1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Shin JH, Yoo HB, Roe JS. Current advances and future directions in targeting histone demethylases for cancer therapy. Mol Cells 2025; 48:100192. [PMID: 39938867 PMCID: PMC11889978 DOI: 10.1016/j.mocell.2025.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Epigenetic regulators, known as "writers," erasers," and "readers," are essential for controlling gene expression by adding, removing, or recognizing post-translational modifications to histone tails, respectively. These regulators significantly affect genes involved in cancer initiation and maintenance. Recently, several clinical strategies targeting these epigenetic enzymes have emerged and some trials have demonstrated promising results for cancer treatment. Histone lysine demethylases (KDMs) yield distinct transcriptional outcomes that depend on the position of the methylated lysine and the specific genotype or lineage of the cancer cells. Due to their diverse roles in transcription, KDMs offer valuable opportunities for precision oncology, allowing treatments to be tailored to meet individual patient needs. This review emphasizes our current understanding of the functional relationship between KDMs and cancer as well as the development and application of small-molecule compounds that target KDMs.
Collapse
Affiliation(s)
- June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hye-Been Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Fanourgakis G, Gaspa-Toneu L, Komarov PA, Papasaikas P, Ozonov EA, Smallwood SA, Peters AHFM. DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos. Nat Commun 2025; 16:465. [PMID: 39774947 PMCID: PMC11706963 DOI: 10.1038/s41467-024-55441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation. Failing de novo DNAme in Dnmt3a/Dnmt3b double deficient spermatogonia is associated with increased nucleosome occupancy in mature sperm, preferentially at sites with higher CpG content, supporting the model that DNAme modulates nucleosome retention in sperm. To assess the impact of altered sperm chromatin in formatting embryonic chromatin, we measure H3K4me3 occupancy at paternal and maternal alleles in 2-cell embryos using a transposon-based tagging approach. Our data show that reduced DNAme in sperm renders paternal alleles permissive for H3K4me3 establishment in early embryos, independently of possible paternal inheritance of sperm born H3K4me3. Together, this study provides evidence that paternally inherited DNAme directs chromatin formation during early embryonic development.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Pavel A Komarov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Jiang H, Li C, Li N, Sheng L, Wang J, Kan WJ, Chen Y, Zhao D, Guo D, Zhou YB, Xiong B, Li J, Liu T. Optimization and Biological Evaluation of Novel 1 H-Pyrrolo[2,3- c]pyridin Derivatives as Potent and Reversible Lysine Specific Demethylase 1 Inhibitors for the Treatment of Acute Myelogenous Leukemia. J Med Chem 2024; 67:22080-22103. [PMID: 39630953 DOI: 10.1021/acs.jmedchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Lysine-specific demethylase 1 (LSD1) plays a vital role in the epigenetic regulation of various cancers, making it a promising therapeutic target for anticancer treatments. Herein, we designed and synthesized a novel series of 1H-pyrrolo[2,3-c]pyridin derivatives as potent LSD1 inhibitors. A detailed structure-activity relationship exploration was carried out to discover multiple derivatives with nanomolar enzymatic IC50 values. Further biological evaluation demonstrated that these compounds acted as selective and reversible LSD1 inhibitors. The representative compounds exhibited highly potent antiproliferative activity against both AML (MV4-11 and Kasumi-1) and SCLC (NCI-H526) cell lines. Additionally, they effectively activated CD86 mRNA expression in MV4-11 cells and induced differentiation of AML cell lines. Notably, the most promising compound 23e showed a favorable oral PK profile and effectively suppressed the tumor growth in an AML xenograft model. Overall, our medicinal chemistry efforts provide compound 23e as a lead compound for developing LSD1 inhibitors for the treatment of AML and other advanced malignancies.
Collapse
Affiliation(s)
- Hong Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, P. R. China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Cong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Lingang Laboratory, Shanghai200031, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai200031, China
| | - Li Sheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingkai Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, P. R. China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Wei-Juan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuelei Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Yunlong District, Xuzhou, Jiangsu Province 221004, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery,Shanghai Institute of Materia Medica, ChineseAcademy of Sciences, Zhongshan, Guangdong 528400, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery,Shanghai Institute of Materia Medica, ChineseAcademy of Sciences, Zhongshan, Guangdong 528400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| |
Collapse
|
5
|
Hegazi E, Muir TW. The spread of chemical biology into chromatin. J Biol Chem 2024; 300:107776. [PMID: 39276931 PMCID: PMC11555340 DOI: 10.1016/j.jbc.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Understanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C. David (Dave) Allis. Among Dave's many talents was a remarkable ability to "brand" a nascent area (or concept) such that it was immediately relatable to the broader field. This also had the entirely intentional effect of drawing more people into the area, something that as this brief review attempts to convey has certainly happened when it comes to getting chemists involved in chromatin research.
Collapse
Affiliation(s)
- Esmat Hegazi
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
6
|
Gao Q, Hao PS. Inflammatory Memory in Epidermal Stem Cells - A New Strategy for Recurrent Inflammatory Skin Diseases. J Inflamm Res 2024; 17:6635-6643. [PMID: 39323610 PMCID: PMC11423832 DOI: 10.2147/jir.s478987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/24/2024] [Indexed: 09/27/2024] Open
Abstract
The ability of the skin to "remember" has been a potential mechanism for studying recurrent skin diseases. While it has been thought that the ability to retain past encounters is the prerogative of immune cells, it has recently been discovered that skin tissue stem cells can also take on this task. Epithelial stem cells undergoing inflammation retain their "memory" through epigenetic reprogramming and exhibit rapid epithelialization and epidermal proliferation upon secondary stimulation. This is a non-specific memory modality independent of conventional immune memory, in which histone modifications (acetylation and methylation) and specific transcription factors (AP-1 and STAT3) are involved in the establishment of inflammatory memories, and AIM2/Caspase-1/IL-1β mainly performs the rapid effects of memory. This finding is intriguing for addressing recurrent inflammatory skin diseases, which may explain the fixed-site recurrence of inflammatory skin diseases and develop new therapeutic strategies in the future. However, more research is still needed to decipher the mysteries of memory.
Collapse
Affiliation(s)
- Qian Gao
- Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Ping-Sheng Hao
- Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Di Nisio E, Manzini V, Licursi V, Negri R. To Erase or Not to Erase: Non-Canonical Catalytic Functions and Non-Catalytic Functions of Members of Histone Lysine Demethylase Families. Int J Mol Sci 2024; 25:6900. [PMID: 39000010 PMCID: PMC11241480 DOI: 10.3390/ijms25136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Histone lysine demethylases (KDMs) play an essential role in biological processes such as transcription regulation, RNA maturation, transposable element control, and genome damage sensing and repair. In most cases, their action requires catalytic activities, but non-catalytic functions have also been shown in some KDMs. Indeed, some strictly KDM-related proteins and some KDM isoforms do not act as histone demethylase but show other enzymatic activities or relevant non-enzymatic functions in different cell types. Moreover, many studies have reported on functions potentially supported by catalytically dead mutant KDMs. This is probably due to the versatility of the catalytical core, which can adapt to assume different molecular functions, and to the complex multi-domain structure of these proteins which encompasses functional modules for targeting histone modifications, promoting protein-protein interactions, or recognizing nucleic acid structural motifs. This rich modularity and the availability of multiple isoforms in the various classes produced variants with enzymatic functions aside from histone demethylation or variants with non-catalytical functions during the evolution. In this review we will catalog the proteins with null or questionable demethylase activity and predicted or validated inactive isoforms, summarizing what is known about their alternative functions. We will then go through some experimental evidence for the non-catalytical functions of active KDMs.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
| | - Valeria Manzini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.D.N.); (V.M.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy;
| |
Collapse
|
8
|
Cheng GP, Wang YF, Li YY, Guo SM, Li HG, Ji DM, Yi NH, Zhou LQ. Deficiency of nucleosome-destabilizing factor GLYR1 dampens spermatogenesis in mice. Mol Cell Endocrinol 2024; 586:112194. [PMID: 38395189 DOI: 10.1016/j.mce.2024.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Aberrant sperm morphology hinders sperm motility and causes male subfertility. Spermatogenesis, a complex process in male germ cell development, necessitates precise regulation of numerous developmental genes. However, the regulatory pathways involved in this process remain partially understood. We have observed the widespread expression of Glyr1, the gene encoding a nucleosome-destabilizing factor, in mouse testicular cells. Our study demonstrates that mice experiencing Glyr1 depletion in spermatogenic cells exhibit subfertility characterized by a diminished count and motility of spermatozoa. Furthermore, the rate of sperm malformation significantly increases in the absence of Glyr1, with a predominant occurrence of head and neck malformation in spermatozoa within the cauda epididymis. Additionally, a reduction in spermatocyte numbers across different meiotic stages is observed, accompanied by diminished histone acetylation in spermatogenic cells upon Glyr1 depletion. Our findings underscore the crucial roles of Glyr1 in mouse spermiogenesis and unveil novel insights into the etiology of male reproductive diseases.
Collapse
Affiliation(s)
- Gui-Ping Cheng
- Department of Women Health Care, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Gang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Nian-Hua Yi
- Department of Women Health Care, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li-Quan Zhou
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
9
|
Yan X, Xu K, Xu Z, Shi C, Lai B, Wu H, Yang S, Sheng L, Wang K, Zheng Y, Ouyang G, Yang D. GLYR1 transcriptionally regulates PER3 expression to promote the proliferation and migration of multiple myeloma. Genomics 2024; 116:110846. [PMID: 38642856 DOI: 10.1016/j.ygeno.2024.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China.
| | - Kaihong Xu
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China
| | - Zhijuan Xu
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China
| | - Cong Shi
- Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Binbin Lai
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China
| | - Hao Wu
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China
| | - Shujun Yang
- Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Lixia Sheng
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China
| | - Keting Wang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yuhan Zheng
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Guifang Ouyang
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; Ningbo Clinical Research Center for Hematologic malignancies, Ningbo 315000, China.
| | - Di Yang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
10
|
Liang C, Xiang R, Chang SH, Liu MW, Jin JY. Familial congenital heart disease caused by a frameshift variant in glyoxylate reductase 1 homolog (GLYR1). QJM 2024; 117:297-299. [PMID: 38070486 DOI: 10.1093/qjmed/hcad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/14/2024] Open
Affiliation(s)
- C Liang
- Center for Medical Genetics, Jiangmen Maternal & Child Health Care Hospital, Jiangmen 529000, China
| | - R Xiang
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha 410000, China
- School of Life Sciences, Central South University, Changsha 410000, China
| | - S-H Chang
- School of Life Sciences, Central South University, Changsha 410000, China
| | - M-W Liu
- School of Life Sciences, Central South University, Changsha 410000, China
- College of Basic Medical, Xinjiang Medical University, Urumqi 830000, China
| | - J-Y Jin
- Department of Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha 410000, China
- School of Life Sciences, Central South University, Changsha 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
11
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
13
|
Hossain AJ, Islam R, Seo JB, Park HS, Kim JI, Kumar V, Lee KW, Park JB. Association of Phosphorylated Pyruvate Dehydrogenase with Pyruvate Kinase M2 Promotes PKM2 Stability in Response to Insulin. Int J Mol Sci 2023; 24:13697. [PMID: 37761999 PMCID: PMC10531280 DOI: 10.3390/ijms241813697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Insulin is a crucial signalling molecule that primarily functions to reduce blood glucose levels through cellular uptake of glucose. In addition to its role in glucose homeostasis, insulin has been shown to regulate cell proliferation. Specifically, insulin enhances the phosphorylation of pyruvate dehydrogenase E1α (PDHA1) at the Ser293 residue and promotes the proliferation of HepG2 hepatocellular carcinoma cells. Furthermore, we previously observed that p-Ser293 PDHA1 bound with pyruvate kinase M2 (PKM2) as confirmed by coimmunoprecipitation. In this study, we used an in silico analysis to predict the structural conformation of the two binding proteins. However, the function of the protein complex remained unclear. To investigate further, we treated cells with si-PDHA1 and si-PKM2, which led to a reduction in PKM2 and p-Ser293 PDHA1 levels, respectively. Additionally, we found that the PDHA S293A dephospho-mimic reduced PKM2 levels and its associated enzyme activity. Treatment with MG132 and leupeptin impeded the PDHA1 S293A-mediated PKM2 reduction. These results suggest that the association between p-PDHA1 and PKM2 promotes their stability and protects them from protein degradation. Of interest, we observed that p-PDHA1 and PKM2 were localized in the nucleus in liver cancer patients. Under insulin stimulation, the knockdown of both PDHA1 and PKM2 led to a reduction in the expression of common genes, including KDMB1. These findings suggest that p-PDHA1 and PKM2 play a regulatory role in these proteins' expression and induce tumorigenesis in response to insulin.
Collapse
Affiliation(s)
- Abu Jubayer Hossain
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
| | - Rokibul Islam
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
- Institute of Cell Differentiation and Aging, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Jong-Bok Seo
- Korea Basic Science Institute Seoul Center, Anamro 145, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.-S.P.); (J.-I.K.)
| | - Jong-Il Kim
- Department of Biomedical Sciences, Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.-S.P.); (J.-I.K.)
| | - Vikas Kumar
- Division of Life Science, Department of Bio and Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea; (V.K.); (K.W.L.)
| | - Keun Woo Lee
- Division of Life Science, Department of Bio and Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea; (V.K.); (K.W.L.)
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
- Institute of Cell Differentiation and Aging, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
14
|
Caroli J, Mattevi A. The NPAC-LSD2 complex in nucleosome demethylation. Enzymes 2023; 53:97-111. [PMID: 37748839 DOI: 10.1016/bs.enz.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
Collapse
Affiliation(s)
- Jonatan Caroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
15
|
Su Z, Kon N, Yi J, Zhao H, Zhang W, Tang Q, Li H, Kobayashi H, Li Z, Duan S, Liu Y, Olive KP, Zhang Z, Honig B, Manfredi JJ, Rustgi AK, Gu W. Specific regulation of BACH1 by the hotspot mutant p53 R175H reveals a distinct gain-of-function mechanism. NATURE CANCER 2023; 4:564-581. [PMID: 36973430 PMCID: PMC10320414 DOI: 10.1038/s43018-023-00532-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jingjie Yi
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Haiqing Zhao
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Huan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Barry Honig
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Qin F, Li B, Wang H, Ma S, Li J, Liu S, Kong L, Zheng H, Zhu R, Han Y, Yang M, Li K, Ji X, Chen PR. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell 2023; 186:1066-1085.e36. [PMID: 36868209 DOI: 10.1016/j.cell.2023.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and β-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.
Collapse
Affiliation(s)
- Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Boyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Sihui Ma
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiaofeng Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shanglin Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linghao Kong
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongfeng Zhu
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Han
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingdong Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
17
|
Song Y, Wang S, Yu B. Structural and Functional Landscape of FAD-Dependent Histone Lysine Demethylases for New Drug Discovery. J Med Chem 2023; 66:71-94. [PMID: 36537915 DOI: 10.1021/acs.jmedchem.2c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules targeting the flavin adenine dinucleotide (FAD)-dependent histone lysine demethylase LSD family have displayed therapeutic promise against various diseases. Nine clinical candidates targeting the classic demethylase-dependent functions of the LSD family are currently being investigated for treating cancers, neurodegenerative diseases, etc. Moreover, targeting noncatalytic functions of LSDs also represents an emerging strategy for treating human diseases. In this Perspective, we provide full structural and functional landscape of the LSD family and action modes of different types of LSD inhibitors including natural products, peptides, and synthetic compounds, aiming to reveal new druggable space for the design of new LSD inhibitors. Particularly, we first classify these inhibitors into three types based on their unique binding modes. Additionally, the strategies targeting the demethylase-independent functions of LSDs are also briefly discussed. This Perspective may benefit the discovery of new LSD inhibitors for probing LSD biology and/or treating human diseases.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Hou C, Ye Z, Yang S, Jiang Z, Wang J, Wang E. Lysine demethylase 1B (Kdm1b) enhances somatic reprogramming through inducing pluripotent gene expression and promoting cell proliferation. Exp Cell Res 2022; 420:113339. [PMID: 36075448 DOI: 10.1016/j.yexcr.2022.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Lysine demethylase 1B (Kdm1b) is known as an epigenetic modifier with demethylase activity against H3K4 and H3K9 histones and plays an important role in tumor progression and tumor stem cell enrichment. In this study, we attempted to elucidate the role of Kdm1b in somatic cell reprogramming. We found that exogenous expression of Kdm1b in human dermal fibroblasts (HDFs) can influence the epigenetic modifications of histones. Subsequent analysis further suggests that the overexpression of Kdm1b can promote cell proliferation, reprogram metabolism and inhibit cell apoptosis. In addition, a series of multipotent factors including Sox2 and Nanog, and several epigenetic factors that may reduce epigenetic barriers were upregulated to varying degrees. More importantly, HDFs transfected with the combination of Oct4 (POU5F1), Sox2, Klf4 and c-Myc and Kdm1b (OSKMK) achieved higher reprogramming efficiency. Therefore, we suggest that Kdm1b is an important epigenetic factor associated with pluripotency.
Collapse
Affiliation(s)
- Cuicui Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Songqin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, United States.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
20
|
Tang D, He J, Dai Y, Geng X, Leng Q, Jiang H, Sun R, Xu S. Targeting KDM1B-dependent miR-215-AR-AGR2-axis promotes sensitivity to enzalutamide-resistant prostate cancer. Cancer Gene Ther 2022; 29:543-557. [PMID: 33854217 DOI: 10.1038/s41417-021-00332-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Post-translational modifications of histones by histone demethylases plays an important role in the regulation of gene transcription and are implicated in cancers. Castrate resistant prostate cancer (CRPC) is often driven by constitutively active androgen receptor and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. However, the role of KDM1B involved in next generation anti-enzalutamide resistance and the mechanisms of KDM1B regulation are poorly defined. Here, we show that KDM1B is upregulated and correlated with prostate cancer progression and poor prognosis. Downregulation of miR-215 is correlated with overexpression of KDM1B in enzalutamide-resistant prostate cancer cells, which promotes AR-dependent AGR2 transcription and regulates the sensitivity to next generation AR-targeted therapy. Inhibition of KDM1B significantly inhibits prostate tumor growth and improves enzalutamide treatments through AGR2 suppression. Our studies demonstrate inhibition of KDM1B can offer a viable therapeutic option to overcome enzalutamide resistance in tumors with deregulated miR-215-KDM1B-AR-AGR2 signaling axis.
Collapse
Affiliation(s)
- Donge Tang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Jiaxi He
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xinyan Geng
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qixin Leng
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haowu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Sun
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Taylor-Papadimitriou J, Burchell JM. Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells 2022; 11:1113. [PMID: 35406676 PMCID: PMC8997813 DOI: 10.3390/cells11071113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is crucial to the determination of cell fate in development and differentiation, and the Polycomb (PcG) and Trithorax (TrxG) groups of proteins, acting antagonistically as complexes, play a major role in this regulation. Although originally identified in Drosophila, these complexes are conserved in evolution and the components are well defined in mammals. Each complex contains a protein with methylase activity (KMT), which can add methyl groups to a specific lysine in histone tails, histone 3 lysine 27 (H3K27), by PcG complexes, and H3K4 and H3K36 by TrxG complexes, creating transcriptionally repressive or active marks, respectively. Histone demethylases (KDMs), identified later, added a new dimension to histone methylation, and mutations or changes in levels of expression are seen in both methylases and demethylases and in components of the PcG and TrX complexes across a range of cancers. In this review, we focus on both methylases and demethylases governing the methylation state of the suppressive and active marks and consider their action and interaction in normal tissues and in cancer. A picture is emerging which indicates that the changes which occur in cancer during methylation of histone lysines can lead to repression of genes, including tumour suppressor genes, or to the activation of oncogenes. Methylases or demethylases, which are themselves tumour suppressors, are highly mutated. Novel targets for cancer therapy have been identified and a methylase (KMT6A/EZH2), which produces the repressive H3K27me3 mark, and a demethylase (KDM1A/LSD1), which demethylates the active H3K4me2 mark, are now under clinical evaluation.
Collapse
|
22
|
Kamerzell TJ, Mikell B, Chen L, Elias H, Dawn B, MacRae C, Middaugh CR. The structural basis of histone modifying enzyme specificity and promiscuity: Implications for metabolic regulation and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:189-243. [PMID: 35534108 DOI: 10.1016/bs.apcsb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histone modifying enzymes regulate chromatin architecture through covalent modifications and ultimately control multiple aspects of cellular function. Disruption of histone modification leads to changes in gene expression profiles and may lead to disease. Both small molecule inhibitors and intermediary metabolites have been shown to modulate histone modifying enzyme activity although our ability to identify successful drug candidates or novel metabolic regulators of these enzymes has been limited. Using a combination of large scale in silico screens and in vivo phenotypic analysis, we identified several small molecules and intermediary metabolites with distinctive HME activity. Our approach using unsupervised learning identifies the chemical fingerprints of both small molecules and metabolites that facilitate recognition by the enzymes active sites which can be used as a blueprint to design novel inhibitors. Furthermore, this work supports the idea that histone modifying enzymes sense intermediary metabolites integrating genes, environment and cellular physiology.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, United States; Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States; Applied AI Technologies, LLC, Overland Park, KS, United States.
| | - Brittney Mikell
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lei Chen
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Harold Elias
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
23
|
Gonzalez-Teran B, Pittman M, Felix F, Thomas R, Richmond-Buccola D, Hüttenhain R, Choudhary K, Moroni E, Costa MW, Huang Y, Padmanabhan A, Alexanian M, Lee CY, Maven BEJ, Samse-Knapp K, Morton SU, McGregor M, Gifford CA, Seidman JG, Seidman CE, Gelb BD, Colombo G, Conklin BR, Black BL, Bruneau BG, Krogan NJ, Pollard KS, Srivastava D. Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell 2022; 185:794-814.e30. [PMID: 35182466 PMCID: PMC8923057 DOI: 10.1016/j.cell.2022.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023]
Abstract
Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.
Collapse
Affiliation(s)
- Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Maureen Pittman
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Franco Felix
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Desmond Richmond-Buccola
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Fei J, Xu J, Li Z, Xu K, Wang D, Kassavetis GA, Kadonaga JT. NDF is a transcription factor that stimulates elongation by RNA polymerase II. Genes Dev 2022; 36:294-299. [PMID: 35273076 PMCID: PMC8973848 DOI: 10.1101/gad.349150.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
Here, Fei et al. found that NDF, which was identified as a bilaterian nucleosome-destabilizing factor, is also a Pol II transcription factor that stimulates elongation with plain DNA templates in the absence of nucleosomes. Their findings demonstrate that NDF is a Pol II binding transcription elongation factor that is localized over gene bodies and is conserved from yeast to humans. RNA polymerase II (Pol II) elongation is a critical step in gene expression. Here we found that NDF, which was identified as a bilaterian nucleosome-destabilizing factor, is also a Pol II transcription factor that stimulates elongation with plain DNA templates in the absence of nucleosomes. NDF binds directly to Pol II and enhances elongation by a different mechanism than that used by transcription factor TFIIS. Moreover, yeast Pdp3, which is related to NDF, binds to Pol II and stimulates elongation. Thus, NDF is a Pol II binding transcription elongation factor that is localized over gene bodies and is conserved from yeast to humans.
Collapse
Affiliation(s)
- Jia Fei
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Ziwei Li
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kevin Xu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
25
|
Li C, Su M, Zhu W, Kan W, Ge T, Xu G, Wang S, Sheng L, Gao F, Ye Y, Wang J, Zhou Y, Li J, Liu H. Structure-Activity Relationship Study of Indolin-5-yl-cyclopropanamine Derivatives as Selective Lysine Specific Demethylase 1 (LSD1) Inhibitors. J Med Chem 2022; 65:4335-4349. [PMID: 35200034 DOI: 10.1021/acs.jmedchem.1c02156] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LSD1 is identified as an essential drug target, which is closely correlated to the development of several tumor types. In this work, on the basis of comprehensive analysis of the binding site of LSD1 and other FAD-dependent enzymes, a novel series of potent and selective LSD1 inhibitors were designed by incorporation of privileged indoline scaffold strategies. Representative compound 7e (LSD1; IC50 = 24.43 nM, selectivity over LSD2 and MAOs of >200- and 4000-fold) possessed selective antiproliferative activities against MV-4-11 cell lines. Further study indicates that 7e could activate CD86 expression (EC50 = 470 nM) and induce differentiation of AML cell lines. More importantly, compound 7e demonstrated an acceptable oral PK profile and good in vivo antitumor efficacy with a T/C value of 30.89% in an MV-4-11 xenograft mouse model. Collectively, this work provides a promising lead compound for the development of novel LSD1 inhibitors for the treatment of AML.
Collapse
Affiliation(s)
- Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingbo Su
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023, China
| | - Wei Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianpeng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Gaoya Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuni Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Sheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunfei Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Trisciuzzi D, Siragusa L, Baroni M, Autiero I, Nicolotti O, Cruciani G. Getting Insights into Structural and Energetic Properties of Reciprocal Peptide-Protein Interactions. J Chem Inf Model 2022; 62:1113-1125. [PMID: 35148095 DOI: 10.1021/acs.jcim.1c01343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide-protein interactions play a key role for many cellular and metabolic processes involved in the onset of largely spread diseases such as cancer and neurodegenerative pathologies. Despite the progress in the structural characterization of peptide-protein interfaces, the in-depth knowledge of the molecular details behind their interactions is still a daunting task. Here, we present the first comprehensive in silico morphological and energetic study of peptide binding sites by focusing on both peptide and protein standpoints. Starting from the PixelDB database, a nonredundant benchmark collection of high-quality 3D crystallographic structures of peptide-protein complexes, a classification analysis of the most representative categories based on the nature of each cocrystallized peptide has been carried out. Several interpretable geometrical and energetic descriptors have been computed both from peptide and target protein sides in the attempt to unveil physicochemical and structural causative correlations. Finally, we investigated the most frequent peptide-protein residue pairs at the binding interface and made extensive energetic analyses, based on GRID MIFs, with the aim to study the peptide affinity-enhancing interactions to be further exploited in rational drug design strategies.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Ida Autiero
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,National Research Council, Institute of Biostructures and Bioimaging, 80138 Naples, Italy
| | - Orazio Nicolotti
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| |
Collapse
|
27
|
Epigenetic modifications of histones during osteoblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194780. [PMID: 34968769 DOI: 10.1016/j.bbagrm.2021.194780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.
Collapse
|
28
|
Cao Y, Tang L, Du K, Paraiso K, Sun Q, Liu Z, Ye X, Fang Y, Yuan F, Chen H, Chen Y, Wang X, Yu C, Blitz IL, Wang PH, Huang L, Cheng H, Lu X, Cho KW, Seldin M, Fang Z, Yang Q. Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1. JCI Insight 2021; 6:e147692. [PMID: 34314389 PMCID: PMC8492328 DOI: 10.1172/jci.insight.147692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than 1000 nuclear-encoded proteins. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain to be fully elucidated. Here, we show that histone demethylase LSD1 KO from adult mouse liver (LSD1-LKO) reduces the expression of one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 regulates gene expression and protein methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), which controls the final step of NAD+ synthesis and limits NAD+ availability in the nucleus. Lsd1 KO reduces NAD+-dependent SIRT1 and SIRT7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABPβ and PGC-1α, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function in the liver, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kang Du
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Kitt Paraiso
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Qiushi Sun
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaolong Ye
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yuan Fang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Hank Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yumay Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaorong Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Clinton Yu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Ira L. Blitz
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Ping H. Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lan Huang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Haibo Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Ken W.Y. Cho
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UCI, Irvine, California, USA
| | - Zhuyuan Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
29
|
隋 昊, 张 陶. [The Role of Histone Demethylase in Osteogenic and Chondrogenic Differentiation of Mesenchymal Stem Cells: A Literature Review]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:364-372. [PMID: 34018352 PMCID: PMC10409206 DOI: 10.12182/20210560202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 02/05/2023]
Abstract
The proliferation and multi-directional differentiation potential of mesenchymal stem cells (MSCs) enabled its wide use in the development of new therapies for bone and cartilage repair. Although preliminary work has been done to verify the gene expression profile of MSCs osteogenic and chondrogenic differentiation, it is still unclear what key factors initiate the differentiation of MSCs, resulting in its limited application in bone and cartilage tissue engineering. The epigenetic mechanism mediated by histone demethylases (lysine [K]-specific histone demethylases, KDMs) is the key link in regulating MSCs lineage differentiation. The lysine-specific histone demethylase (LSD) family containing Tower domain and the histone demethylase family containing Jumonji C (JmjC) domain regulate the expression of various osteogenic-related genes, including Runt-related transcription factor 2 ( RUNX2), osterix ( OSX), osteocalcin ( OCN), to mediate MSCs osteogenic differentiation. The KDM2/4/6 subfamilies regulate the chondrogenic differentiation of MSCs through multiple pathways centered on SRY-related high-mobility-group-box gene 9 ( SOX9). In addition, nanotopology, mircoRNAs, etc. regulate the expression of a variety of osteogenic and chondrogenic transcription factors through up- and down-regulation of KDMs. In summary, the role of histone demethylase in the osteogenic and chondrogenic differentiation of mesenchymal stem cells will help us better understand the pathogenesis of bone and cartilage damage diseases, and establish the foundation of future clinical applications for bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- 昊 隋
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陶 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Structures of chromatin modulators in complex with nucleosome. Curr Opin Chem Biol 2021; 63:105-114. [PMID: 33823458 DOI: 10.1016/j.cbpa.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The chromatin structure is dynamically regulated by many different modulators that post-translationally modify histones, replace canonical histones with histone variants, and unwind nucleosomal DNA, thereby modulating the accessibility of nucleosomal DNA and facilitating downstream DNA-templated nuclear processes. To understand how these modulators change the chromatin structure, it is essential to determine the 3D structures of chromatin modulators in complex with nucleosome. Here, we review the very recent progress in structural studies of some selected chromatin modulators in complex with nucleosome, including those of histone demethylases LSD1/2, some pioneer transcription factors, and the PWWP domain-containing protein LEDGF.
Collapse
|
31
|
Stäubli A, Peters AHFM. Mechanisms of maternal intergenerational epigenetic inheritance. Curr Opin Genet Dev 2021; 67:151-162. [DOI: 10.1016/j.gde.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
|
32
|
Yu S, Li J, Ji G, Ng ZL, Siew J, Lo WN, Ye Y, Chew YY, Long YC, Zhang W, Guccione E, Loh YH, Jiang ZH, Yang H, Wu Q. Npac Is a Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:110-128. [PMID: 33676077 PMCID: PMC9510873 DOI: 10.1016/j.gpb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/16/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a “reader” of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation. Depletion of Npac in mouse embryonic fibroblasts (MEFs) inhibits reprogramming efficiency. Furthermore, our chromatin immunoprecipitation followed by sequencing (ChIP-seq) results of Npac reveal that Npac co-localizes with histone H3K36me3 in gene bodies of actively transcribed genes in mESCs. Interestingly, we find that Npac interacts with positive transcription elongation factor b (p-TEFb), Ser2-phosphorylated RNA Pol II (RNA Pol II Ser2P), and Ser5-phosphorylated RNA Pol II (RNA Pol II Ser5P). Furthermore, depletion of Npac disrupts transcriptional elongation of the pluripotency genes Nanog and Rif1. Taken together, we propose that Npac is essential for the transcriptional elongation of pluripotency genes by recruiting p-TEFb and interacting with RNA Pol II Ser2P and Ser5P.
Collapse
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Guanxu Ji
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wan Ning Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ying Ye
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhi-Hong Jiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China.
| |
Collapse
|
33
|
Wang Z, Liu D, Xu B, Tian R, Zuo Y. Modular arrangements of sequence motifs determine the functional diversity of KDM proteins. Brief Bioinform 2020; 22:5912575. [PMID: 32987405 DOI: 10.1093/bib/bbaa215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone lysine demethylases (KDMs) play a vital role in regulating chromatin dynamics and transcription. KDM proteins are given modular activities by its sequence motifs with obvious roles division, which endow the complex and diverse functions. In our review, according to functional features, we classify sequence motifs into four classes: catalytic motifs, targeting motifs, regulatory motifs and potential motifs. JmjC, as the main catalytic motif, combines to Fe2+ and α-ketoglutarate by residues H-D/E-H and S-N-N/Y-K-N/Y-T/S. Targeting motifs make catalytic motifs recognize specific methylated lysines, such as PHD that helps KDM5 to demethylate H3K4me3. Regulatory motifs consist of a functional network. For example, NLS, Ser-rich, TPR and JmjN motifs regulate the nuclear localization. And interactions through the CW-type-C4H2C2-SWIRM are necessary to the demethylase activity of KDM1B. Additionally, many conservative domains that have potential functions but no deep exploration are reviewed for the first time. These conservative domains are usually amino acid-rich regions, which have great research value. The arrangements of four types of sequence motifs generate that KDM proteins diversify toward modular activities and biological functions. Finally, we draw a blueprint of functional mechanisms to discuss the modular activity of KDMs.
Collapse
Affiliation(s)
- Zerong Wang
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Dongyang Liu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. He is now studying for a master's degree at the institute of botany of the Chinese Academy of Sciences. His research interests include bioinformatics and computational genomics
| | - Baofang Xu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Ruixia Tian
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Yongchun Zuo
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. His research interests include bioinformatics and integration analysis of multiomics in cell reprogramming
| |
Collapse
|
34
|
Gu F, Lin Y, Wang Z, Wu X, Ye Z, Wang Y, Lan H. Biological roles of LSD1 beyond its demethylase activity. Cell Mol Life Sci 2020; 77:3341-3350. [PMID: 32193608 PMCID: PMC11105033 DOI: 10.1007/s00018-020-03489-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
It is well-established that Lysine-specific demethylase 1 (LSD1, also known as KDM1A) roles as a lysine demethylase canonically acting on H3K4me1/2 and H3K9me1/2 for regulating gene expression. Though the discovery of non-histone substrates methylated by LSD1 has largely expanded the functions of LSD1 as a typical demethylase, recent groundbreaking studies unveiled its non-catalytic functions as a second life for this demethylase. We and others found that LSD1 is implicated in the interaction with a line of proteins to exhibit additional non-canonical functions in a demethylase-independent manner. Here, we present an integrated overview of these recent literatures charging LSD1 with unforeseen functions to re-evaluate and summarize its non-catalytic biological roles beyond the current understanding of its demethylase activity. Given LSD1 is reported to be ubiquitously overexpressed in a variety of tumors, it has been generally considered as an innovative target for cancer therapy. We anticipate that these non-canonical functions of LSD1 will arouse the consideration that extending the LSD1-based drug discovery to targeting LSD1 protein interactions non-catalytically, not only its demethylase activity, may be a novel strategy for cancer prevention.
Collapse
Affiliation(s)
- Feiying Gu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Zhun Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenyue Ye
- Department of Respiratory Diseases, Hwa Mei Hospital, University of Chinese Academy Sciences, Ningbo, China
| | - Yuezhen Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Huiyin Lan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
35
|
Kim SA, Zhu J, Yennawar N, Eek P, Tan S. Crystal Structure of the LSD1/CoREST Histone Demethylase Bound to Its Nucleosome Substrate. Mol Cell 2020; 78:903-914.e4. [PMID: 32396821 DOI: 10.1016/j.molcel.2020.04.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
LSD1 (lysine specific demethylase; also known as KDM1A), the first histone demethylase discovered, regulates cell-fate determination and is overexpressed in multiple cancers. LSD1 demethylates histone H3 Lys4, an epigenetic mark for active genes, but requires the CoREST repressor to act on nucleosome substrates. To understand how an accessory subunit (CoREST) enables a chromatin enzyme (LSD1) to function on a nucleosome and not just histones, we have determined the crystal structure of the LSD1/CoREST complex bound to a 191-bp nucleosome. We find that the LSD1 catalytic domain binds extranucleosomal DNA and is unexpectedly positioned 100 Å away from the nucleosome core. CoREST makes critical contacts with both histone and DNA components of the nucleosome, explaining its essential function in demethylating nucleosome substrates. Our studies also show that the LSD1(K661A) frequently used as a catalytically inactive mutant in vivo (based on in vitro peptide studies) actually retains substantial H3K4 demethylase activity on nucleosome substrates.
Collapse
Affiliation(s)
- Sang-Ah Kim
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiang Zhu
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
36
|
Marayati BF, Tucker JF, De La Cerda DA, Hou TC, Chen R, Sugiyama T, Pease JB, Zhang K. The Catalytic-Dependent and -Independent Roles of Lsd1 and Lsd2 Lysine Demethylases in Heterochromatin Formation in Schizosaccharomyces pombe. Cells 2020; 9:E955. [PMID: 32295063 PMCID: PMC7226997 DOI: 10.3390/cells9040955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.
Collapse
Affiliation(s)
- Bahjat F. Marayati
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - James F. Tucker
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - David A. De La Cerda
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Tien-Chi Hou
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Rong Chen
- Physiology and pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - James B. Pease
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Ke Zhang
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| |
Collapse
|
37
|
Pitsillou E, Liang J, Hung A, Karagiannis TC. Chromatin modification by olive phenolics: In silico molecular docking studies utilising the phenolic groups categorised in the OliveNet™ database against lysine specific demethylase enzymes. J Mol Graph Model 2020; 97:107575. [PMID: 32126499 DOI: 10.1016/j.jmgm.2020.107575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Extra virgin olive oil is the principal source of dietary fat in the Mediterranean diet and is considered to have beneficial health effects. There is evidence to suggest that the phenolic compounds within Olea europaea have the ability to inhibit lysine-specific demethylase 1 (LSD1). This is an epigenetic enzyme that removes methyl groups from histone proteins and regulates gene transcription. Conversely, SET domain-containing protein 7 (SETD7) has opposing enzymatic activity and is a histone methyltransferase. Due to the involvement of these proteins in a number of pathological processes, including cancer and diabetes, further research needs to be conducted into the way in which they can be targeted. A large number of phenolic compounds (>200) have been identified in Olea europaea. To help expedite the discovery of promising lead compounds, in this study, in silico molecular docking methods were used to investigate the molecular binding properties of the phenolic compounds obtained from the OliveNet™ database to LSD1 and its variants, LSD2, and SETD7. Numerous Olea europaea phenolic compounds were predicted to bind to the epigenetic enzymes and several had stronger binding affinities than the LSD1 and SETD7 positive control inhibitors. The protein-ligand interactions of the phenolic compounds were also compared to known inhibitors and the molecular docking results suggest that the flavonoids, secoiridoids and glucosides may bind particularly strongly to the epigenetic regulators. Overall, several ligands were identified as lead compounds from this research and their potential inhibitory activity could be validated further in the laboratory.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia; Department of Microbiology and Immunology (Pathology), The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia; School of Science, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
38
|
Huang H, Kong W, Jean M, Fiches G, Zhou D, Hayashi T, Que J, Santoso N, Zhu J. A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Res 2019; 47:7333-7347. [PMID: 31165872 PMCID: PMC6698651 DOI: 10.1093/nar/gkz493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone demethylase, MINA53, is potentially a novel HIV-1 latency-promoting gene (LPG). We next validated MINA53’s function in maintenance of HIV-1 latency by depleting MINA53 using the alternative RNAi approach. We further identified that in vitro MINA53 preferentially demethylates the histone substrate, H3K36me3 and that in cells MINA53 depletion by RNAi also increases the local level of H3K36me3 at LTR. The effort to map the downstream effectors unraveled that H3K36me3 has the cross-talk with another epigenetic mark H4K16ac, mediated by KAT8 that recognizes the methylated H3K36 and acetylated H4K16. Removing the MINA53-mediated latency mechanisms could benefit the reversal of post-integrated latent HIV-1 proviruses for purging of reservoir cells. We further demonstrated that a pan jumonji histone demethylase inhibitor, JIB-04, inhibits MINA53-mediated demethylation of H3K36me3, and JIB-04 synergizes with other latency-reversing agents (LRAs) to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Huachao Huang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Weili Kong
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maxime Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tsuyoshi Hayashi
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Montefiori M, Pilotto S, Marabelli C, Moroni E, Ferraro M, Serapian SA, Mattevi A, Colombo G. Impact of Mutations on NPAC Structural Dynamics: Mechanistic Insights from MD Simulations. J Chem Inf Model 2019; 59:3927-3937. [PMID: 31408337 DOI: 10.1021/acs.jcim.9b00588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NPAC is a cytokine-like nuclear factor involved in chromatin modification and regulation of gene expression. In humans, the C-terminal domain of NPAC has the conserved structure of the β-hydroxyacid dehydrogenases (β-HAD) protein superfamily, which forms a stable tetrameric core scaffold for demethylase enzymes and organizes multiple sites for chromatin interactions. In spite of the close structural resemblance to other β-HAD family members, the human NPAC dehydrogenase domain lacks a highly conserved catalytic lysine, substituted by a methionine. The reintroduction of the catalytic lysine by M437 K mutation results in a significant decrease of stability of the tetramer. Here, we have computationally investigated the molecular determinants of the functional differences between methionine and lysine-containing NPAC proteins. We find that the single mutation can determine strong consequences in terms of dynamics, stability, and ultimately ability to assemble in supramolecular complexes: the higher stability and lower flexibility of the methionine variant structurally preorganizes the monomer for tetramerization, whereas lysine increases flexibility and favors conformations that, while catalytically active, are not optimal for tetrameric assembly. We combine structure-dynamics analysis to an evolutionary study of NPAC sequences, showing that the methionine mutation occurs in a specifically flexible region of the lysine-containing protein, flanked by two domains that concentrate most of the stabilizing interactions. In our model, such separation of stability nuclei and flexible regions appears to favor the functional innovability of the protein.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | - Chiara Marabelli
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | | | | | - Stefano A Serapian
- University of Pavia , Department of Chemistry , V.le Taramelli 12 , 27100 Pavia , Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy
| | - Giorgio Colombo
- ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.,University of Pavia , Department of Chemistry , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
40
|
Patel PO, Pishas KI, Taslim C, Selich-Anderson J, Theisen ER, Lessnick SL. Investigating the role of LSD2 as an epigenetic regulator in Ewing sarcoma. Oncotarget 2019; 10:3865-3878. [PMID: 31231465 PMCID: PMC6570473 DOI: 10.18632/oncotarget.26988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite aggressive multi-modal treatment strategies, 5-year event-free survival remains at 75% for patients with localized disease and 20% for patients with metastases. Thus, the need for novel therapeutic options is imperative. Recent studies have focused on epigenetic misregulation in Ewing sarcoma development and potential new oncotargets for treatment. This project focused on the study of LSD2, a flavin-dependent histone demethylase found to be overexpressed in numerous cancers. We previously demonstrated that Ewing sarcoma cell lines are extremely susceptible to small molecule LSD1 blockade with SP-2509. Drug sensitivity correlated with the degree of LSD2 induction following treatment. As such, the purpose of this study was to determine the role of LSD2 in the epigenetic regulation of Ewing sarcoma, characterize genes regulated by LSD2, and examine the impact of SP-2509 drug treatment on LSD2 gene regulation. Genetic depletion (shRNA) of LSD2 significantly impaired oncogenic transformation with only a modest impact on proliferation. Transcriptional analysis of Ewing sarcoma cells following LSD2knockdown revealed modulation of genes primarily involved in metabolic regulation and nervous system development. Gene set enrichment analysis showed that SP-2509 does not impact LSD2 targeted genes. Although there are currently no small molecule agents that specifically target LSD2, our results support further investigations into agents that can inhibit this histone demethylase as a possible treatment for Ewing sarcoma.
Collapse
Affiliation(s)
- Priyal O Patel
- The Division of Pediatric Hematology, Oncology & Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Stephen L Lessnick
- The Division of Pediatric Hematology, Oncology & Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
41
|
Zhang J, Sun N, Guo W, Wu X, Yang X, Jin H, Zhang Y, Wu X, Zhang F, Hu L, Hu H, Gao Y. Identification of NPAC as a novel biomarker and regulator for hepatocellular carcinoma. J Cell Biochem 2019; 120:8228-8237. [PMID: 30474880 DOI: 10.1002/jcb.28106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) has a high morbidity and mortality around the world, yet the effective therapeutic option for HCC is still limited. NPAC, also known as glyoxylate reductase 1 homolog, is a new nuclear protein recently implicated in tumor biology. However, the role of NPAC in HCC remains unclear. The present study aimed to evaluate the clinical significance and potential role of NPAC in HCC. METHODS The NPAC expression in HCC tissues and matched adjacent normal tissues was detected by real-time polymerase chain reaction, immunohistochemistry (IHC), and Western blot analysis. The clinical significance of the expression of NPAC in HCC was assessed by the Kaplan-Meier survival curve and the Cox regression model. In addition, we established a doxiline-induced overexpression of the NPAC system. The effects of NPAC on HCC cell proliferation, migration, and apoptosis were checked by CCK-8 proliferation assays, transwell, and flow cytometry, respectively. RESULTS The NPAC expression was significantly downregulated in HCC tissues and HCC cell lines. NPAC reduction was significantly correlated with poorer survival among patients with HCC, and the multivariate analysis confirmed its independent prognostic value. Furthermore, overexpression of NPAC dramatically suppressed the proliferation of HCC cells and promoted HCC cells apoptosis. Besides, the levels of phosphorylation of janus kinase 2 (JAK2) and signal transduction and activator 3 (STAT3) were significantly reduced after overexpression of NPAC in HCC cell lines. CONCLUSIONS These results suggest that NPAC may play an important role in the development and progression of HCC, and can act as a novel potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiecheng Zhang
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Guo
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaoying Yang
- Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yueling Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Xiaoting Wu
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Fenglian Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Ling Hu
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiling Hu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Gao
- Department of PI-WEI, PI-WEI Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Marabelli C, Marrocco B, Pilotto S, Chittori S, Picaud S, Marchese S, Ciossani G, Forneris F, Filippakopoulos P, Schoehn G, Rhodes D, Subramaniam S, Mattevi A. A Tail-Based Mechanism Drives Nucleosome Demethylation by the LSD2/NPAC Multimeric Complex. Cell Rep 2019; 27:387-399.e7. [PMID: 30970244 DOI: 10.1016/j.celrep.2019.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
LSD1 and LSD2 are homologous histone demethylases with opposite biological outcomes related to chromatin silencing and transcription elongation, respectively. Unlike LSD1, LSD2 nucleosome-demethylase activity relies on a specific linker peptide from the multidomain protein NPAC. We used single-particle cryoelectron microscopy (cryo-EM), in combination with kinetic and mutational analysis, to analyze the mechanisms underlying the function of the human LSD2/NPAC-linker/nucleosome complex. Weak interactions between LSD2 and DNA enable multiple binding modes for the association of the demethylase to the nucleosome. The demethylase thereby captures mono- and dimethyl Lys4 of the H3 tail to afford histone demethylation. Our studies also establish that the dehydrogenase domain of NPAC serves as a catalytically inert oligomerization module. While LSD1/CoREST forms a nucleosome docking platform at silenced gene promoters, LSD2/NPAC is a multifunctional enzyme complex with flexible linkers, tailored for rapid chromatin modification, in conjunction with the advance of the RNA polymerase on actively transcribed genes.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Biagina Marrocco
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Simona Pilotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Sagar Chittori
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Sara Marchese
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Giuseppe Ciossani
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Daniela Rhodes
- Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sriram Subramaniam
- The University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
43
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
45
|
Fei J, Ishii H, Hoeksema MA, Meitinger F, Kassavetis GA, Glass CK, Ren B, Kadonaga JT. NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes Dev 2018; 32:682-694. [PMID: 29759984 PMCID: PMC6004073 DOI: 10.1101/gad.313973.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.
Collapse
Affiliation(s)
- Jia Fei
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Center for Epigenomics, Institute of Genome Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
46
|
Liu Y, Huang Y. Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8. J Biol Chem 2018; 293:6470-6481. [PMID: 29496997 PMCID: PMC5925821 DOI: 10.1074/jbc.ra117.001390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Chromatin consists of DNA and histones, and specific histone modifications that determine chromatin structure and activity are regulated by three types of proteins, called writer, reader, and eraser. Histone reader proteins from vertebrates, vertebrate-infecting parasites, and higher plants possess a CW domain, which has been reported to read histone H3 lysine 4 (H3K4). The CW domain of Arabidopsis SDG8 (also called ASHH2), a histone H3 lysine 36 methyltransferase, preferentially binds monomethylated H3K4 (H3K4me1), unlike the mammalian CW domain protein, which binds trimethylated H3K4 (H3K4me3). However, the molecular basis of the selective binding by the CW domain of SDG8 (SDG8-CW) remains unclear. Here, we solved the 1.6-Å-resolution structure of SDG8-CW in complex with H3K4me1, which revealed that residues in the C-terminal α-helix of SDG8-CW determine binding specificity for low methylation levels at H3K4. Moreover, substitutions of key residues, specifically Ile-915 and Asn-916, converted SDG8-CW binding preference from H3K4me1 to H3K4me3. Sequence alignment and mutagenesis studies revealed that the CW domain of SDG725, the homolog of SDG8 in rice, shares the same binding preference with SDG8-CW, indicating that preference for low methylated H3K4 by the CW domain of ASHH2 homologs is conserved among higher-order plants. Our findings provide first structural insights into the molecular basis for specific recognition of monomethylated H3K4 by the H3K4me1 reader protein SDG8 from Arabidopsis.
Collapse
Affiliation(s)
- Yanchao Liu
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Huang
- From the State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201210, China, To whom correspondence should be addressed. Tel.:
86-20778200; Fax:
86-20778200; E-mail:
| |
Collapse
|
47
|
Zhang QL, Zhu QH, Zhang F, Xu B, Wang XQ, Chen JY. Transcriptome-wide analysis of immune-responsive microRNAs against poly (I:C) challenge in Branchiostoma belcheri by deep sequencing and bioinformatics. Oncotarget 2017; 8:73590-73602. [PMID: 29088729 PMCID: PMC5650284 DOI: 10.18632/oncotarget.20570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Amphioxus is a key experimental animal for studying the evolution of vertebrate immune system. However, we still do not know about the roles of microRNAs (miRNAs) under viral stress in amphioxus. In this study, we sequenced six small RNA libraries (three biological replicates were included in the treatments challenged by the viral mimic, poly (I:C) (pIC) and control groups, respectively) from Branchiostoma belcheri. A total of 151 known miRNAs, 197 new miRNAs (named novel_mir, including nine conserved miRNAs) were identified by deep sequencing from the six libraries. We primarily focused on differentially expressed miRNAs (DEMs) after pIC challenge. Next, we screened a total of 77 DEMs, including 27 down- and 50 up-regulated DEMs in response to pIC challenge. Furthermore, we used real-time quantitative PCR (qRT-PCR) to verify the expression levels of 10 randomly selected DEMs. Target genes likely regulated by DEMs were predicted, and functional enrichment analyses of these targets were performed using bioinformatics approach. MiRNA targets of DEMs are primarily involved in immune response, diseases, cancer and regulation process, and could be largely linked to 14 immune-related signaling pathways, including NF-kappa B, NOD-like receptor, RIG-I-like receptor and endocytosis. The present study for the first time explores key regulatory roles of miRNAs in the innate antiviral immune response in amphioxus, and will provide insight into the molecular basis of antiviral immunity and evolution of immune-related miRNAs.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | | | - Feng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Bin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Xiu-Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| |
Collapse
|
48
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
49
|
Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
50
|
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 2017; 12:340-352. [PMID: 28277979 PMCID: PMC5453194 DOI: 10.1080/15592294.2017.1290032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan.,b PRESTO, Japan Science and Technology Agency (JST) , Honcho, Kawaguchi , Saitama , Japan
| |
Collapse
|