1
|
Tang X, Tao J, Liu Y, Gong D, Shan X, Wang K, Tang N. SLC27A5 inhibits cancer stem cells by inducing alternative polyadenylation of METTL14 in hepatocellular carcinoma. Genes Dis 2025; 12:101488. [PMID: 40290127 PMCID: PMC12033915 DOI: 10.1016/j.gendis.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 11/16/2024] [Indexed: 04/30/2025] Open
Abstract
Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of METTL14 by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the METTL14-3'UTR and the conversion of METTL14-UL to METTL14-US. In contrast to METTL14-UL, METTL14-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. METTL14-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junji Tao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Deao Gong
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xuefeng Shan
- Department of Pharmacy, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Brett C, Gout I. The two faces of coenzyme A in cellular biology. Free Radic Biol Med 2025; 233:162-173. [PMID: 40107571 DOI: 10.1016/j.freeradbiomed.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Coenzyme A (CoA) is an essential cofactor present in all living cells, which plays critical roles in diverse biochemical processes, including cellular metabolism, signal transduction, regulation of gene expression, and the antioxidant response. This review summarizes current knowledge on the role of CoA and its metabolically active thioesters in promoting cellular growth and proliferation (pro-growth) and discusses emerging research on CoA's antioxidant properties that enhance cell survival (pro-survival).
Collapse
Affiliation(s)
- Charlie Brett
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Guo D, Meng Y, Zhao G, Wu Q, Lu Z. Moonlighting functions of glucose metabolic enzymes and metabolites in cancer. Nat Rev Cancer 2025; 25:426-446. [PMID: 40175621 DOI: 10.1038/s41568-025-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/04/2025]
Abstract
Glucose metabolic enzymes and their metabolites not only provide energy and building blocks for synthesizing macromolecules but also possess non-canonical or moonlighting functions in response to extracellular and intracellular signalling. These moonlighting functions modulate various cellular activities, including gene expression, cell cycle progression, DNA repair, autophagy, senescence and apoptosis, cell proliferation, remodelling of the tumour microenvironment and immune responses. These functions integrate glucose metabolism with other essential cellular activities, driving cancer progression. Targeting these moonlighting functions could open new therapeutic avenues and lead to cancer-specific treatments.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Du X, Ma C, Wang Y, Xu M, Kuang Y, Li M, Wen S, He P, Zhao H, Wang Q. The novelty of profilin 2 in regulating pyruvate kinase M2 nuclear translocation and promoting tumor angiogenesis in lung adenocarcinoma. Respir Res 2025; 26:203. [PMID: 40442707 PMCID: PMC12123718 DOI: 10.1186/s12931-025-03281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Profilin 2 (PFN2), indispensable in all organisms, is important for cancer initiation and progression. Here, we found PFN2 highly overexpressed in tumor tissues with poor prognosis of Lung adenocarcinoma (LUAD) patients had a novel role in remodulating angiogenesis. However, the mechanism of PFN2-mediated LUAD angiogenesis remains unelucided. METHODS Immunohistochemistry and western blotting were used to detected the expression levels of related proteins in tissue or lung cancer cells. To elucidate the underlying mechanisms, we identified binding partners of PFN2 through mass spectrometry, co-immunoprecipitation, and molecular modeling techniques. Additionally, we investigated the angiogenic-promoting function of PFN2 utilizing a three-dimensional droplet-based angiogenesis model capable of simulating the tumor hypoxic microenvironment. RESULTS Our finding reveal that PFN2 was overexpressed in tumors compared with the adjacent nontumor tissues. Its knockdown markedly impaired the proliferation, and angiogenesis of LUAD cells via hypoxia-related NF-κB/HIF-1α signaling pathway, with vascular endothelial growth Factor (VEGF) decrease. Additionally, pyruvate kinase M2 (PKM2), a pivotal enzyme in glycolysis, is a novel binding partner of PFN2. The nuclear translocation of PKM2 was observed to be dependent on PFN2 expression and their interaction, which functionally modulates angiogenesis in lung cancer. CONCLUSIONS Our study revealed oncogene PFN2 promoted tumor angiogenesis in LUAD through regulating PKM2 nuclear translocation, providing novel molecular therapy targets for LUAD treatment.
Collapse
Affiliation(s)
- Xiaohui Du
- Department of Scientific Research Center, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chi Ma
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, Dalian, China
| | - Mingxin Xu
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yanbin Kuang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyun Li
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuang Wen
- Department of Pathology, Dalian Friendship Hospital, Dalian, China
| | - Peipei He
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hui Zhao
- Department of Health Examination Center, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Yu JT, Xie SS, Shen XY, Li Z, Hu XW, Zhang Y, Dong ZH, Wang JN, Li XY, Dong YH, Li C, Ji ML, Suo XG, Yang C, Jin J, Wang W, Wen JG, Liu MM, Li L, Yang Q, Meng XM. Renal tubular epithelial IGFBP7 interacts with PKM2 to drive renal lipid accumulation and fibrosis. Mol Ther 2025:S1525-0016(25)00382-X. [PMID: 40346800 DOI: 10.1016/j.ymthe.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/12/2025] Open
Abstract
Renal fibrosis serves as a critical pathological mechanism driving the progression of chronic kidney disease (CKD). However, the pathogenesis and therapeutic targets involved in this process remain unclear. Interestingly, we currently found that IGFBP7 is highly expressed in tubular epithelial cells (TECs) from the fibrotic kidneys of human patients and animal models. However, their functional roles in abnormal kidney repair and renal fibrosis remain unclear. Here, we report that IGFBP7 knockout (KO) or TEC conditional KO (cKO) attenuated renal fibrosis in multiple mouse models, whereas IGFBP7 knock-in or restoration in IGFBP7-KO mice enhanced renal fibrosis. These in vivo findings were verified using cultured TECs and organoids generated from IGFBP7-cKO mice. Mechanistically, we found that IGFBP7 bound to pyruvate kinase M2 (PKM2) to promote the acetylation of PKM2 at the K433 site, thereby enhancing PKM2 dimerization and nuclear translocation, and subsequently accelerating lipid production and renal fibrosis via SREBP1-dependent mechanisms. Notably, through drug screening, we identified salmeterol (an asthma medication) as an IGFBP7 antagonist that effectively reduced fibrosis. Our findings reveal the IGFBP7/PKM2/SREBP1 axis as a central regulator of lipogenic fibrosis, offering genetic and pharmacological inhibition of IGFBP7 as promising therapeutic strategies for CKD.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Yang
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Road, Zhanjiang, Guangdong 524001, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li Li
- National Key Laboratory for Prevention and Treatment of Multi-organ Injury, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qin Yang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Jin H, Wu P, Lv C, Zhang S, Zhang Y, Li C, Gao R, Shan G, Bi H, Chang H, Liu X, Zeng Y. Mannose inhibits PKM2 lactylation to induce pyroptosis in bladder cancer and activate antitumor immune responses. Commun Biol 2025; 8:689. [PMID: 40312519 PMCID: PMC12045973 DOI: 10.1038/s42003-025-08130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/25/2025] [Indexed: 05/03/2025] Open
Abstract
Bladder cancer therapy remains challenging due to poor efficacy and frequent recurrence. Mannose, a naturally occurring monosaccharide, has demonstrated antitumor effects in various cancers, yet its mechanism of action in bladder cancer is unclear. This study explored the inhibitory effects of mannose on bladder cancer. We found mannose significantly inhibited the growth of bladder cancer cells, xenografts, and organoids. Mannose directly binds to PKM2, inhibiting its enzymatic activity and reducing lactate production. This reduction in lactate led to decreased PKM2 lactylation and increased acetylation, causing PKM2 to translocate to the nucleus. Nuclear PKM2 activated the NF-κB pathway, inducing NLRP1/Caspase-1/GSDMD/IL-1β-dependent pyroptosis. Additionally, mannose promoted antitumor immune responses by inducing pyroptosis and enhancing the efficacy of immune checkpoint inhibitors. These findings highlight the use of mannose as a potent antitumor agent and a promising therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Department of Thoracic Surgery and Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Pingeng Wu
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Shouyi Zhang
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yunchao Zhang
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Changqi Li
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Ruxu Gao
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Guangyi Shan
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Huan Bi
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Hong Chang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Li L, Xu L, Liao W, Wang P, Xu M, Li B, Zhang M. circCEP70 encoded protein inhibits the progression of hepatocellular carcinoma. Cell Mol Life Sci 2025; 82:174. [PMID: 40272569 PMCID: PMC12022199 DOI: 10.1007/s00018-025-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Cirrhosis is closely related to hepatocellular carcinoma (HCC), however, the regulation of circular RNA (circRNA) in HCC with cirrhotic background has not yet been well illustrated. In this study, high throughput circRNA sequencing was applied to identified candidate circRNAs in HCC samples with cirrhotic background. The biological function of candidate circRNA was validated in both in vitro and in vivo settings. Additionally, Alphafold 3, mass spectrometry analysis and immunofluorescence were employed to investigate the underlying mechanisms involved. We found circCEP70 exhibited significantly higher expression levels in cirrhotic HCC samples and showed a positive correlation with improved prognosis. The RNA binding protein U2AF2 was found to suppress the expression of circCEP70 in cirrhosis patients. In vitro and in vivo experiments, including CCK-8, EdU, plate cloning, transwell, scratch, subcutaneous tumor formation, liver metastasis in situ, and lung metastasis assays confirmed the anti-carcinogenic effects. Mechanistically, circCEP70 encoded a novel protein named CEP70-160aa, which interacted with PKM2 and hindered its translocation into the nucleus. This interaction led to reduce STAT3 phosphorylation in the nucleus, thus inhibiting HCC proliferation and metastasis. In cirrhotic microenvironment, circCEP70 prevented HCC proliferation and metastasis through PKM2/STAT3 axis, and RNA binding protein U2AF2 could inhibit circCEP70 expression.
Collapse
Affiliation(s)
- Lian Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangliang Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenwei Liao
- Department of Thoracic Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Peng Wang
- Department of Burns, Sichuan Academy of Medical Science, Sichuan Provincial People'S Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mingqing Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hepato-Pancreato-Biliary Surgery, Meishan City People'S Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, 620010, China
| | - Bo Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Xiong Y, Du Y, Lin F, Fu B, Guo D, Sha Z, Tian R, Yao R, Wang L, Cong Z, Li B, Lin X, Wu H. SENP1-SIRT3 axis mediates glycolytic reprogramming to suppress inflammation during Listeria monocytogenes infection. mBio 2025; 16:e0252424. [PMID: 40071948 PMCID: PMC11980586 DOI: 10.1128/mbio.02524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
Listeria monocytogenes, a foodborne pathogen, has the ability to invade intestinal mucosal cells, undergo intracellular proliferation, activate host immune responses, and induce diseases such as colitis. We have demonstrated that sentrin-specific protease 1 (SENP1) functions as a protective gene in the host, suppressing the inflammatory response triggered by Listeria monocytogenes. The host's SENP1-SIRT3 axis plays a critical role in regulating inflammation during Listeria monocytogenes infection. Our findings reveal that overexpression of SENP1, particularly under Listeria monocytogenes infection conditions (MOI = 20), effectively suppresses inflammation through modulation of glycolysis. Mechanistically, during Listeria monocytogenes infection, SENP1 accumulates in the mitochondria, facilitating the de-SUMOylation and activation of sirtuin 3 (SIRT3). Activated SIRT3 then regulates the deacetylation of pyruvate kinase M2 (PKM2), leading to a decrease in glycolytic intermediates, downregulation of glycolysis-related gene expression, and suppression of inflammation. Taken together, our study provides a deeper understanding of the mechanistic role of the SENP1-SIRT3 axis in the regulation of inflammation, offering novel insights, and strategies for the treatment and prevention of inflammatory diseases. IMPORTANCE Sentrin-specific protease 1 (SENP1)-sirtuin 3 (SIRT3) has never been reported in the regulation of bacteria-induced inflammation. Our study demonstrated that SENP1 acted as a protective factor against Listeria-induced inflammation by promoting SIRT3 activation and subsequent metabolic reprogramming. The SENP1-SIRT3 axis served not only as an essential signaling pathway for regulating mitochondrial metabolic responses to metabolic stress but also responds to bacterial invasion and plays a protective role in the organism. Our findings provide a basis for further research into targeting the SENP1-SIRT3 signaling pathway for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yongliang Du
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Feng Lin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, China
| | - Lulu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zixuan Cong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Cao SH, Ma RY, Cao T, Hu T, Yang S, Ren ZY, Niu JL, Zheng MQ, Han M, Dong LH. PKM2 crotonylation reprograms glycolysis in VSMCs, contributing to phenotypic switching. Oncogene 2025:10.1038/s41388-025-03353-9. [PMID: 40181154 DOI: 10.1038/s41388-025-03353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Post-translational modifications (PTMs) of pyruvate kinase M2 (PKM2) play a vital role in regulating its activity and function. Recently, we found PKM2 can undergo crotonylation in vascular smooth muscle cell (VSMC) phenotypic switching. However, the role of PKM2 crotonylation remains unknown. Here, we verify a crucial role of PKM2 crotonylation in VSMC metabolic reprogramming. In PDGF-BB-induced synthetic VSMCs, PKM2 crotonylation was upregulated and promotes its nuclear translocation, thereby facilitating the expression of Glut1 and Ldha. Furthermore, crotonylation facilitated the dimeric formation of PKM2. Then we identified the highly conserved crotonylation site at K305 across different species. The crotonylation of PKM2 was compromised by PKM2 K305 mutation, resulting in the suppression of PKM2 dimeric configuration and nuclear relocation, and ultimately reducing glycolysis rate. Furthermore, PKM2 K305 crotonylation was necessary for VSMC phenotypic switching in vitro and intimal hyperplasia in vivo via infection of PKM2 recombinant adenovirus. In summary, PKM2 K305 crotonylation facilitates VSMC aerobic glycolysis by enhancing PKM2 dimeric form.
Collapse
Affiliation(s)
- Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Department of Cardiology, Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Medical University Clinical Medicine Postdoctoral Mobile Station, Shijiazhuang, China
| | - Ru-Yuan Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tong Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tao Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Shu Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhi-Yan Ren
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jiang-Ling Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ming-Qi Zheng
- Department of Cardiology, Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China.
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Wang Y, Xu N, Ndzie Noah ML, Chen L, Zhan X. Pyruvate Kinase M1/2 Proteoformics for Accurate Insights into Energy Metabolism Abnormity to Promote the Overall Management of Ovarian Cancer Towards Predictive, Preventive, and Personalized Medicine Approaches. Metabolites 2025; 15:203. [PMID: 40137167 PMCID: PMC11944880 DOI: 10.3390/metabo15030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ovarian cancer (OC) is a global health problem that frequently presents at advanced stages, is predisposed to recurrence, readily develops resistance to platinum-based drugs, and has a low survival rate. Predictive, preventive, and personalized medicine (PPPM/3PM) offers an integrated solution with the use of genetic, proteomic, and metabolic biomarkers to identify high-risk individuals for early detection. Metabolic reprogramming is one of the key strategies employed by tumor cells to adapt to the microenvironment and support unlimited proliferation. Pyruvate kinases M1 and M2 (PKM1/2) are encoded by the PKM gene, a pivotal enzyme in the last step of the glycolytic pathway, which is at the crossroads of aerobic oxidation and the Warburg effect to serve as a potential regulator of glucose metabolism and influence cellular energy production and metabolic reprogramming. Commonly, the ratio of PKM1-to-PKM2 is changed in tumors compared to normal controls, and PKM2 is highly expressed in OC to induce a high glycolysis rate and participate in the malignant invasion and metastatic characteristics of cancer cells with epithelial/mesenchymal transition (EMT). PKM2 inhibitors suppress the migration and growth of OC cells by interfering with the Warburg effect. Proteoforms are the final structural and functional forms of a gene/protein, and the canonical protein PKM contains all proteoforms encoded by the same PKM gene. The complexity of PKM can be elucidated by proteoformics. The OC-specific PKM proteoform might represent a specific target for therapeutic interventions against OC. In the framework of PPPM/3PM, the OC-specific PKM proteoform might be the early warning and prognosis biomarker. It is important to clarify the molecular mechanisms of PKM proteoforms in cancer metabolism. This review analyzes the expression, function, and molecular mechanisms of PKM proteoforms in OC, which help identify specific biomarkers for OC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Department of Gynecology, Gaotang County Medical Center, Liaocheng 252800, China
| | - Nuo Xu
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Marie Louise Ndzie Noah
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| | - Xianquan Zhan
- Department of Gynecological Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China; (Y.W.); (N.X.); (M.L.N.N.)
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan 250117, China
| |
Collapse
|
11
|
Deng Y, Hou M, Wu Y, Liu Y, Xia X, Yu C, Yu J, Yang H, Zhang Y, Zhu X. SIRT3-PINK1-PKM2 axis prevents osteoarthritis via mitochondrial renewal and metabolic switch. Bone Res 2025; 13:36. [PMID: 40087281 PMCID: PMC11909255 DOI: 10.1038/s41413-025-00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025] Open
Abstract
Maintaining mitochondrial homeostasis is critical for preserving chondrocyte physiological conditions and increasing resistance against osteoarthritis (OA). However, the underlying mechanisms governing mitochondrial self-renewal and energy production remain elusive. In this study, we demonstrated mitochondrial damage and aberrant mitophagy in OA chondrocytes. Genetically overexpressing PTEN-induced putative kinase 1 (PINK1) protects against cartilage degeneration by removing defective mitochondria. PINK1 knockout aggravated cartilage damage due to impaired mitophagy. SIRT3 directly deacetylated PINK1 to promote mitophagy and cartilage anabolism. Specifically, PINK1 phosphorylated PKM2 at the Ser127 site, preserving its active tetrameric form. This inhibited nuclear translocation and the interaction with β-catenin, resulting in a metabolic shift and increased energy production. Finally, a double-knockout mouse model demonstrated the role of the SIRT3-PINK1-PKM2 axis in safeguarding the structural integrity of articular joints and improving motor functions. Overall, this study provides a novel insight into the regulation of mitochondrial renewal and metabolic switches in OA.
Collapse
Affiliation(s)
- Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Chenqi Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Jianfeng Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
12
|
Zhou Y, Wang M, Qian Y, Yu D, Zhang J, Fu M, Zhang X, Qin R, Ji R, Zhang X, Gu J. PRDX2 promotes gastric cancer progression by forming a feedback loop with PKM2/STAT3 axis. Cell Signal 2025; 127:111586. [PMID: 39761843 DOI: 10.1016/j.cellsig.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism. We identified that PRDX2 was upregulated and associated with poor prognosis in gastric cancer. The knockdown of PRDX2 inhibited the proliferation, migration and invasion of gastric cancer cells in vitro and suppressed tumor growth in vivo. Mechanistically, PRDX2 interacted with PKM2 (pyruvate kinase isozyme type M2) and protected PKM2 from ubiquitination and degradation, which enhanced glycolysis in gastric cancer cells. The interaction between PRDX2 and PKM2 also enhanced the binding affinity between PKM2 and importin α5, which induced PKM2 nuclear translocation and activated STAT3 signaling pathway. In addition, STAT3 (signal transducer and activator of transcription 3) was identified to bind to PRDX2 gene promoter and upregulate PRDX2 expression, which forms a positive regulatory feedback loop in gastric cancer cells. The present study unravels the biological role of PRDX2 in cancer progression and illustrates the underlying molecular mechanism, which may provide a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Qin
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China.
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.
| |
Collapse
|
13
|
Ye L, Shen S, Mao Q, Lu H, Liu H, Zhang P, Jiang Z, Ma W, Sun Y, Chu Y, Zhou Z, Liu R, Li J, Li ST, Gao P, Zhang H. Nuclear-localized HKDC1 promotes hepatocellular carcinoma through phosphorylating RBBP5 to upregulate H3K4me3. Cell Rep 2025; 44:115250. [PMID: 39891906 DOI: 10.1016/j.celrep.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Metabolic enzymes play significant roles in the pathogenesis of various cancers through both canonical and noncanonical functions. Hexokinase domain-containing protein 1 (HKDC1) functions beyond glucose metabolism, but its underlying mechanisms in tumorigenesis are not fully understood. Here, we demonstrate that nuclear-localized HKDC1 acts as a protein kinase to promote hepatocellular carcinoma (HCC) cell proliferation. Mechanistically, HKDC1 phosphorylates RB binding protein 5 (RBBP5) at Ser497, which is crucial for MLL1 complex assembly and subsequent histone H3 lysine 4 trimethylation (H3K4me3) modification. This leads to the transcriptional activation of mitosis-related genes, thereby driving cell cycle progression and proliferation. Notably, targeting HKDC1's protein kinase activity, but not its HK activity, blocks RBBP5 phosphorylation and suppresses tumor growth. Clinical analysis further reveals that RBBP5 phosphorylation positively correlates with HKDC1 levels and poor HCC prognosis. These findings highlight the protein kinase function of HKDC1 in the activation of H3K4me3, gene expression, and HCC progression.
Collapse
Affiliation(s)
- Ling Ye
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Qiankun Mao
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hui Lu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiying Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Pinggen Zhang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zetan Jiang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenhao Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yuchen Sun
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yiyang Chu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zilong Zhou
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jian Li
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Huafeng Zhang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; Anhui Key Laboratory of Molecular Oncology, Hefei 230026, China.
| |
Collapse
|
14
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Carmona OG, Kleinjung J, Anastasiou D, Oostenbrink C, Fraternali F. AllohubPy: Detecting Allosteric Signals Through An Information-theoretic Approach. J Mol Biol 2025:168969. [PMID: 39900284 DOI: 10.1016/j.jmb.2025.168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Allosteric regulation is crucial for biological processes like signal transduction, transcriptional regulation, and metabolism, yet the mechanisms and macromolecular properties that govern it are still not well understood. Several methods have been developed over the years to study allosterism through different angles. Among the possible ways to study allosterism, information-theoretic approaches, like AlloHubMat or GSAtools, can be particularly effective due to their use of robust statistics and the possibility to be combined with graph analysis. These methods capture local conformational changes associated with global motions from molecular dynamics simulations through the use of a Structural Alphabet, which simplifies the complexity of the Cartesian space by reducing the dimensionality down to a string of encoded fragments, representing sets of internal coordinates that still capture the overall conformation changes. In this work, we present "AllohubPy," an improved and standardized methodology of AlloHubMat and GSAtools coded in Python. We analyse the performance, limitations and sampling requirements of AllohubPy by using extensive molecular dynamics simulations of model allosteric systems and apply convergence analysis techniques to estimate result reliability. Additionally, we expand the methodology to use different dimensionality reduction Structural Alphabets, such as the 3DI alphabet, and integrate Protein Language Models (PLMs) to refine allosteric hub communication detection by monitoring the detected evolutionary constraints. Overall, AllohubPy expands its preceding methods and simplifies the use and reliability of the method to effectively capture dynamic allosteric motions and residue pathways. AllohubPy is freely available on GitHub (https://github.com/Fraternalilab/AlloHubPy) as a package and as a Jupyter Notebook.
Collapse
Affiliation(s)
- Oriol Gracia Carmona
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Department of Biological Sciences Birkbeck, University of London, London WC1E 7HX, United Kingdom; Randall Centre for Cell & Molecular Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Jens Kleinjung
- Nxera Pharma, Steinmetz & Cori Buildings, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU University 1190 Vienna, Austria
| | - Franca Fraternali
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Department of Biological Sciences Birkbeck, University of London, London WC1E 7HX, United Kingdom.
| |
Collapse
|
16
|
Shao C, Tang S, Yu S, Liu C, Zhang Y, Wan T, He Z, Yuan Q, Wu S, Zhang H, Wan N, Zhan M, Tan RX, Hao H, Ye H, Wang N. Genetic code expansion reveals site-specific lactylation in living cells reshapes protein functions. Nat Commun 2025; 16:227. [PMID: 39779673 PMCID: PMC11711764 DOI: 10.1038/s41467-024-55165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Protein lactylation is an emerging field. To advance the exploration of its biological functions, here we develop a comprehensive workflow that integrates proteomics to identify lactylated sites, genetic code expansion (GCE) for the expression of site-specifically lactylated proteins in living cells, and an integrated functional analysis (IFA) platform to evaluate their biological effects. Using a combined wet-and-dry-lab proteomics strategy, we identify a conserved lactylation at ALDOA-K147, which we hypothesize plays a significant biological role. Expression of this site-specifically lactylated ALDOA in mammalian cells reveals that this modification not only inhibits enzymatic activity but also induces gain-of-function effects. These effects reshaped ALDOA functionality by enhancing protein stability, promoting nuclear translocation, regulating adhesion-related gene expression, altering cell morphology and modulating ALDOA-interacting proteins. Our findings highlight the utility of the GCE-based workflow in establishing causal relationships between specific lactylation events and both target-specific and cell-wide changes, advancing our understanding of protein lactylation's functional impact.
Collapse
Affiliation(s)
- Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Shuo Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China
| | - Siqin Yu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Chenguang Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Yueyang Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Tianyan Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China
| | - Zimeng He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Qi Yuan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Shihan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China
| | - Hanqing Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Ning Wan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Mengru Zhan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China
| | - Ren Xiang Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing, Jiangsu, China.
| | - Nanxi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlindadao No. 138, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Hu L, Shi X, Yuan X, Liu D, Zheng D, Li Y, Shi F, Zhang M, Su S, Zhang CZ. PPM1G-mediated TBL1X mRNA splicing promotes cell migration in hepatocellular carcinoma. Cancer Sci 2025; 116:67-80. [PMID: 39462759 PMCID: PMC11711060 DOI: 10.1111/cas.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
The progression of hepatocellular carcinoma (HCC) is coincident with aberrant splicing of numerous tumor-related genes. Identification of the tumor-specific splice variants that facilitate HCC metastasis may provide a more comprehensive insight into the mechanisms of HCC metastasis. Through RNA sequencing and bioinformatic analyses, PPM1G was identified as a biomarker associated with HCC metastasis. Our data mapped a transcriptome-wide landscape of alternative splicing events modulated by PPM1G in HCC. Notably, we characterized the exon six-skipping transcript of TBL1X as an onco-splice variant regulated by PPM1G. Experimental validation revealed the enrichment of TBL1X-S in response to PPM1G overexpression. Moreover, mRNA stability analyses revealed that PPM1G prolonged the half-life of the TBL1X-S transcript. Both PPM1G and TBL1X-S exhibited metastasis-promoting phenotypes, with PPM1G-driven metastasis in HCC being partially dependent on TBL1X-S. Mechanistically, different TBL1X splice variants showed varying affinities for ZEB1, with TBL1X-S significantly enhancing ZEB1 activation and repressing CDH1 transcription, potentially accelerating the epithelial-mesenchymal transition (EMT) process. In conclusion, our study highlights the biological role of PPM1G and TBL1X-S in tumor metastasis. The PPM1G/TBL1X-S signaling axis presents a new view for investigating liver cancer metastasis mechanisms.
Collapse
Affiliation(s)
- Liling Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xinyu Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xiaoyi Yuan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Danya Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Dandan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Meifang Zhang
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shu‐Guang Su
- Department of PathologyThe Affiliated Hexian Memorial Hospital of Southern Medical UniversityGuangzhouChina
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| |
Collapse
|
18
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
19
|
Du R, Gao Y, Yan C, Ren X, Qi S, Liu G, Guo X, Song X, Wang H, Rao J, Zang Y, Zheng M, Li J, Huang H. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience 2024; 27:110911. [PMID: 39351192 PMCID: PMC11440250 DOI: 10.1016/j.isci.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Lysine lactylation (Kla), an epigenetic mark triggered by lactate during glycolysis, including the Warburg effect, bridges metabolism and gene regulation. Enzymes such as p300 and HDAC1/3 have been pivotal in deciphering the regulatory dynamics of Kla, though questions about additional regulatory enzymes, their specific Kla substrates, and the underlying functional mechanisms persist. Here, we identify SIRT1 and SIRT3 as key "erasers" of Kla, shedding light on their selective regulation of both histone and non-histone proteins. Proteomic analysis in SIRT1/SIRT3 knockout HepG2 cells reveals distinct substrate specificities toward Kla, highlighting their unique roles in cellular signaling. Notably, we highlight the role of specific Kla modifications, such as those on the M2 splice isoform of pyruvate kinase (PKM2), in modulating metabolic pathways and cell proliferation, thereby expanding Kla's recognized functions beyond epigenetics. Therefore, this study deepens our understanding of Kla's functional mechanisms and broadens its biological significance.
Collapse
Affiliation(s)
- Runhua Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanmei Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shankang Qi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohan Song
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanmin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingxin Rao
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 201203, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
20
|
Li X, Huang Y, Liu X, Zhang L, Wang X, Zhao F, Zou L, Wu K, Chen W, Qin Y, Zeng S, Li B, He Y, Song Y, Li Z, Fan J, Zhao M, Yi L, Ding H, Fan S, Chen J. Classical swine fever virus inhibits serine metabolism-mediated antiviral immunity by deacetylating modified PHGDH. mBio 2024; 15:e0209724. [PMID: 39207107 PMCID: PMC11481501 DOI: 10.1128/mbio.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-β production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
22
|
Li Z, Lu X, Zhang J, Liu T, Xu M, Liu S, Liang J. KAT8 enhances the resistance of lung cancer cells to cisplatin by acetylation of PKM2. Anticancer Drugs 2024; 35:732-740. [PMID: 38771737 PMCID: PMC11305626 DOI: 10.1097/cad.0000000000001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024]
Abstract
Cisplatin (CDDP)-based chemotherapy resistance is a major challenge for lung cancer treatment. PKM2 is the rate-limiting enzyme of glycolysis, which is associated with CDDP resistance. KAT8 is an acetyltransferase that regulates lung cancer progression. Thus, we aimed to explore whether KAT8 regulates PKM2 acetylation to participate in CDDP resistance. CDDP resistance was analyzed by CCK-8, flow cytometry and western blotting. To explore the regulation of KAT8 on PKM2, coimmunoprecipitation (Co-IP), immunofluorescence and immunoprecipitation followed by western blotting were performed. Glycolysis was determined using glucose consumption, lactate production, ATP level detection kits and extracellular acidification rate assay. We observed that KAT8 levels were downregulated in CDDP-treated A549 and PC9 cells. Interference with KAT8 inhibited cell viability, promoted apoptosis and upregulated PARP1 and cleaved-PARP1 levels of A549 cells treated with CDDP, suggesting the sensitivity to CDDP was enhanced, while KAT8 overexpression attenuated the CDDP sensitivity. Moreover, KAT8 interacted with PKM2 to promote the PKM2 K433 acetylation. PKM2 K433 mutated plasmids inhibited the si-KAT8-regulated cell viability, apoptosis and glycolysis compared with PKM2-WT. Besides, KAT8 reversed the inhibition of tumor growth caused by CDDP. In conclusion, KAT8-mediated PKM2 K433 acetylation was associated with the resistance of lung cancer cells to CDDP. The findings may provide a new idea for the treatment of CDDP-resistant lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Liu
- Department of Emergency, Inner Mongolia Armed Police Corps Hospital
| | - Junguo Liang
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
23
|
Gao X, Pan T, Gao Y, Zhu W, Liu L, Duan W, Han C, Feng B, Yan W, Song Q, Liu Y, Yue L. Acetylation of PGK1 at lysine 323 promotes glycolysis, cell proliferation, and metastasis in luminal A breast cancer cells. BMC Cancer 2024; 24:1054. [PMID: 39192221 PMCID: PMC11348675 DOI: 10.1186/s12885-024-12792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. METHODS Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. RESULTS Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. CONCLUSION PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ting Pan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Gao
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbo Duan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bo Feng
- Dean's Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenjing Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Liu
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
24
|
Lian B, Zhang J, Yin X, Wang J, Li L, Ju Q, Wang Y, Jiang Y, Liu X, Chen Y, Tang X, Sun C. SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2. Cell Rep Med 2024; 5:101684. [PMID: 39128469 PMCID: PMC11384727 DOI: 10.1016/j.xcrm.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.
Collapse
Affiliation(s)
- Bolin Lian
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiang Yin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jiayan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| |
Collapse
|
25
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
26
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
27
|
Guo J, Nie J, Li D, Zhang H, Zhao T, Zhang S, Ma L, Lu J, Ji H, Li S, Tao S, Xu B. The role of NAD-dependent deacetylase sirtuin-2 in liver metabolic stress through regulating pyruvate kinase M2 ubiquitination. J Transl Med 2024; 22:656. [PMID: 39004743 PMCID: PMC11247741 DOI: 10.1186/s12967-024-05435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
NAD-dependent deacetylase Sirt2 is involved in mammalian metabolic activities, matching energy demand with energy production and expenditure, and is relevant to a variety of metabolic diseases. Here, we constructed Sirt2 knockout and adeno-associated virus overexpression mice and found that deletion of hepatic Sirt2 accelerated primary obesity and insulin resistance in mice with concomitant hepatic metabolic dysfunction. However, the key targets of Sirt2 are unknown. We identified the M2 isoform of pyruvate kinase (PKM2) as a key Sirt2 target involved in glycolysis in metabolic stress. Through yeast two-hybrid and mass spectrometry combined with multi-omics analysis, we identified candidate acetylation modification targets of Sirt2 on PKM2 lysine 135 (K135). The Sirt2-mediated deacetylation-ubiquitination switch of PKM2 regulated the development of glycolysis. Here, we found that Sirt2 deficiency led to impaired glucose tolerance and insulin resistance and induced primary obesity. Sirt2 severely disrupted liver function in mice under metabolic stress, exacerbated the metabolic burden on the liver, and affected glucose metabolism. Sirt2 underwent acetylation modification of lysine 135 of PKM2 through a histidine 187 enzyme active site-dependent effect and reduced ubiquitination of the K48 ubiquitin chain of PKM2. Our findings reveal that the hepatic glucose metabolism links nutrient state to whole-body energetics through the rhythmic regulation of Sirt2.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junshu Nie
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongni Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huaixiu Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianrui Zhao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shoufeng Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Sha Tao
- The University of Georgia, Athens, GA, USA
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
28
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
29
|
Olea-Flores M, Sharma T, Verdejo-Torres O, DiBartolomeo I, Thompson PR, Padilla-Benavides T, Imbalzano AN. Muscle-specific pyruvate kinase isoforms, PKM1 and PKM2, regulate mammalian SWI/SNF proteins and histone 3 phosphorylation during myoblast differentiation. FASEB J 2024; 38:e23702. [PMID: 38837439 PMCID: PMC11268309 DOI: 10.1096/fj.202400784r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Tapan Sharma
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Imaru DiBartolomeo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Paul R. Thompson
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Anthony N. Imbalzano
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
30
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
31
|
Zhou Z, Zheng X, Zhao J, Yuan A, Lv Z, Shao G, Peng B, Dong MQ, Xu Q, Xu X, Li J. ULK1-dependent phosphorylation of PKM2 antagonizes O-GlcNAcylation and regulates the Warburg effect in breast cancer. Oncogene 2024; 43:1769-1778. [PMID: 38632437 DOI: 10.1038/s41388-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked β-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.
Collapse
Affiliation(s)
- Zibin Zhou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiyuan Zheng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Aiyun Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zhuan Lv
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Quan Xu
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
32
|
Li C, Yi J, Jie H, Liu Z, Li S, Zeng Z, Zhou Y. Acetylation of ELMO1 correlates with Rac1 activity and colorectal cancer progress. Exp Cell Res 2024; 439:114068. [PMID: 38750717 DOI: 10.1016/j.yexcr.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Acetylation, a critical regulator of diverse cellular processes, holds significant implications in various cancer contexts. Further understanding of the acetylation patterns of key cancer-driven proteins is crucial for advancing therapeutic strategies in cancer treatment. This study aimed to unravel the acetylation patterns of Engulfment and Cell Motility Protein 1 (ELMO1) and its relevance to the pathogenesis of colorectal cancer (CRC). Immunoprecipitation and mass spectrometry precisely identified lysine residue 505 (K505) as a central acetylation site in ELMO1. P300 emerged as the acetyltransferase for ELMO1 K505 acetylation, while SIRT2 was recognized as the deacetylase. Although K505 acetylation minimally affected ELMO1's localization and stability, it played a crucial role in mediating ELMO1-Dock180 interaction, thereby influencing Rac1 activation. Functionally, ELMO1 K505 acetylation proved to be a pivotal factor in CRC progression, exerting its influence on key cellular processes. Clinical analysis of CRC samples unveiled elevated ELMO1 acetylation in primary tumors, indicating a potential association with CRC pathologies. This work provides insights into ELMO1 acetylation and its significance in advancing potentially therapeutic interventions in CRC treatment.
Collapse
Affiliation(s)
- Chuangkun Li
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Jianmei Yi
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihang Liu
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, China
| | - Shujuan Li
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of General Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
33
|
Wang Y, Shu H, Qu Y, Jin X, Liu J, Peng W, Wang L, Hao M, Xia M, Zhao Z, Dong K, Di Y, Tian M, Hao F, Xia C, Zhang W, Ba X, Feng Y, Wei M. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer. EMBO J 2024; 43:2368-2396. [PMID: 38750259 PMCID: PMC11183095 DOI: 10.1038/s44318-024-00110-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yanzhao Qu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Lihua Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miao Hao
- Science Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, 130033, Changchun, Jilin, China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yao Di
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| |
Collapse
|
34
|
Ren C, Li X, Li J, Huang X, Bai Y, Schroyen M, Hou C, Wang Z, Zhang D. Acetylation and Phosphorylation Regulate the Role of Pyruvate Kinase as a Glycolytic Enzyme or a Protein Kinase in Lamb. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11724-11732. [PMID: 38718268 DOI: 10.1021/acs.jafc.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Juan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xiaolan Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
35
|
Gan PR, Wu H, Zhu YL, Shu Y, Wei Y. Glycolysis, a driving force of rheumatoid arthritis. Int Immunopharmacol 2024; 132:111913. [PMID: 38603855 DOI: 10.1016/j.intimp.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Resident synoviocytes and synovial microvasculature, together with immune cells from circulation, contribute to pannus formation, the main pathological feature of rheumatoid arthritis (RA), leading to destruction of adjacent cartilage and bone. Seeds, fibroblast-like synoviocytes (FLSs), macrophages, dendritic cells (DCs), B cells, T cells and endothelial cells (ECs) seeds with high metabolic demands undergo metabolic reprogramming from oxidative phosphorylation to glycolysis in response to poor soil of RA synovium with hypoxia, nutrient deficiency and inflammatory stimuli. Glycolysis provides rapid energy supply and biosynthetic precursors to support pathogenic growth of these seeds. The metabolite lactate accumulated during this process in turn condition the soil microenvironment and affect seeds growth by modulating signalling pathways and directing lactylation modifications. This review explores in depth the survival mechanism of seeds with high metabolic demands in the poor soil of RA synovium, providing useful support for elucidating the etiology of RA. In addition, we discuss the role and major post-translational modifications of proteins and enzymes linked to glycolysis to inspire the discovery of novel anti-rheumatic targets.
Collapse
Affiliation(s)
- Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yu-Long Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
36
|
Upadhyay S, Khan S, Hassan MI. Exploring the diverse role of pyruvate kinase M2 in cancer: Navigating beyond glycolysis and the Warburg effect. Biochim Biophys Acta Rev Cancer 2024; 1879:189089. [PMID: 38458358 DOI: 10.1016/j.bbcan.2024.189089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Pyruvate Kinase M2, a key enzyme in glycolysis, has garnered significant attention in cancer research due to its pivotal role in the metabolic reprogramming of cancer cells. Originally identified for its association with the Warburg effect, PKM2 has emerged as a multifaceted player in cancer biology. The functioning of PKM2 is intricately regulated at multiple levels, including controlling the gene expression via various transcription factors and non-coding RNAs, as well as adding post-translational modifications that confer distinct functions to the protein. Here, we explore the diverse functions of PKM2, encompassing newly emerging roles in non-glycolytic metabolic regulation, immunomodulation, inflammation, DNA repair and mRNA processing, beyond its canonical role in glycolysis. The ever-expanding list of its functions has recently grown to include roles in subcellular compartments such as the mitochondria and extracellular milieu as well, all of which make PKM2 an attractive drug target in the pursuit of therapeutics for cancer.
Collapse
Affiliation(s)
- Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
37
|
Wu B, Liang Z, Lan H, Teng X, Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 2024; 80:261-275. [PMID: 38329688 DOI: 10.1007/s13105-024-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Qian J, Huang C, Wang M, Liu Y, Zhao Y, Li M, Zhang X, Gao X, Zhang Y, Wang Y, Huang J, Li J, Zhou Q, Liu R, Wang X, Cui J, Yang Y. Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment. Redox Biol 2024; 71:103103. [PMID: 38471282 PMCID: PMC10945175 DOI: 10.1016/j.redox.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.
Collapse
Affiliation(s)
- Jiali Qian
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ying Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangyu Gao
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yawen Zhang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinya Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiwen Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanchun Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Yehong Yang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Liu J, Wang T, Zhang W, Huang Y, Wang X, Li Q. Association between Metabolic Reprogramming and Immune Regulation in Digestive Tract Tumors. Oncol Res Treat 2024; 47:273-286. [PMID: 38636467 DOI: 10.1159/000538659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The cancers of the digestive tract, including colorectal cancer (CRC), gastric cancer, and esophageal cancer, are part of the most common cancers as well as one of the most important leading causes of cancer death worldwide. SUMMARY Despite the emergence of immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1/PD-L1) in the past decade, offering renewed optimism in cancer treatment, only a fraction of patients derive benefit from these therapies. This limited efficacy may stem from tumor heterogeneity and the impact of metabolic reprogramming on both tumor cells and immune cells within the tumor microenvironment (TME). The metabolic reprogramming of glucose, lipids, amino acids, and other nutrients represents a pivotal hallmark of cancer, serving to generate energy, reducing equivalent and biological macromolecule, thereby fostering tumor proliferation and invasion. Significantly, the metabolic reprogramming of tumor cells can orchestrate changes within the TME, rendering patients unresponsive to immunotherapy. KEY MESSAGES In this review, we predominantly encapsulate recent strides on metabolic reprogramming among digestive tract cancer, especially CRC, in the TME with a focus on how these alterations influence anti-tumor immunity. Additionally, we deliberate on potential strategies to address these abnormities in metabolic pathways and the viability of combined therapy within the realm of anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Olea-Flores M, Sharma T, Verdejo-Torres O, DiBartolomeo I, Thompson PR, Padilla-Benavides T, Imbalzano AN. Muscle-Specific Pyruvate Kinase Isoforms, Pkm1 and Pkm2, Regulate Mammalian SWI/SNF Proteins and Histone 3 Phosphorylation During Myoblast Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588959. [PMID: 38645038 PMCID: PMC11030359 DOI: 10.1101/2024.04.10.588959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, Pkm1 and Pkm2, function in glycolysis, but Pkm2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of Pkm1 and Pkm2 during myoblast differentiation. RNA-seq analysis revealed that Pkm2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. Dpf2 and Baf250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for activation of myogenic gene expression during differentiation. Pkm2 also mediated the incorporation of Dpf2 and Baf250a into the regulatory sequences controlling myogenic gene expression. Pkm1 did not affect expression but was required for nuclear localization of Dpf2. Additionally, Pkm2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters, but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for Pkm2 and a novel function for Pkm1 in gene expression and chromatin regulation during myoblast differentiation.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Tapan Sharma
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Imaru DiBartolomeo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Paul R. Thompson
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Chemical Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Anthony N. Imbalzano
- Department Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
41
|
Rihan M, Sharma SS. Cardioprotective potential of compound 3K, a selective PKM2 inhibitor in isoproterenol-induced acute myocardial infarction: A mechanistic study. Toxicol Appl Pharmacol 2024; 485:116905. [PMID: 38521371 DOI: 10.1016/j.taap.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Myocardial infarction (MI) or heart attack arises from acute or chronic prolonged ischemic conditions in the myocardium. Although several risk factors are associated with MI pathophysiology, one of the risk factors is an imbalance in the oxygen supply. The current available MI therapies are still inadequate due to the complexity of MI pathophysiology. Pyruvate kinase M2 (PKM2) has been implicated in numerous CVDs pathologies. However, the effect of specific pharmacological intervention targeting PKM2 has not been studied in MI. Therefore, in this study, we explored the effect of compound 3K, a PKM2-specific inhibitor, in isoproterenol-induced acute MI model. In this study, in order to induce MI in rats, isoproterenol (ISO) was administered at a dose of 100 mg/kg over two days at an interval of 24 h. Specific PKM2 inhibitor, compound 3K (2 and 4 mg/kg), was administered in MI rats to investigate its cardioprotective potential. After the last administration of compound 3K, ECG and hemodynamic parameters were recorded using a PV-loop system. Cardiac histology, western blotting, and plasmatic cardiac damage markers were evaluated to elucidate the underlying mechanisms. Treatment of compound 3K significantly reduced ISO-induced alterations in ECG, ventricular functions, cardiac damage, infarct size, and cardiac fibrosis. Compound 3K treatment produced significant increase in PKM1 expression and decrease in PKM2 expression. In addition, HIF-1α, caspase-3, c-Myc, and PTBP1 expression were also reduced after compound 3K treatment. This study demonstrates the cardioprotective potential of compound 3K in MI, and its mechanisms of cardioprotective action.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
42
|
Jiang S, Shen QW. Antemortem Stress Regulates Postmortem Glycolysis in Muscle by Deacetylation of Pyruvate Kinase M1 at K141. Protein J 2024; 43:351-361. [PMID: 38605203 DOI: 10.1007/s10930-023-10178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 04/13/2024]
Abstract
It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Animal Science, Xichang University, Xichang, 615013, Sichuan, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingwu W Shen
- College of Animal Science, Xichang University, Xichang, 615013, Sichuan, China.
| |
Collapse
|
43
|
He Z, Zhong Y, Lv T, Wang J, Jin Y, Li F, Hu H. PP4R1 promotes glycolysis and gallbladder cancer progression through facilitating ERK1/2 mediated PKM2 nuclear translocation. Cancer Lett 2024; 586:216677. [PMID: 38301910 DOI: 10.1016/j.canlet.2024.216677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Gallbladder cancer (GBC) is a common solid tumor of the biliary tract with a high mortality rate and limited curative benefits from surgical resection. Here, we aimed to elucidate the pathogenesis of GBC from the perspective of molecular mechanisms and determined that protein phosphatase 4 regulator subunit 1 (PP4R1) is overexpressed in GBC tissues and contributes to poor prognosis. Through a series of in vitro and in vivo experiments, we demonstrated that PP4R1 overexpression improved tumorigenesis in GBC cells. Further mechanistic exploration revealed that PP4R1 directly interacts with pyruvate kinase-M2 (PKM2), a key regulator of glycolysis. PP4R1 promotes the extracellular signal-related kinase 1 and 2 (ERK1/2)-mediated PKM2 nuclear translocation, thereby participating in the regulation of tumor glycolysis. Interestingly, we determined that PP4R1 strengthens the interaction between ERK1/2 and PKM2. Furthermore, PP4R1 enhanced the suppressive effects of the ERK inhibitor SCH772984 on GBC. In conclusion, our data showed that PP4R1 is a promising biomarker associated with GBC and confirmed that PP4R1 regulates PKM2-mediated tumor glycolysis, which provides a metabolic growth advantage to GBC cells, thereby promoting GBC tumor growth and metastasis1.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Tianrun Lv
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Junke Wang
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanwen Jin
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
44
|
Chang L, Li G, Jiang S, Li J, Yang J, Shah K, Zhou L, Song H, Deng L, Luo Z, Guo Y, Yan Y. 1-Pyrroline-5-carboxylate inhibit T cell glycolysis in prostate cancer microenvironment by SHP1/PKM2/LDHB axis. Cell Commun Signal 2024; 22:101. [PMID: 38326896 PMCID: PMC10851605 DOI: 10.1186/s12964-024-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that 1-Pyrroline-5-carboxylate (P5C) released by prostate cancer cells inhibits T cell proliferation and function by increasing SHP1 expression. We designed this study to further explore the influence of P5C on T cell metabolism, and produced an antibody for targeting P5C to restore the functions of T cells. METHOD We co-immunoprecipated SHP1 from T cells and analyzed the proteins that were bound to it using liquid chromatography mass spectrometry (LC/MS-MS). The influence of P5C on T cells metabolism was also detected by LC/MS-MS. Seahorse XF96 analyzer was further used to identify the effect of P5C on T cells glycolysis. We subsequently designed and produced an antibody for targeting P5C by monoclonal technique and verified its effectiveness to restore the function of T cells in vitro and in vivo. RESULT PKM2 and LDHB bind SHP1 in T cells, and P5C could increase the levels of p-PKM2 while having no effect on the levels of PKM2 and LDHB. We further found that P5C influences T cell energy metabolism and carbohydrate metabolism. P5C also inhibits the activity of PKM2 and decreases the content of intracellular lactic acid while increasing the activity of LDH. Using seahorse XF96 analyzer, we confirmed that P5C remarkably inhibits glycolysis in T cells. We produced an antibody for targeting P5C by monoclonal technique and verified that the antibody could oppose the influence of P5C to restore the process of glycolysis and function in T cells. Meanwhile, the antibody also inhibits the growth of prostate tumors in an animal model. CONCLUSION Our study revealed that P5C inhibits the process of glycolysis in T cells by targeting SHP1/PKM2/LDHB complexes. Moreover, it is important that the antibody for targeting P5C could restore the function of T cells and inhibit the growth of prostate tumors.
Collapse
Affiliation(s)
- Lei Chang
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Guohao Li
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shan Jiang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jin Yang
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Le Zhou
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hanrui Song
- First Clinical College of College of Medicine and Nursing, Hubei University of Medicine, Shiyan, China
| | - Leyuan Deng
- First Clinical College of College of Medicine and Nursing, Hubei University of Medicine, Shiyan, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yonglian Guo
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yutao Yan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
45
|
Liang LJ, Yang FY, Wang D, Zhang YF, Yu H, Wang Z, Sun BB, Liu YT, Wang GZ, Zhou GB. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov 2024; 10:13. [PMID: 38321019 PMCID: PMC10847417 DOI: 10.1038/s41421-023-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024] Open
Abstract
Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Li-Jun Liang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| | - Hong Yu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Ma W, Sun Y, Yan R, Zhang P, Shen S, Lu H, Zhou Z, Jiang Z, Ye L, Mao Q, Xiong N, Jia W, Sun L, Gao P, Zhang H. OXCT1 functions as a succinyltransferase, contributing to hepatocellular carcinoma via succinylating LACTB. Mol Cell 2024; 84:538-551.e7. [PMID: 38176415 DOI: 10.1016/j.molcel.2023.11.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.
Collapse
Affiliation(s)
- Wenhao Ma
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yuchen Sun
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ronghui Yan
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Pinggen Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Hui Lu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zilong Zhou
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zetan Jiang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ling Ye
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiankun Mao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Nanchi Xiong
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
47
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Chen P, Lou L, Sharma B, Li M, Xie C, Yang F, Wu Y, Xiao Q, Gao L. Recent Advances on PKM2 Inhibitors and Activators in Cancer Applications. Curr Med Chem 2024; 31:2955-2973. [PMID: 37455458 DOI: 10.2174/0929867331666230714144851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Metabolic reprogramming of cells, from the normal mode of glucose metabolism named glycolysis, is a pivotal characteristic of impending cancerous cells. Pyruvate kinase M2 (PKM2), an important enzyme that catalyzes the final rate-limiting stage during glycolysis, is highly expressed in numerous types of tumors and aids in development of favorable conditions for the survival of tumor cells. Increasing evidence has suggested that PKM2 is one of promising targets for innovative drug discovery, especially for the developments of antitumor therapeutics. Herein, we systematically summarize the recent advancement on PKM2 modulators including inhibitors and activators in cancer applications. We also discussed the classifications of pyruvate kinases in mammals and the biological functions of PKM2 in this review. We do hope that this review would provide a comprehensive understanding of the current research on PKM2 modulators, which may benefit the development of more potent PKM2-related drug candidates to treat PKM2-associated diseases including cancers in future.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mengchu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Chengliang Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
49
|
Pan T, Hao J, Wang Y, Duan W, Yue L, Gao X. Role in post -translational modification of M2 -type pyruvate kinase in tumorigenesis and development. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1359-1367. [PMID: 38044647 PMCID: PMC10929867 DOI: 10.11817/j.issn.1672-7347.2023.230177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 12/05/2023]
Abstract
PKM2, also known as M2-type pyruvate kinase, has attracted significant attention due to its crucial role in glycolysis and its abnormal expression in various tumors. With the discovery of PKM2's non-metabolic functions, the transition between its pyruvate kinase activity (in the tetrameric form in the cytoplasm) and protein kinase activity (in the dimeric form in the nucleus) has once again made PKM2 a target of interest in cancer research. Studies have shown that PKM2 is a protein susceptible to various post-translational modifications, and different post-translational modifications play important regulatory roles in processes such as PKM2 cellular localization, structure, and enzyme activity conversion. In this review, we focused on the recent progress of multiple post-translational modifications of PKM2 and their important roles in tumor initiation and development. For example, phosphorylation and acetylation promote nuclear translocation by altering PKM2 cell localization; glycosylation and ubiquitination can promote the formation of dimer structure by affecting the structural transformation of PKM2; succinylation and redox modification promoted the enhancement of PKM2 kinase activity by affecting the transformation of kinase activity. Both changes affect the structure and cell localization of PKM2 and they play a role in promoting or inhibiting tumor development via altering its kinase activity.
Collapse
Affiliation(s)
- Ting Pan
- College of Medical Technology, Qiqihar Medical University, Qiqihar Heilongjiang 161006.
| | - Jingwei Hao
- College of Medical Technology, Qiqihar Medical University, Qiqihar Heilongjiang 161006
| | - Yaoyao Wang
- College of Medical Technology, Qiqihar Medical University, Qiqihar Heilongjiang 161006
| | - Wenbo Duan
- College of Medical Technology, Qiqihar Medical University, Qiqihar Heilongjiang 161006
| | - Liling Yue
- Laboratory of Tumor Molecular Biology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar Heilongjiang 161006, China
| | - Xiuli Gao
- Laboratory of Tumor Molecular Biology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar Heilongjiang 161006, China.
| |
Collapse
|
50
|
Yang K, Li X, Qiu T, Zhou J, Gong X, Lan Y, Ji Y. Effects of propranolol on glucose metabolism in hemangioma-derived endothelial cells. Biochem Pharmacol 2023; 218:115922. [PMID: 37956892 DOI: 10.1016/j.bcp.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. Propranolol is the first-line treatment for IH, but the underlying mechanism of propranolol treatment in IH is not completely understood. Integrated transcriptional and metabolic analyses were performed to investigate the metabolic changes in hemangioma-derived endothelial cells (HemECs) after propranolol treatment. The findings were then further validated through independent cell experiments using a Seahorse XFp analyzer, Western blotting, immunohistochemistry and mitochondrial functional assays. Thirty-four differentially expressed metabolites, including the glycolysis metabolites glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate, were identified by targeted metabolomics. A KEGG pathway enrichment analysis showed that the disturbances in these metabolites were highly related to glucose metabolism-related pathways, including the pentose phosphate pathway, the Warburg effect, glycolysis and the citric acid cycle. Transcriptional analysis revealed that metabolism-related pathways, including glycine, serine and threonine metabolism, tyrosine metabolism, and glutathione metabolism, were highly enriched. Moreover, integration of the metabolomic and transcriptomic data revealed that glucose metabolism-related pathways, particularly glycolysis, were altered after propranolol treatment. Cell experiments demonstrated that HemECs exhibited higher levels of glycolysis than human umbilical vein ECs (HUVECs) and that propranolol suppressed glycolysis in HemECs. In conclusion, propranolol inhibited glucose metabolism in HemECs by suppressing glucose metabolic pathways, particularly glycolysis.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|