1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Xie S, Fang Y, Liao Z, Cui L, Niu K, Ren S, Zhu J, Wu W, Jing Z, Peng C. A poxvirus ankyrin protein LSDV012 inhibits IFIT1 in a host-species-specific manner by compromising its RNA binding ability. PLoS Pathog 2025; 21:e1012994. [PMID: 40096184 PMCID: PMC11957390 DOI: 10.1371/journal.ppat.1012994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Poxviruses are large DNA viruses with an arsenal of immune-modulatory genes, many of which remain uncharacterized. Proteins with ankyrin repeats are distinct features of poxviruses, although the biological functions of ankyrin proteins are not fully understood. Lumpy skin disease virus (LSDV) encodes five proteins with ankyrin repeats. Here, we reveal the role of LSDV012, an ankyrin protein, in conferring resistance to type I interferon (IFN) in cells. Deletion of LSDV012 from LSDV significantly impacted viral replication in the presence of type I IFN, highlighting the importance of LSDV012 in antagonizing type I IFN responses. Further investigation revealed that LSDV012 interacted with interferon-induced proteins with tetratricopeptide repeats (IFITs), particularly IFIT1, altering its subcellular localization, interacting with its C-terminus and inhibiting its RNA-binding ability without inducing its degradation. Phylogenetic analysis demonstrated that LSDV012 orthologs are conserved in capripoxviruses and cervidpoxviruses, and exhibit host species-specific interactions with IFIT1. Notably, LSDV012 was able to rescue the degradation of IFIT1 mediated by VACV C9. These findings provide novel insights into the viral strategies employed by LSDV to subvert host antiviral defenses and underscore the evolutionary adaptations of poxvirus ankyrin proteins in host species-specific immune evasion.
Collapse
Affiliation(s)
- Shijie Xie
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongxiang Fang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Lianxin Cui
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Junda Zhu
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| | - Zhizhong Jing
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Spiewla T, Grab K, Depaix A, Ziemkiewicz K, Warminski M, Jemielity J, Kowalska J. An MST-based assay reveals new binding preferences of IFIT1 for canonically and noncanonically capped RNAs. RNA (NEW YORK, N.Y.) 2025; 31:181-192. [PMID: 39643445 PMCID: PMC11789485 DOI: 10.1261/rna.080089.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
IFITs (interferon-induced proteins with tetratricopeptide repeats) are components of the innate immune response that bind to viral and cellular RNA targets to inhibit translation and replication. The RNA target recognition is guided by molecular patterns, particularly at the RNA 5' ends. IFIT1 preferably binds RNAs modified with the m7G cap-0 structure, while RNAs with cap-1 structure are recognized with lower affinity. Less is known about the propensity of IFIT1 to recognize noncanonical RNA 5' ends, including hypermethylated and noncanonical RNA caps. Further insights into the structure-function relationship for IFIT1-RNA interactions are needed but require robust analytical methods. Here, we report a biophysical assay for quick, direct, in-solution affinity assessment of differently capped RNAs with IFIT1. The procedure, which relies on measuring microscale thermophoresis of fluorescently labeled protein as a function of increasing ligand concentration, is applicable to RNAs of various lengths and sequences without the need for their labeling or affinity tagging. Using the assay, we examined 13 canonically and noncanonically 5'-capped RNAs, revealing new binding preferences of IFIT1. The 5' terminal m6A mark in the m7G cap had a protective function against IFIT1, which was additive with the effect observed for the 2'-O position (m6Am cap-1). In contrast, an increased affinity for IFIT1 was observed for several noncanonical caps, including trimethylguanosine, unmethylated (G), and flavin-adenine dinucleotide caps. The results suggest new potential cellular targets of IFIT1 and may contribute to broadening the knowledge of the innate immune response mechanisms and the more effective design of chemically modified mRNAs.
Collapse
Affiliation(s)
- Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
5
|
Geng J, Chrabaszczewska M, Kurpiejewski K, Stankiewicz-Drogon A, Jankowska-Anyszka M, Darzynkiewicz E, Grzela R. Cap-related modifications of RNA regulate binding to IFIT proteins. RNA (NEW YORK, N.Y.) 2024; 30:1292-1305. [PMID: 39009378 PMCID: PMC11404448 DOI: 10.1261/rna.080011.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.
Collapse
Affiliation(s)
- Jingping Geng
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Chrabaszczewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Huang J, Ma K, Zhang J, Zhou J, Yi J, Qi W, Liao M. Pathogenicity and transmission of novel highly pathogenic H7N2 variants originating from H7N9 avian influenza viruses in chickens. Virology 2024; 597:110121. [PMID: 38917688 DOI: 10.1016/j.virol.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Kaixiong Ma
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiahao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiahui Yi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| | - Ming Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
7
|
Li R, Zhai S, Gao S, Yang X, Zhao J, Zhang X, Wang Z. Goose IFIT5 positively regulates goose astrovirus replication in GEF cells. Poult Sci 2024; 103:103930. [PMID: 38908126 PMCID: PMC11253660 DOI: 10.1016/j.psj.2024.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Saimin Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Felipe Fumero E, Walter C, Frenz JM, Seifert F, Alla V, Hennig T, Angenendt L, Hartmann W, Wolf S, Serve H, Oellerich T, Lenz G, Müller-Tidow C, Schliemann C, Huber O, Dugas M, Mann M, Jayavelu AK, Mikesch JH, Arteaga MF. Epigenetic control over the cell-intrinsic immune response antagonizes self-renewal in acute myeloid leukemia. Blood 2024; 143:2284-2299. [PMID: 38457355 PMCID: PMC11181352 DOI: 10.1182/blood.2023021640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Animals
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Mice
- Interferon Type I/metabolism
- Cell Self Renewal
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
| | - Carolin Walter
- Institute of Medical Informatics, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Franca Seifert
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Vijay Alla
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Wolf
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | | | | - Otmar Huber
- Department of Biochemistry II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
9
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
10
|
Clayton E, Atasoy MO, Naggar RFE, Franco AC, Rohaim MA, Munir M. Interferon-induced protein with tetratricopeptide repeats 5 of black fruit bat ( Pteropus alecto) displays a broad inhibition of RNA viruses. Front Immunol 2024; 15:1284056. [PMID: 38440728 PMCID: PMC10909918 DOI: 10.3389/fimmu.2024.1284056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5'ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
11
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
12
|
Xiong D, Yang J, Li D, Wang J. Exploration of Key Immune-Related Transcriptomes Associated with Doxorubicin-Induced Cardiotoxicity in Patients with Breast Cancer. Cardiovasc Toxicol 2023; 23:329-348. [PMID: 37684436 PMCID: PMC10514147 DOI: 10.1007/s12012-023-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Based on a few studies, heart failure patients with breast cancer were assessed to find potential biomarkers for doxorubicin-induced cardiotoxicity. However, key immune-related transcriptional markers linked to doxorubicin-induced cardiotoxicity in breast cancer patients have not been thoroughly investigated. We used GSE40447, GSE76314, and TCGA BRCA cohorts to perform this study. Then, we performed various bioinformatics approaches to identify the key immune-related transcriptional markers and their association with doxorubicin-induced cardiotoxicity in patients with breast cancer. We found 255 upregulated genes and 286 downregulated genes in patients with doxorubicin-induced heart failure in breast cancer. We discovered that in patients with breast cancer comorbidity doxorubicin-induced cardiotoxicity, the 58 immunological genes are elevated (such as CPA3, VSIG4, GATA2, RFX2, IL3RA, and LRP1), and the 60 genes are significantly suppressed (such as MS4A1, FCRL1, CD200, FCRLA, FCRL2, and CD79A). Furthermore, we revealed that the immune-related differentially expressed genes (DEGs) are substantially associated with the enrichment of KEGG pathways, including B-cell receptor signaling pathway, primary immunodeficiency, chemokine signaling pathway, hematopoietic cell lineage, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, MAPK signaling pathway, focal adhesion, dilated cardiomyopathy, cell adhesion molecule, etc. Moreover, we discovered that the doxorubicin-induced immune-related genes are crucially involved in the protein-protein interaction and gene clusters. The immune-related genes, including IFIT5, XCL1, SPIB, BTLA, MS4A1, CD19, TCL1A, CD83, CD200, FCRLA, CD79A, BIRC3, and IGF2R are significantly associated with a poor survival prognosis of breast cancer patients and showed diagnostic efficacy in patients with breast cancer and heart failure. Molecular docking revealed that the survival-associated genes interact with the doxorubicin with appreciable binding affinity. Finally, we validated the expression level of immune-related genes in breast cancer patients-derived cardiomyocytes with doxorubicin-induced cardiotoxicity and found that the level of RAD9A, HSPA1B, GATA2, IGF2R, CD200, ERCC8, and BCL11A genes are consistently dysregulated. Our findings offered a basis for understanding the mechanism and pathogenesis of the cardiotoxicity caused by doxorubicin in breast cancer patients and predicted the interaction of immune-related potential biomarkers with doxorubicin.
Collapse
Affiliation(s)
- Daiqin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dongfeng Li
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
13
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
15
|
Dalton SE, Workalemahu T, Allshouse AA, Page JM, Reddy UM, Saade GR, Pinar H, Goldenberg RL, Dudley DJ, Silver RM. Copy number variants and fetal growth in stillbirths. Am J Obstet Gynecol 2023; 228:579.e1-579.e11. [PMID: 36356697 PMCID: PMC10149588 DOI: 10.1016/j.ajog.2022.11.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fetal growth abnormalities are associated with a higher incidence of stillbirth, with small and large for gestational age infants incurring a 3 to 4- and 2 to 3-fold increased risk, respectively. Although clinical risk factors such as diabetes, hypertension, and placental insufficiency have been associated with fetal growth aberrations and stillbirth, the role of underlying genetic etiologies remains uncertain. OBJECTIVE This study aimed to assess the relationship between abnormal copy number variants and fetal growth abnormalities in stillbirths using chromosomal microarray. STUDY DESIGN A secondary analysis utilizing a cohort study design of stillbirths from the Stillbirth Collaborative Research Network was performed. Exposure was defined as abnormal copy number variants including aneuploidies, pathogenic copy number variants, and variants of unknown clinical significance. The outcomes were small for gestational age and large for gestational age stillbirths, defined as a birthweight <10th percentile and greater than the 90th percentile for gestational age, respectively. RESULTS Among 393 stillbirths with chromosomal microarray and birthweight data, 16% had abnormal copy number variants. The small for gestational age outcome was more common among those with abnormal copy number variants than those with a normal microarray (29.5% vs 16.5%; P=.038). This finding was consistent after adjusting for clinically important variables. In the final model, only abnormal copy number variants and maternal age remained significantly associated with small for gestational age stillbirths, with an adjusted odds ratio of 2.22 (95% confidence interval, 1.12-4.18). Although large for gestational age stillbirths were more likely to have an abnormal microarray: 6.2% vs 3.3% (P=.275), with an odds ratio of 2.35 (95% confidence interval, 0.70-7.90), this finding did not reach statistical significance. CONCLUSION Genetic abnormalities are more common in the setting of small for gestational age stillborn fetuses. Abnormal copy number variants not detectable by traditional karyotype make up approximately 50% of the genetic abnormalities in this population.
Collapse
Affiliation(s)
- Susan E Dalton
- University of Utah Health, Salt Lake City, UT; Intermountain Healthcare, Salt Lake City, UT
| | | | | | | | | | - George R Saade
- University of Texas Medical Branch at Galveston, Galveston, TX
| | - Halit Pinar
- Brown University School of Medicine, Providence, RI
| | | | | | - Robert M Silver
- University of Utah Health, Salt Lake City, UT; Intermountain Healthcare, Salt Lake City, UT.
| |
Collapse
|
16
|
Schindewolf C, Lokugamage K, Vu MN, Johnson BA, Scharton D, Plante JA, Kalveram B, Crocquet-Valdes PA, Sotcheff S, Jaworski E, Alvarado RE, Debbink K, Daugherty MD, Weaver SC, Routh AL, Walker DH, Plante KS, Menachery VD. SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. J Virol 2023; 97:e0153222. [PMID: 36722972 PMCID: PMC9973020 DOI: 10.1128/jvi.01532-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.
Collapse
Affiliation(s)
- Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rojelio E. Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kari Debbink
- Department of Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, California, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L. Routh
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
17
|
Zhang X, Miao Y, Sun HW, Wang YX, Zhao WM, Pang AY, Wu XY, Shen CC, Chen XD. Integrated analysis from multi-center studies identities m7G-derived modification pattern and risk stratification system in skin cutaneous melanoma. Front Immunol 2022; 13:1034516. [PMID: 36532001 PMCID: PMC9751814 DOI: 10.3389/fimmu.2022.1034516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The m7G modification has been proven to play an important role in RNA post-transcriptional modification and protein translation. However, the potential role of m7G modification patterns in assessing the prognosis of Skin cutaneous melanoma (SKCM) and tumor microenvironment (TME) has not been well studied. In this study, we investigated and finally identified 21 available m7G-related genes. We used hierarchical clustering (K-means) to classify 743 SKCM patients into three m7G-modified subtypes named m7G/gene cluster-A, B, C. We found that both m7G cluster B and gene cluster B exhibited higher prognosis and higher immune cell infiltration in TME compared to other subtypes. EIF4E3 and IFIT5, two m7G related genes, were both markedly elevated in Cluster B. Then, we constructed an m7G score system utilizing principal component analysis (PCA) in order to evaluate the patients' prognosis. High m7G score subtype was associated with better survival prognosis and active immune response. Overall, this article revealed that m7G modification patterns were involved in the development of the tumor microenvironment. Evaluating patients' m7G modification patterns will enhance our understanding of TME characteristics and help to guide personal treatment in clinics in the future.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ying Miao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hao-Wen Sun
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yi-Xiao Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wen-Min Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - A-Ying Pang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiao-Yan Wu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cong-Cong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China,*Correspondence: Cong-Cong Shen, ; Xiao-Dong Chen,
| | - Xiao-Dong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China,*Correspondence: Cong-Cong Shen, ; Xiao-Dong Chen,
| |
Collapse
|
18
|
Budniak U, Karolak NK, Kulik M, Młynarczyk K, Górna MW, Dominiak PM. The Role of Electrostatic Interactions in IFIT5-RNA Complexes Predicted by the UBDB+EPMM Method. J Phys Chem B 2022; 126:9152-9167. [PMID: 36326196 PMCID: PMC9677429 DOI: 10.1021/acs.jpcb.2c04519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrostatic energy has a significant contribution to intermolecular interaction energy, especially in biological systems. Unfortunately, precise quantum mechanics calculations are not feasible for large biological systems; hence, simpler calculation methods are required. We propose a method called UBDB+EPMM (University at Buffalo Pseudoatom DataBank + Exact Potential Multipole Moments), which shortens computational time without losing accuracy. Here, we characterize electrostatic interactions in selected complexes of IFIT proteins with RNA. IFIT proteins are effectors of the innate immune system, and by binding foreign RNA, they prevent the synthesis of viral proteins in human host cells; hence, they block the propagation of viruses. We show that by using the UBDB+EPMM method it is possible to describe protein-RNA interactions not only qualitatively but also quantitatively. Looking at the charge penetration contribution to electrostatic interactions, we find all amino acid residues with strong local interactions. Moreover, we confirm that electrostatic interaction of IFIT5 with pppRNA does not depend on the sequence of the RNA.
Collapse
Affiliation(s)
- Urszula
Anna Budniak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Natalia Katarzyna Karolak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,Nencki
Institute of Experimental Biology, Polish
Academy of Sciences, ul. Ludwika Pasteura 3, 02-093 Warszawa, Poland
| | - Marta Kulik
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Młynarczyk
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Maria Wiktoria Górna
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,E-mail:
| | - Paulina Maria Dominiak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland,E-mail:
| |
Collapse
|
19
|
Lo UG, Chen YA, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai CH, Mu P, Chung LWK, Hsieh JT. The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med 2022; 12:e978. [PMID: 35908276 PMCID: PMC9339240 DOI: 10.1002/ctm2.978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lineage plasticity in prostate cancer (PCa) has emerged as an important mechanism leading to the onset of therapy- and castration-resistant PCa (t-CRPC), which is closely associated with cancer stem cell (CSC) activity. This study is to identify critical driver(s) with mechanism of action and explore new targeting strategy. METHODS Various PCa cell lines with different genetic manipulations were subjected to in vitro prostasphere assay, cell viability assay and in vivo stemness potential. In addition, bioinformatic analyses such as Ingenuity pathway and Gene Set Enrichment Analysis were carried out to determine clinical relevance. The in vivo anti-tumour activity of JAK or STAT1 inhibitors was examined in clinically relevant t-CRPC model. RESULTS We demonstrated the role of interferon-related signalling pathway in promoting PCa stemness, which correlated with significant elevation of interferon related DNA damage resistance signature genes in metastatic PCa. Inhibition of JAK-STAT1 signalling suppresses the in vitro and in vivo CSC capabilities. Mechanistically, IFIT5, a unique downstream effector of JAK-STAT1 pathway, can facilitate the acquisition of stemness properties in PCa by accelerating the turnover of specific microRNAs (such as miR-128 and -101) that can target several CSC genes (such as BMI1, NANOG, and SOX2). Consistently, knocking down IFIT5 in t-CRPC cell can significantly reduce in vitro prostasphere formation as well as decrease in vivo tumour initiating capability. CONCLUSIONS This study provides a critical role of STAT1-IFIT5 in the acquisition of PCSC and highlights clinical translation of JAK or STAT1 inhibitors to prevent the outgrowth of t-CRPC.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Junjie Cen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Su Deng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junghang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Haiyen Zhau
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lin Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Genomic insights into the secondary aquatic transition of penguins. Nat Commun 2022; 13:3912. [PMID: 35853876 PMCID: PMC9296559 DOI: 10.1038/s41467-022-31508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth. This study examines the tempo and drivers of penguin diversification by combining genomes from all extant and recently extinct penguin lineages, stratigraphic data from fossil penguins and morphological and biogeographic data from all extant and extinct species. Together, these datasets provide new insights into the genetic basis and evolution of adaptations in penguins.
Collapse
|
21
|
Qiao W, Fan J, Shang X, Wang L, Tuohetaerbaike B, Li Y, Zhang L, Huo Y, Wang J, Ma X. Bioinformation Analysis Reveals IFIT1 as Potential Biomarkers in Central Nervous System Tuberculosis. Infect Drug Resist 2022; 15:35-45. [PMID: 35027832 PMCID: PMC8749771 DOI: 10.2147/idr.s328197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Central nervous system tuberculosis is the most serious form of extrapulmonary tuberculosis. We aim to discover potential biomarkers involved in the development of the disease. Methods Through gene difference analysis, construction of a protein interaction network and tissue specific analysis and other bioinformatics analysis methods, we found out the relatively high expression of important substances in the central nervous system, interferon induced protein with tetratricopeptide repeats 1. Subsequently, the lesion tissue and the resection margin tissue away from the lesion were collected from the 6 cases of central nervous system tuberculosis patients diagnosed from 2019 to 2020, and the pathological manifestations were observed by Hematoxylin and Eosin (H&E) staining, and the expression of IFIT1 was verified by immunohistochemistry. Results A total of 101 differential genes were analyzed between extrapulmonary tuberculosis patients and normal people, and they were mainly enriched in the interferon pathway. The protein interaction network unearthed 34 key genes. Through tissue specific analysis, it was found that IFIT1 is relatively high in the central nervous system. H&E staining showed the expression of multinucleated macrophages, and immunohistochemistry showed that IFIT1 was significantly positively expressed in the lesion tissue. Conclusion IFIT1 is an important substance involved in central nervous system tuberculosis.
Collapse
Affiliation(s)
- Wenbin Qiao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Jiahui Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Liang Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Bahetibieke Tuohetaerbaike
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Ying Li
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Li Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| | - YiShan Huo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Jing Wang
- Respiratory Department of the Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, 570000, People's Republic of China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China.,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, People's Republic of China
| |
Collapse
|
22
|
Structure of human cytomegalovirus virion reveals host tRNA binding to capsid-associated tegument protein pp150. Nat Commun 2021; 12:5513. [PMID: 34535641 PMCID: PMC8448752 DOI: 10.1038/s41467-021-25791-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Under the Baltimore nucleic acid-based virus classification scheme, the herpesvirus human cytomegalovirus (HCMV) is a Class I virus, meaning that it contains a double-stranded DNA genome-and no RNA. Here, we report sub-particle cryoEM reconstructions of HCMV virions at 2.9 Å resolution revealing structures resembling non-coding transfer RNAs (tRNAs) associated with the virion's capsid-bound tegument protein, pp150. Through deep sequencing, we show that these RNA sequences match human tRNAs, and we built atomic models using the most abundant tRNA species. Based on our models, tRNA recruitment is mediated by the electrostatic interactions between tRNA phosphate groups and the helix-loop-helix motif of HCMV pp150. The specificity of these interactions may explain the absence of such tRNA densities in murine cytomegalovirus and other human herpesviruses.
Collapse
|
23
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
24
|
Barik S. An Analytical Review of the Structural Features of Pentatricopeptide Repeats: Strategic Amino Acids, Repeat Arrangements and Superhelical Architecture. Int J Mol Sci 2021; 22:ijms22105407. [PMID: 34065603 PMCID: PMC8160929 DOI: 10.3390/ijms22105407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Tricopeptide repeats are common in natural proteins, and are exemplified by 34- and 35-residue repeats, known respectively as tetratricopeptide repeats (TPRs) and pentatricopeptide repeats (PPRs). In both classes, each repeat unit forms an antiparallel bihelical structure, so that multiple such units in a polypeptide are arranged in a parallel fashion. The primary structures of the motifs are nonidentical, but amino acids of similar properties occur in strategic positions. The focus of the present work was on PPR, but TPR, its better-studied cousin, is often included for comparison. The analyses revealed that critical amino acids, namely Gly, Pro, Ala and Trp, were placed at distinct locations in the higher order structure of PPR domains. While most TPRs occur in repeats of three, the PPRs exhibited a much greater diversity in repeat numbers, from 1 to 30 or more, separated by spacers of various sequences and lengths. Studies of PPR strings in proteins showed that the majority of PPR units are single, and that the longer tandems (i.e., without space in between) occurred in decreasing order. The multi-PPR domains also formed superhelical vortices, likely governed by interhelical angles rather than the spacers. These findings should be useful in designing and understanding the PPR domains.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
25
|
Zhang N, Shi H, Yan M, Liu G. IFIT5 Negatively Regulates the Type I IFN Pathway by Disrupting TBK1-IKKε-IRF3 Signalosome and Degrading IRF3 and IKKε. THE JOURNAL OF IMMUNOLOGY 2021; 206:2184-2197. [PMID: 33858962 DOI: 10.4049/jimmunol.2001033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
IFN-induced protein with tetratricopeptide repeats (IFITs), known as canonical IFN-stimulated genes (ISGs), play critical roles in regulating immune responses against pathogens and maintaining homeostasis. How the IFIT5 regulates innate immune responses is rarely reported and remains enigmatic. In this study, we discover that human IFIT5 (hIFIT5) functions as a negative regulator of the type I IFN (IFN) pathway in HEK293T cell lines. Our data illustrated that hIFIT5 inhibited the promotor activities of IFN-β induced by IRF3 and its upstream factors but not by IRF3-5D (activated form of IRF3), suggesting that IRF3 might be a target of hIFIT5. Further investigations revealed that hIFIT5 downregulated the phosphorylation of IRF3 and IKKε and blocked the IRF3 nuclear translocation. Moreover, hIFIT5 impaired the IRF3-TBK1-IKKε complex, accompanied by IRF3 and IKKε degradation. In conclusion, these findings indicate that hIFIT5 is a negative modulator in the type I IFN signaling pathway, opening additional avenues for preventing hyperactivation and maintaining immunity homeostasis.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Han Shi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Miaomiao Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Mears HV, Sweeney TR. Mouse Ifit1b is a cap1-RNA-binding protein that inhibits mouse coronavirus translation and is regulated by complexing with Ifit1c. J Biol Chem 2020; 295:17781-17801. [PMID: 33454014 PMCID: PMC7762956 DOI: 10.1074/jbc.ra120.014695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Knockout mouse models have been extensively used to study the antiviral activity of IFIT (interferon-induced protein with tetratricopeptide repeats). Human IFIT1 binds to cap0 (m7GpppN) RNA, which lacks methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNm, and cap2, m7GpppNmNm, respectively). These modifications are signatures of "self" in higher eukaryotes, whereas unmodified cap0-RNA is recognized as foreign and, therefore, potentially harmful to the host cell. IFIT1 inhibits translation at the initiation stage by competing with the cap-binding initiation factor complex, eIF4F, restricting infection by certain viruses that possess "nonself" cap0-mRNAs. However, in mice and other rodents, the IFIT1 orthologue has been lost, and the closely related Ifit1b has been duplicated twice, yielding three paralogues: Ifit1, Ifit1b, and Ifit1c. Although murine Ifit1 is similar to human IFIT1 in its cap0-RNA-binding selectivity, the roles of Ifit1b and Ifit1c are unknown. Here, we found that Ifit1b preferentially binds to cap1-RNA, whereas binding is much weaker to cap0- and cap2-RNA. In murine cells, we show that Ifit1b can modulate host translation and restrict WT mouse coronavirus infection. We found that Ifit1c acts as a stimulatory cofactor for both Ifit1 and Ifit1b, promoting their translation inhibition. In this way, Ifit1c acts in an analogous fashion to human IFIT3, which is a cofactor to human IFIT1. This work clarifies similarities and differences between the human and murine IFIT families to facilitate better design and interpretation of mouse models of human infection and sheds light on the evolutionary plasticity of the IFIT family.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
28
|
Huang Y, Chen S, Qin W, Wang Y, Li L, Li Q, Yuan X. A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2020; 10:580513. [PMID: 33251144 PMCID: PMC7673432 DOI: 10.3389/fonc.2020.580513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with high recurrence rates and mortality. Some studies have illustrated that RNA binding proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers, but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330 differentially expressed RBPs were identified between normal and HCC tissues. Through series of the univariate, the least absolute shrinkage selection operator (LASSO), and the stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs, and a six-RBP gene risk score signature was constructed in training set. Survival analysis indicated that HCC patients with high-risk scores had significantly worse overall survival than low-risk patients, and furthermore, the signature can be used as an independent prognostic indicator. The good accuracy of this prognostic signature was confirmed by the ROC curve analysis and was further validated in the International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram based on six RBP genes was established and internally validated in the TCGA cohort. Gene set enrichment analysis demonstrated some cancer-related phenotypes were significantly gathered in the high-risk group. Overall, our study first identified an RBP-related six-gene prognostic signature, which could serve as a promising prognostic biomarker and provide some potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Bela-Ong DB, Greiner-Tollersrud L, Andreas van der Wal Y, Jensen I, Seternes OM, Jørgensen JB. Infection and microbial molecular motifs modulate transcription of the interferon-inducible gene ifit5 in a teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103746. [PMID: 32445651 DOI: 10.1016/j.dci.2020.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in antiviral defense. Members of this protein family contain distinctive multiple structural motifs comprising tetratricopeptides that are tandemly arrayed or dispersed along the polypeptide. IFIT-encoding genes are upregulated by type I interferons (IFNs) and other stimuli. IFIT proteins inhibit virus replication by binding to and regulating the functions of cellular and viral RNA and proteins. In teleost fish, knowledge about genes and functions of IFITs is currently limited. In the present work, we describe an IFIT5 orthologue in Atlantic salmon (SsaIFIT5) with characteristic tetratricopeptide repeat motifs. We show here that the gene encoding SsaIFIT5 (SsaIfit5) was ubiquitously expressed in various salmon tissues, while bacterial and viral challenge of live fish and in vitro stimulation of cells with recombinant IFNs and pathogen mimics triggered its transcription. The profound expression in response to various immune stimulation could be ascribed to the identified IFN response elements and binding sites for various immune-relevant transcription factors in the putative promoter of the SsaIfit5 gene. Our results establish SsaIfit5 as an IFN-stimulated gene in A. salmon and strongly suggest a phylogenetically conserved role of the IFIT5 protein in antimicrobial responses in vertebrates.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Yorick Andreas van der Wal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway; Vaxxinova Research &Development GmBH, Münster, Germany
| | - Ingvill Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Ole Morten Seternes
- Department of Pharmacy, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
30
|
Dobieżyńska A, Miszkiewicz J, Darżynkiewicz ZM, Tyras M, Stankiewicz-Drogoń A, Trylska J, Darżynkiewicz E, Grzela R. Development of bis-ANS-based modified fluorescence titration assay for IFIT/RNA studies. Biochem Biophys Res Commun 2020; 533:391-396. [PMID: 32962861 DOI: 10.1016/j.bbrc.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding proteins that are very highly expressed during antiviral response of immune system. IFIT proteins recognize and tightly bind foreign RNA particles. These are primarily viral RNAs ended with triphosphate at the 5' or lacking methylation of the first cap-proximal nucleotide but also in vitro transcribed RNA synthesized in the laboratory. Recognition of RNA by IFIT proteins leads to the formation of stable RNA/IFIT complexes and translational shut off of non-self transcripts. Here, we present a fluorescent-based assay to study the interaction between RNA molecules and IFIT family proteins. We have particularly focused on two representatives of this family: IFIT1 and IFIT5. We found a probe that competitively with RNA binds the positively charged tunnel in these IFIT proteins. The use of this probe for IFIT titration allowed us to evaluate the differences in binding affinities of mRNAs with different variants of 5' ends.
Collapse
Affiliation(s)
- Anna Dobieżyńska
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097, Warsaw, Poland
| | | | - Michał Tyras
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Edward Darżynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097, Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
| |
Collapse
|
31
|
Wu X, Liu K, Jia R, Pan Y, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Zhang L, Liu Y, Tian B, Pan L, Yu Y, Ur Rehman M, Yin Z, Jing B, Cheng A. Duck IFIT5 differentially regulates Tembusu virus replication and inhibits virus-triggered innate immune response. Cytokine 2020; 133:155161. [PMID: 32531745 DOI: 10.1016/j.cyto.2020.155161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Mammalian interferon-induced protein with tetratricopeptide repeats family proteins (IFITs) play important roles in host innate immune response to viruses. Recently, studies have shown that IFIT from poultry also plays a crucial part in antiviral function. This study first reports the regulation of duck Tembusu virus (DTMUV) replication by IFIT5 and the effect of duck IFIT5 (duIFIT5) on the innate immune response after DTMUV infection. Firstly, duIFIT5 was obviously increased in duck embryo fibroblast cells (DEFs) infected with DTMUV. Compared to the negative control, we found that in the duIFIT5-overexpressing group, the DTMUV titer at 24 h post infection (hpi) was significantly reduced, but the viral titer was strikingly increased at 48 hpi. Moreover, overexpression of duIFIT5 could significantly inhibit IFN-β transcription and IFN-β promoter activation at indicated time points after DTMUV infection. Further, in DTMUV-infected or poly(I:C)-stimulated DEFs, overexpression of duIFIT5 also significantly inhibited the activation of NF-κB and IRF7 promoters, as well as the activation of downstream IFN induced the interferon-stimulated response element (ISRE) promoter. Meanwhile, the transcription level of antiviral protein Mx, but not OASL, was obviously decreased at various time points. The opposite results were obtained by knockdown of duIFIT5 in DTMUV-infected or poly(I:C)-stimulated DEFs. Compared to the negative control, knockdown of duIFIT5 promoted DTMUV titer and DTMUV envelope (E) protein expression at 24 hpi, but DTMUV titer and E protein expression was markedly decreased at 48 hpi. Additionally, the promoters of IFN-β, NF-κB, IRF7 and ISRE were significantly activated in the duIFIT5 knockdown group. Collectively, duIFIT5 differentially regulates DTMUV replication and inhibits virus-triggered innate immune response.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ke Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.
| | - Yuhong Pan
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Leichang Pan
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mujeeb Ur Rehman
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
32
|
Moreno-Morcillo M, Francisco-Velilla R, Embarc-Buh A, Fernández-Chamorro J, Ramón-Maiques S, Martinez-Salas E. Structural basis for the dimerization of Gemin5 and its role in protein recruitment and translation control. Nucleic Acids Res 2020; 48:788-801. [PMID: 31799608 PMCID: PMC6954437 DOI: 10.1093/nar/gkz1126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
In all organisms, a selected type of proteins accomplishes critical roles in cellular processes that govern gene expression. The multifunctional protein Gemin5 cooperates in translation control and ribosome binding, besides acting as the RNA-binding protein of the survival of motor neuron (SMN) complex. While these functions reside on distinct domains located at each end of the protein, the structure and function of the middle region remained unknown. Here, we solved the crystal structure of an extended tetratricopeptide (TPR)-like domain in human Gemin5 that self-assembles into a previously unknown canoe-shaped dimer. We further show that the dimerization module is functional in living cells driving the interaction between the viral-induced cleavage fragment p85 and the full-length Gemin5, which anchors splicing and translation members. Disruption of the dimerization surface by a point mutation in the TPR-like domain prevents this interaction and also abrogates translation enhancement induced by p85. The characterization of this unanticipated dimerization domain provides the structural basis for a role of the middle region of Gemin5 as a central hub for protein-protein interactions.
Collapse
Affiliation(s)
- María Moreno-Morcillo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | - Santiago Ramón-Maiques
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)- Instituto de Salud Carlos III, Valencia, Spain
| | | |
Collapse
|
33
|
Miedziak B, Dobieżyńska A, Darżynkiewicz ZM, Bartkowska J, Miszkiewicz J, Kowalska J, Warminski M, Tyras M, Trylska J, Jemielity J, Darzynkiewicz E, Grzela R. Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. RNA (NEW YORK, N.Y.) 2020; 26:58-68. [PMID: 31658992 PMCID: PMC6913129 DOI: 10.1261/rna.073304.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
In response to foreign RNA, cellular antiviral mechanisms stimulate high expression of interferon-induced proteins with tetratricopeptide repeats (IFITs). Two members of the IFIT protein family, IFIT1 and IFIT5, are capable of binding the very terminal 5' end of mRNA. In eukaryotes, these mRNA termini contain a cap structure (m7GpppN, cap 0) that is often subjected to further modifications. Here, we performed a thorough examination of IFIT1 and IFIT5 binding to a wide spectrum of differently capped as well as fully uncapped mRNAs. The kinetic analysis of IFIT1 and IFIT5 interactions with mRNA ligands indicates that the cap structure modifications considerably influence the stability of IFIT1/RNA complexes. The most stable complexes were formed between IFIT1 and GpppG/A- and m7GpppG/A-RNAs. Unexpectedly, we found that NAD+- and NADH-capped RNAs associate with IFIT5 with kinetic parameters comparable to pppG-RNA. Finally, we measured interactions of IFIT1 with mRNAs bearing modified synthetic cap analogs that start to become the important tools in biotechnological and medicinal research. We found that incorporation of modified cap analogs to the RNA protects the latter, to a certain degree, from the translational inhibition caused by IFIT1 protein.
Collapse
Affiliation(s)
- Beata Miedziak
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Dobieżyńska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Zbigniew M Darżynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Julia Bartkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Tyras
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
34
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
35
|
Liu R, Olano LR, Mirzakhanyan Y, Gershon PD, Moss B. Vaccinia Virus Ankyrin-Repeat/F-Box Protein Targets Interferon-Induced IFITs for Proteasomal Degradation. Cell Rep 2019; 29:816-828.e6. [PMID: 31644906 PMCID: PMC6876622 DOI: 10.1016/j.celrep.2019.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
IFITs are interferon-induced proteins that can bind 5'-triphosphate or ribose-unmethylated capped ends of mRNA to inhibit translation. Although some viruses avoid IFITs by synthesizing RNAs with eukaryotic-like caps, no viral proteins were known to antagonize IFITs. We show that the N- and C-terminal portions of C9, a protein required for vaccinia virus to resist the human type I interferon-induced state, bind IFITs and ubiquitin regulatory complexes, respectively. Together, the two C9 domains target IFITs for proteasomal degradation, thereby providing interferon resistance similar to that also achieved by knockout of IFITs. Furthermore, ectopic expression of C9 rescues the interferon sensitivity of a vaccinia virus mutant with an inactivated cap 1-specific ribose-methyltransferase that is otherwise unable to express early proteins. In contrast, the C9-deletion mutant expresses early proteins but is blocked by IFITs at the subsequent genome uncoating/replication step. Thus, poxviruses use mRNA cap methylation and proteosomal degradation to defeat multiple antiviral activities of IFITs.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Lisa R Olano
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, CA 92697, USA
| | - Paul D Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, CA 92697, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Xu F, Song H, An B, Xiao Q, Cheng G, Tan G. NF-κB-Dependent IFIT3 Induction by HBx Promotes Hepatitis B Virus Replication. Front Microbiol 2019; 10:2382. [PMID: 31681236 PMCID: PMC6797949 DOI: 10.3389/fmicb.2019.02382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic administration of type I IFN (IFN-I) is a common treatment option for individuals suffering from hepatitis B virus (HBV) infection. IFN-I therapy, however, has a relatively low response rate in HBV-infected patients and can induce serious side-effects, limiting its clinical efficacy. There is, thus, a clear need to understand the molecular mechanisms governing the influence of IFN-I therapy in HBV treatment in order to improve patient outcomes. In this study, we explored the interactions between HBV and IFITs (IFN-induced proteins with tetratricopeptide repeats), which are classical IFN-inducible genes. Specifically, we found that HBV patients undergoing IFN-I therapy exhibited elevated expression of IFITs in their peripheral blood mononuclear cells (PBMCs). We further observed upregulation in the expressions of IFIT1, IFIT2, and IFIT3 in cells transfected with the pHBV1.3 plasmid, which yields infectious virions in hepatic cells. We additionally found that HBx, which is the only regulatory protein encoded within the HBV genome, activates NF-κB, which in turn directly drives IFIT3 transcription. When IFIT3 was overexpressed in HepG2 cells, HBV replication was enhanced. Together, these results suggest that IFIT genes may unexpectedly enhance viral replication, thus making these genes potential therapeutic targets in patients with HBV.
Collapse
Affiliation(s)
- Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Beiying An
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Amador-Cañizares Y, Bernier A, Wilson JA, Sagan SM. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5' end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res 2019; 46:5139-5158. [PMID: 29672716 PMCID: PMC6007490 DOI: 10.1093/nar/gky273] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to the 5′ end of its genome. This interaction promotes viral RNA accumulation, but the precise mechanism(s) remain incompletely understood. Previous studies suggest that miR-122 is able to protect the HCV genome from 5′ exonucleases (Xrn1/2), but this protection is not sufficient to account for the effect of miR-122 on HCV RNA accumulation. Thus, we investigated whether miR-122 was also able to protect the viral genome from innate sensors of RNA or cellular pyrophosphatases. We found that miR-122 does not play a protective role against recognition by PKR, RIG-I-like receptors, or IFITs 1 and 5. However, we found that knockdown of both the cellular pyrophosphatases, DOM3Z and DUSP11, was able to rescue viral RNA accumulation of subgenomic replicons in the absence of miR-122. Nevertheless, pyrophosphatase knockdown increased but did not restore viral RNA accumulation of full-length HCV RNA in miR-122 knockout cells, suggesting that miR-122 likely plays an additional role(s) in the HCV life cycle, beyond 5′ end protection. Overall, our results support a model in which miR-122 stabilizes the HCV genome by shielding its 5′ terminus from cellular pyrophosphatase activity and subsequent turnover by exonucleases (Xrn1/2).
Collapse
Affiliation(s)
| | - Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
| | - Joyce A Wilson
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
38
|
Lo UG, Bao J, Cen J, Yeh HC, Luo J, Tan W, Hsieh JT. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:31-45. [PMID: 30906803 PMCID: PMC6420704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Interferon is known as a pleiotropic factor in innate immunity, cancer immunity and therapy. Despite an objective short-term response of interferon (IFN) therapy in renal cell carcinoma (RCC) patients, the potential adverse effect of IFN on RCC cells is not fully understood. In this study, we demonstrate that IFNs can enhance RCC invasion via a new mechanism of IFIT5-mediated tumor suppressor microRNA (miRNA) degradation resulted in the elevation of Slug and ZEB1 and epithelial-to-mesenchymal transition (EMT). Clinically, a significant upregulation of IFNγ signaling pathway (such as IFNGR1, IFNGR2, STAT1 and STAT2) is observed in RCC patients with metastatic disease. Overall, this study provides a new mechanism of action of IFN-elicited canonical pathway in regulating suppressor miRNAs. Most importantly, it highlights the potential pro-metastatic effect of IFNs, which could undermine the clinical applicability of IFNs for treating RCC patients.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Jiming Bao
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Republic of China
| | - Junjie Cen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Republic of China
| | - Hsin-Chih Yeh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University HospitalTaiwan, Republic of China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, Republic of China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Republic of China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Biotechnology, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
| |
Collapse
|
39
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
40
|
Lo UG, Pong RC, Yang D, Gandee L, Hernandez E, Dang A, Lin CJ, Santoyo J, Ma S, Sonavane R, Huang J, Tseng SF, Moro L, Arbini AA, Kapur P, Raj GV, He D, Lai CH, Lin H, Hsieh JT. IFNγ-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res 2018; 79:1098-1112. [PMID: 30504123 DOI: 10.1158/0008-5472.can-18-2207] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
IFNγ, a potent cytokine known to modulate tumor immunity and tumoricidal effects, is highly elevated in patients with prostate cancer after radiation. In this study, we demonstrate that IFNγ can induce epithelial-to-mesenchymal transition (EMT) in prostate cancer cells via the JAK-STAT signaling pathway, leading to the transcription of IFN-stimulated genes (ISG) such as IFN-induced tetratricopeptide repeat 5 (IFIT5). We unveil a new function of IFIT5 complex in degrading precursor miRNAs (pre-miRNA) that includes pre-miR-363 from the miR-106a-363 cluster as well as pre-miR-101 and pre-miR-128, who share a similar 5'-end structure with pre-miR-363. These suppressive miRNAs exerted a similar function by targeting EMT transcription factors in prostate cancer cells. Depletion of IFIT5 decreased IFNγ-induced cell invasiveness in vitro and lung metastasis in vivo. IFIT5 was highly elevated in high-grade prostate cancer and its expression inversely correlated with these suppressive miRNAs. Altogether, this study unveils a prometastatic role of the IFNγ pathway via a new mechanism of action, which raises concerns about its clinical application.Significance: A unique IFIT5-XRN1 complex involved in the turnover of specific tumor suppressive microRNAs is the underlying mechanism of IFNγ-induced epithelial-to-mesenchymal transition in prostate cancer.See related commentary by Liu and Gao, p. 1032.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Diane Yang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Leah Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chung-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Santoyo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rajni Sonavane
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jun Huang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an China
| | - Shu-Fen Tseng
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Loredana Moro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Arnaldo A Arbini
- Department of Pathology, NYU Langone Medical Center, New York, New York
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an China
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
41
|
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J Gen Virol 2018; 99:1463-1477. [PMID: 30234477 DOI: 10.1099/jgv.0.001149] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of antiviral proteins conserved throughout all vertebrates. IFIT1 binds tightly to non-self RNA, particularly capped transcripts lacking methylation on the first cap-proximal nucleotide, and inhibits their translation by out-competing the cellular translation initiation apparatus. This exerts immense selection pressure on cytoplasmic RNA viruses to maintain mechanisms that protect their messenger RNA from IFIT1 recognition. However, it is becoming increasingly clear that protein-protein interactions are necessary for optimal IFIT function. Recently, IFIT1, IFIT2 and IFIT3 have been shown to form a functional complex in which IFIT3 serves as a central scaffold to regulate and/or enhance the antiviral functions of the other two components. Moreover, IFITs interact with other cellular proteins to expand their contribution to regulation of the host antiviral response by modulating innate immune signalling and apoptosis. Here, we summarize recent advances in our understanding of the IFIT complex and review how this impacts on the greater role of IFIT proteins in the innate antiviral response.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
42
|
Fleith RC, Mears HV, Leong XY, Sanford TJ, Emmott E, Graham SC, Mansur DS, Sweeney TR. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA. Nucleic Acids Res 2018; 46:5269-5285. [PMID: 29554348 PMCID: PMC6007307 DOI: 10.1093/nar/gky191] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed during the cell-intrinsic immune response to viral infection. IFIT1 inhibits translation by binding directly to the 5' end of foreign RNAs, particularly those with non-self cap structures, precluding the recruitment of the cap-binding eukaryotic translation initiation factor 4F and ribosome recruitment. The presence of IFIT1 imposes a requirement on viruses that replicate in the cytoplasm to maintain mechanisms to avoid its restrictive effects. Interaction of different IFIT family members is well described, but little is known of the molecular basis of IFIT association or its impact on function. Here, we reconstituted different complexes of IFIT1, IFIT2 and IFIT3 in vitro, which enabled us to reveal critical aspects of IFIT complex assembly. IFIT1 and IFIT3 interact via a YxxxL motif present in the C-terminus of each protein. IFIT2 and IFIT3 homodimers dissociate to form a more stable heterodimer that also associates with IFIT1. We show for the first time that IFIT3 stabilizes IFIT1 protein expression, promotes IFIT1 binding to a cap0 Zika virus reporter mRNA and enhances IFIT1 translation inhibition. This work reveals molecular aspects of IFIT interaction and provides an important missing link between IFIT assembly and function.
Collapse
Affiliation(s)
- Renata C Fleith
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Xin Yun Leong
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Thomas J Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
43
|
Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Sci Rep 2018; 8:6794. [PMID: 29717152 PMCID: PMC5931624 DOI: 10.1038/s41598-018-24905-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.
Collapse
|
44
|
Pan T. Modifications and functional genomics of human transfer RNA. Cell Res 2018; 28:395-404. [PMID: 29463900 PMCID: PMC5939049 DOI: 10.1038/s41422-018-0013-y] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
Transfer RNA (tRNA) is present at tens of millions of transcripts in a human cell and is the most abundant RNA in moles among all cellular RNAs. tRNA is also the most extensively modified RNA with, on an average, 13 modifications per molecule. The primary function of tRNA as the adaptor of amino acids and the genetic code in protein synthesis is well known. tRNA modifications play multi-faceted roles in decoding and other cellular processes. The abundance, modification, and aminoacylation (charging) levels of tRNAs contribute to mRNA decoding in ways that reflect the cell type and its environment; however, how these factors work together to maximize translation efficiency remains to be understood. tRNAs also interact with many proteins not involved in translation and this may coordinate translation activity and other processes in the cell. This review focuses on the modifications and the functional genomics of human tRNA and discusses future perspectives on the explorations of human tRNA biology.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
45
|
Rohaim MA, Santhakumar D, Naggar RFE, Iqbal M, Hussein HA, Munir M. Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses. Front Immunol 2018; 9:2025. [PMID: 30271403 PMCID: PMC6149294 DOI: 10.3389/fimmu.2018.02025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Innate antiviral immunity establishes first line of defense against invading pathogens through sensing their molecular structures such as viral RNA. This antiviral potential of innate immunity is mainly attributed to a myriad of IFN-stimulated genes (ISGs). Amongst well-characterized ISGs, we have previously shown that antiviral potential of chicken IFN-induced proteins with tetratricopeptides repeats 5 (chIFIT5) is determined by its interaction potential with 5'ppp containing viral RNA. Here, we generated transgenic chickens using avian sarcoma-leukosis virus (RCAS)-based gene transfer system that constitutively and stably express chIFIT5. The transgenic chickens infected with clinical dose (EID50 104 for HPAIV and 105 EID50 for vNDV) of high pathogenicity avian influenza virus (HPAIV; H5N1) or velogenic strain of Newcastle disease virus (vNDV; Genotype VII) showed marked resistance against infections. While transgenic chickens failed to sustain a lethal dose of these viruses (EID50 105 for HPAIV and 106 EID50 for vNDV), a delayed and lower level of clinical disease and mortality, reduced virus shedding and tissue damage was observed compared to non-transgenic control chickens. These observations suggest that stable expression of chIFIT5 alone is potentially insufficient in providing sterile protection against these highly virulent viruses; however, it is sufficient to ameliorate the clinical outcome of these RNA viruses. These findings propose the potential of innate immune genes in conferring genetic resistance in chickens against highly pathogenic and zoonotic viral pathogens causing sever disease in both animals and humans.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,The Pirbright Institute, Woking, United Kingdom.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Diwakar Santhakumar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Munir Iqbal
- The Pirbright Institute, Woking, United Kingdom
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
46
|
Genotypes of IFIH1 and IFIT5 in seven chicken breeds indicated artificial selection for commercial traits influenced antiviral genes. INFECTION GENETICS AND EVOLUTION 2017; 56:54-61. [DOI: 10.1016/j.meegid.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022]
|
47
|
Abstract
Although the antiviral kinase PKR was originally characterized as a double-stranded RNA activated enzyme it can be stimulated by RNAs containing limited secondary structure. Single-stranded regions in such RNAs contribute to binding and activation but the mechanism is not understood. Here, we demonstrate that single-stranded RNAs bind to PKR with micromolar dissociation constants and can induce activation. Addition of a 5'-triphosphate slightly enhances binding affinity. Single-stranded RNAs also activate PKR constructs lacking the double-stranded RNA binding domain and bind to a basic region adjacent to the N-terminus of the kinase. However, the isolated kinase is not activated by and does not bind single-stranded RNA. Photocrosslinking measurements demonstrate that that the basic region interacts with RNA in the context of full length PKR. We propose that bivalent interactions with the double stranded RNA binding domain and the basic region underlie the ability of RNAs containing limited structure to activate PKR by enhancing binding affinity and thereby increasing the population of productive complexes containing two PKRs bound to a single RNA.
Collapse
|
48
|
Ishizu A, Tomaru U, Masuda S, Sada KE, Amano K, Harigai M, Kawaguchi Y, Arimura Y, Yamagata K, Ozaki S, Dobashi H, Homma S, Okada Y, Sugiyama H, Usui J, Tsuboi N, Matsuo S, Makino H. Prediction of response to remission induction therapy by gene expression profiling of peripheral blood in Japanese patients with microscopic polyangiitis. Arthritis Res Ther 2017; 19:117. [PMID: 28569178 PMCID: PMC5452368 DOI: 10.1186/s13075-017-1328-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023] Open
Abstract
Background Microscopic polyangiitis (MPA), which is classified as an anti-neutrophil cytoplasmic antibody (ANCA)-associated small vessel vasculitis, is one of the most frequent primary vasculitides in Japan. We earlier nominated 16 genes (IRF7, IFIT1, IFIT5, OASL, CLC, GBP-1, PSMB9, HERC5, CCR1, CD36, MS4A4A, BIRC4BP, PLSCR1, DEFA1/DEFA3, DEFA4, and COL9A2) as predictors of response to remission induction therapy against MPA. The aim of this study is to determine the accuracy of prediction using these 16 predictors. Methods Thirty-nine MPA patients were selected randomly and retrospectively from the Japanese nationwide RemIT-JAV-RPGN cohort and enrolled in this study. Remission induction therapy was conducted according to the Guidelines of Treatment for ANCA-Associated Vasculitis published by the Ministry of Health, Labour, and Welfare of Japan. Response to remission induction therapy was predicted by profiling the altered expressions of the 16 predictors between the period before and 1 week after the beginning of treatment. Remission is defined as the absence of clinical manifestations of active vasculitis (Birmingham Vasculitis Activity Score 2003: 0 or 1 point). Persistent remission for 18 months is regarded as a “good response,” whereas no remission or relapse after remission is regarded as a “poor response.” Results “Poor” and “good” responses were predicted in 7 and 32 patients, respectively. Five out of 7 patients with “poor” prediction and 1 out of 32 patients with “good” prediction experienced relapse after remission. One out of 7 patients with “poor” prediction was not conducted to remission. Accordingly, the sensitivity and specificity to predict poor response was 85.7% (6/7) and 96.9% (31/32), respectively. Conclusions Response to remission induction therapy can be predicted by monitoring the altered expressions of the 16 predictors in the peripheral blood at an early point of treatment in MPA patients.
Collapse
Affiliation(s)
- Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masayoshi Harigai
- Department of Pharmacovigilance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Arimura
- Nephrology and Rheumatology, First Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shoichi Ozaki
- Division of Rheumatology and Allergology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroaki Dobashi
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Matsuo
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
49
|
Abbas YM, Laudenbach BT, Martínez-Montero S, Cencic R, Habjan M, Pichlmair A, Damha MJ, Pelletier J, Nagar B. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2'-O methylations. Proc Natl Acad Sci U S A 2017; 114:E2106-E2115. [PMID: 28251928 PMCID: PMC5358387 DOI: 10.1073/pnas.1612444114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2'-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2'-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA.
Collapse
Affiliation(s)
- Yazan M Abbas
- Department of Biochemistry and Groupe de Recherche Axe sur la Structure des Proteines, McGill University, Montreal, QC, Canada H3G 0B1
| | | | | | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, 82152 Martinsried/Munich, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, 82152 Martinsried/Munich, Germany
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, Canada H3A 0B8
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6
- The Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, Canada H3A 1A3
- Department of Oncology, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axe sur la Structure des Proteines, McGill University, Montreal, QC, Canada H3G 0B1;
| |
Collapse
|
50
|
Interaction of tRNA with MEK2 in pancreatic cancer cells. Sci Rep 2016; 6:28260. [PMID: 27301426 PMCID: PMC4908586 DOI: 10.1038/srep28260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Although the translational function of tRNA has long been established, extra translational functions of tRNA are still being discovered. We previously developed a computational method to systematically predict new tRNA-protein complexes and experimentally validated six candidate proteins, including the mitogen-activated protein kinase kinase 2 (MEK2), that interact with tRNA in HEK293T cells. However, consequences of the interaction between tRNA and these proteins remain to be elucidated. Here we tested the consequence of the interaction between tRNA and MEK2 in pancreatic cancer cell lines. We also generated disease and drug resistance-derived MEK2 mutants (Q60P, P128Q, S154F, E207K) to evaluate the function of the tRNA-MEK2 interaction. Our results demonstrate that tRNA interacts with the wild-type and mutant MEK2 in pancreatic cancer cells; furthermore, the MEK2 inhibitor U0126 significantly reduces the tRNA-MEK2 interaction. In addition, tRNA affects the catalytic activity of the wild type and mutant MEK2 proteins in different ways. Overall, our findings demonstrate the interaction of tRNA with MEK2 in pancreatic cancer cells and suggest that tRNA may impact MEK2 activity in cancer cells.
Collapse
|