDylation-dependent manner. DISC recruitment of TRAF2, previously identified as an E3 ligase for caspase-8 at the DISC, was also enhanced when Cullin-1’s recruitment was inhibited, although its interaction with Cullin-1 was found to be mediated indirectly via FLIP(L). Notably, the interaction of p43-FLIP(L) with Cullin-1 disrupts its ability to interact with FADD, caspase-8 and TRAF2. Collectively, our results suggest that processing of FLIP(L) to p43-FLIP(L) at the TRAIL-R2 DISC enhances its interaction with co-localised SCFSkp2, leading to disruption of p43-FLIP(L)’s interactions with other DISC components and promoting its ubiquitination and degradation, thereby modulating TRAIL-R2-mediated apoptosis.
Collapse
Affiliation(s)
- Jamie Z Roberts
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Caitriona Holohan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Tamas Sessler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jennifer Fox
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Joel S Riley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Hajrah Khawaja
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Joanna Majkut
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Emma Evergren
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Luke M Humphreys
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jennifer Ferris
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Catherine Higgins
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | - Paul Moynagh
- Department of Biology, National University of Ireland Maynooth, Kildare, Ireland.,Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
38
|
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends Cell Biol 2020; 30:354-369. [PMID: 32302548 DOI: 10.1016/j.tcb.2020.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Apoptosis is a form of programmed cell death, deregulation of which occurs in multiple disorders, including neurodegenerative and autoimmune diseases as well as cancer. The formation of a death-inducing signaling complex (DISC) and death effector domain (DED) filaments are critical for initiation of the extrinsic apoptotic pathway. Post-translational modifications (PTMs) of DED-containing DISC components such as FADD, procaspase-8, and c-FLIP comprise an additional level of apoptosis regulation, which is necessary to overcome the threshold for apoptosis induction. In this review we discuss the influence of PTMs of FADD, procaspase-8, and c-FLIP on DED filament assembly and cell death induction, with a focus on the 3D organization of the DED filament.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
39
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P, Legembre P. CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol 2020; 60:121-131. [PMID: 31176682 DOI: 10.1016/j.semcancer.2019.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.
Collapse
Affiliation(s)
- Jean Philippe Guégan
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Thomas Ducret
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-François Quignard
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Pierre Vacher
- Université de Bordeaux, Bordeaux, France; INSERM U1218, Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France.
| |
Collapse
|
40
|
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21:85-100. [PMID: 31636403 DOI: 10.1038/s41580-019-0173-8] [Citation(s) in RCA: 1545] [Impact Index Per Article: 309.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 2019; 20:19-33. [PMID: 30467385 DOI: 10.1038/s41583-018-0093-1] [Citation(s) in RCA: 635] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the adult CNS are relatively resistant to this form of cell death. However, under pathological conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). Necroptosis promotes further cell death and neuroinflammation in the pathogenesis of several neurodegenerative diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this Review, we outline the evidence implicating necroptosis in these neurological diseases and suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate neuroinflammation.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Palak Amin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
42
|
Bumiller-Bini V, Cipolla GA, Spadoni MB, Augusto DG, Petzl-Erler ML, Beltrame MH, Boldt ABW. Condemned or Not to Die? Gene Polymorphisms Associated With Cell Death in Pemphigus Foliaceus. Front Immunol 2019; 10:2416. [PMID: 31681304 PMCID: PMC6813369 DOI: 10.3389/fimmu.2019.02416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering skin disease that occurs sporadically across the globe and is endemic in Brazil. Keratinocyte adhesion loss (acantholysis) is associated with high levels of anti-desmoglein 1 IgG autoantibodies, but the role of cell death is poorly understood in PF. Current evidence disqualifies apoptosis as the major cell death mechanism and no other process has yet been investigated. To approach the role of variation in genes responsible for cell death pathways in pemphigus susceptibility, we systematically investigated the frequencies of 1,167 polymorphisms from genes encoding products of all 12 well-established cell death cascades (intrinsic and extrinsic apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic, NETotic, lysosome-dependent, autophagy-dependent, and immunogenic). By multivariate logistic regression, we compared allelic and genotypic frequencies of 227 PF patients and 194 controls obtained by microarray hybridization. We found 10 variants associated with PF (p < 0.005), belonging to six cell death pathways: apoptosis (TNF, TRAF2, CD36, and PAK2), immunogenic cell death (EIF2AK3, CD47, and SIRPA), necroptosis (TNF and TRAF2), necrosis (RAPGEF3), parthanatos (HK1), and pyroptosis (PRKN). Five polymorphisms were associated with susceptibility: TNF rs1800630*A (OR = 1.9, p = 0.0003), CD36 rs4112274*T (OR = 2.14, p = 0.0015), CD47 rs12695175*G (OR = 1.77, p = 0.0043), SIRPA rs6075340*A/A (OR = 2.75, p = 0.0009), and HK1 rs7072268*T (OR = 1.48, p = 0.0045). Other five variants were associated with protection: TRAF2 rs10781522*G (OR = 0.64, p = 0.0014), PAK2 rs9325377*A/A (OR = 0.48, p = 0.0023), EIF2AK3 rs10167879*T (OR = 0.48, p = 0.0007), RAPGEF3 rs10747521*A/A (OR = 0.42, p = 0.0040), and PRKN rs9355950*C (OR = 0.57, p = 0.0004). Through functional annotation, we found that all associated alleles, with the exception of PRKN rs9355950*C, were previously associated with differential gene expression levels in healthy individuals (mostly in skin and peripheral blood). Further functional validation of these genetic associations may contribute to the understanding of PF etiology and to the development of new drugs and therapeutic regimens for the disease.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Gabriel Adelman Cipolla
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Mariana Basso Spadoni
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Danillo Gardenal Augusto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
43
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
44
|
Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 Controls Death Receptor-Induced Caspase-8 Processing and Facilitates Proinflammatory Signaling. Front Immunol 2019; 10:2024. [PMID: 31555268 PMCID: PMC6727177 DOI: 10.3389/fimmu.2019.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.
Collapse
Affiliation(s)
- Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohammed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity. PLoS One 2019; 14:e0219782. [PMID: 31329620 PMCID: PMC6645535 DOI: 10.1371/journal.pone.0219782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Apoptotic protease-activating factor 1 (Apaf-1) is a component of apoptosome, which regulates caspase-9 activity. In addition to apoptosis, Apaf-1 plays critical roles in the intra-S-phase checkpoint; therefore, impaired expression of Apaf-1 has been demonstrated in chemotherapy-resistant malignant melanoma and nuclear translocation of Apaf-1 has represented a favorable prognosis of patients with non-small cell lung cancer. In contrast, increased levels of Apaf-1 protein are observed in the brain in Huntington’s disease. The regulation of Apaf-1 protein is not yet fully understood. In this study, we show that etoposide triggers the interaction of Apaf-1 with Cullin-4B, resulting in enhanced Apaf-1 ubiquitination. Ubiquitinated Apaf-1, which was degraded in healthy cells, binds p62 and forms aggregates in the cytosol. This complex of ubiquitinated Apaf-1 and p62 induces caspase-9 activation following MG132 treatment of HEK293T cells that stably express bcl-xl. These results show that ubiquitinated Apaf-1 may activate caspase-9 under conditions of proteasome impairment.
Collapse
|
46
|
Ivanova S, Polajnar M, Narbona-Perez AJ, Hernandez-Alvarez MI, Frager P, Slobodnyuk K, Plana N, Nebreda AR, Palacin M, Gomis RR, Behrends C, Zorzano A. Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J 2019; 38:embj.201899300. [PMID: 30979779 DOI: 10.15252/embj.201899300] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
TP53INP2 positively regulates autophagy by binding to Atg8 proteins. Here, we uncover a novel role of TP53INP2 in death-receptor signaling. TP53INP2 sensitizes cells to apoptosis induced by death receptor ligands. In keeping with this, TP53INP2 deficiency in cultured cells or mouse livers protects against death receptor-induced apoptosis. TP53INP2 binds caspase-8 and the ubiquitin ligase TRAF6, thereby promoting the ubiquitination and activation of caspase-8 by TRAF6. We have defined a TRAF6-interacting motif (TIM) and a ubiquitin-interacting motif in TP53INP2, enabling it to function as a scaffold bridging already ubiquitinated caspase-8 to TRAF6 for further polyubiquitination of caspase-8. Mutations of key TIM residues in TP53INP2 abrogate its interaction with TRAF6 and caspase-8, and subsequently reduce levels of death receptor-induced apoptosis. A screen of cancer cell lines showed that those with higher protein levels of TP53INP2 are more prone to TRAIL-induced apoptosis, making TP53INP2 a potential predictive marker of cancer cell responsiveness to TRAIL treatment. These findings uncover a novel mechanism for the regulation of caspase-8 ubiquitination and reveal TP53INP2 as an important regulator of the death receptor pathway.
Collapse
Affiliation(s)
- Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Mira Polajnar
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Munich Cluster for System Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Alvaro Jesus Narbona-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Isabel Hernandez-Alvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Institut Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Petra Frager
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Konstantin Slobodnyuk
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natalia Plana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,ICREA, Insitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Manuel Palacin
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,CIBER de Enfermedades Raras, Barcelona, Spain
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,ICREA, Insitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,CIBERONC, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.,Munich Cluster for System Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.,Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Targeting KPNB1 overcomes TRAIL resistance by regulating DR5, Mcl-1 and FLIP in glioblastoma cells. Cell Death Dis 2019; 10:118. [PMID: 30742128 PMCID: PMC6370806 DOI: 10.1038/s41419-019-1383-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/16/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential anticancer effect, but innate and adaptive TRAIL resistance in majority of cancers limit its clinical application. Karyopherin β1 (KPNB1) inhibition in cancer cells has been reported to abrogate the nuclear import of TRAIL receptor DR5 and facilitate its localization on the cell surface ready for TRAIL stimulation. However, our study reveals a more complicated mechanism. Genetic or pharmacological inhibition of KPNB1 potentiated TRAIL-induced apoptosis selectively in glioblastoma cells mainly by unfolded protein response (UPR). First, it augmented ATF4-mediated DR5 expression and promoted the assembly of death-inducing signaling complex (DISC). Second, it freed Bax and Bak from Mcl-1. Third, it downregulated FLIPL and FLIPS, inhibitors of caspase-8 cleavage, partly through upregulating ATF4–induced 4E-BP1 expression and disrupting the cap-dependent translation initiation. Meanwhile, KPNB1 inhibition-induced undesirable autophagy and accelerated cleaved caspase-8 clearance. Inhibition of autophagic flux maintained cleaved caspase-8 and aggravated apoptosis induced by KPNB1 inhibitor plus TRAIL, which were abolished by caspase-8 inhibitor. These results unveil new molecular mechanism for optimizing TRAIL-directed therapeutic efficacy against cancer.
Collapse
|
48
|
Woo SM, Kwon TK. E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway. BMB Rep 2019. [PMID: 30638181 PMCID: PMC6443324 DOI: 10.5483/bmbrep.2019.52.2.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) initiates the extrinsic apoptotic pathway through formation of the death-inducing signaling complex (DISC), followed by activation of effector caspases. TRAIL receptors are composed of death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and osteoprotegerin. Among them, only DRs activate apoptotic signaling by TRAIL. Since the levels of DR expressions are higher in cancer cells than in normal cells, TRAIL selectively activates apoptotic signaling pathway in cancer cells. However, multiple mechanisms, including down-regulation of DR expression and pro-apoptotic proteins, and up-regulation of anti-apoptotic proteins, make cancer cells TRAIL-resistant. Therefore, many researchers have investigated strategies to overcome TRAIL resistance. In this review, we focus on protein regulation in relation to extrinsic apoptotic signaling pathways via ubiquitination. The ubiquitin proteasome system (UPS) is an important process in control of protein degradation and stabilization, and regulates proliferation and apoptosis in cancer cells. The level of ubiquitination of proteins is determined by the balance of E3 ubiquitin ligases and deubiquitinases (DUBs), which determine protein stability. Regulation of the UPS may be an attractive target for enhancement of TRAIL-induced apoptosis. Our review provides insight to increasing sensitivity to TRAIL-mediated apoptosis through control of post-translational protein expression. [BMB Reports 2019; 52(2): 119-126].
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| |
Collapse
|
49
|
Caspases orchestrate microglia instrumental functions. Prog Neurobiol 2018; 171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
50
|
Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123798. [PMID: 30501030 PMCID: PMC6320982 DOI: 10.3390/ijms19123798] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Caspase-8 was originally identified as a central player of programmed cell death triggered by death receptor stimulation. In that context, its activity is tightly regulated through several mechanisms, with the best established being the expression of FLICE-like inhibitory protein (FLIP) family proteins and the Src-dependent phosphorylation of Caspase-8 on Tyr380. Loss of apoptotic signaling is a hallmark of cancer and indeed Caspase-8 expression is often lost in tumors. This event may account not only for cancer progression but also for cancer resistance to radiotherapy and chemotherapy. Intriguingly, other tumors, such as glioblastoma, preferentially retain Caspase-8 expression, and high levels of Caspase-8 expression may correlate with a worse prognosis, suggesting that in this context this protease loses its apoptotic activity and gains additional functions. Using different cellular systems, it has been clearly shown that in cancer Caspase-8 can exhibit non-canonical functions, including promotion of cell adhesion, migration, and DNA repair. Intriguingly, in glioblastoma models, Caspase-8 can promote NF-κB-dependent expression of several cytokines, angiogenesis, and in vitro and in vivo tumorigenesis. Overall, these observations suggest that some cancer cells may hijack Caspase-8 function which in turn promote cancer progression and resistance to therapy. Here we aim to highlight the multiple functions of Caspase-8 and to discuss whether the molecular mechanisms that modulate the balance between those functions may be targeted to dismantle the aberrant activity of Caspase-8 and to restore its canonical apoptotic functionality.
Collapse
|