1
|
Zhao H, Zhang X, Zhang N, Zhu L, Lian H. The interplay between Salmonella and host: Mechanisms and strategies for bacterial survival. CELL INSIGHT 2025; 4:100237. [PMID: 40177681 PMCID: PMC11964643 DOI: 10.1016/j.cellin.2025.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
Salmonella, an intracellular pathogen, infects both humans and animals, causing diverse diseases such as gastroenteritis and enteric fever. The Salmonella type III secretion system (T3SS), encoded within its pathogenicity islands (SPIs), is critical for bacterial virulence by directly delivering multiple effectors into eukaryotic host cells. Salmonella utilizes these effectors to facilitate its survival and replication within the host through modulating cytoskeletal dynamics, inflammatory responses, the biogenesis of Salmonella-containing vacuole (SCV), and host cell survival. Moreover, these effectors also interfere with immune responses via inhibiting innate immunity or antigen presentation. In this review, we summarize the current progress in the survival strategies employed by Salmonella and the molecular mechanisms underlying its interactions with the host. Understanding the interplay between Salmonella and host can enhance our knowledge of the bacterium's pathogenic processes and provide new insights into how it manipulates host cellular physiological activities to ensure its survival.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Xinyue Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Ningning Zhang
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 12208, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Huan Lian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Belo Y, Malach E, Hayouka Z. Recruiting the Immune System against Pathogenic Bacteria Using High-Affinity Chimeric Tags. Bioconjug Chem 2024; 35:1716-1722. [PMID: 39401419 PMCID: PMC11583208 DOI: 10.1021/acs.bioconjchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024]
Abstract
The immune system plays a critical role in protecting the host against pathogens. However, mechanisms for evading the immune system have evolved in pathogens, altering their surface proteins or causing the expression of enzymes that interfere with the immune response. These strategies cause pathogens to escape detection and destruction by the immune system, thereby inducing severe infections. Thus, there is a critical need to develop new chemical tools to recruit the immune system against evading pathogens. Here, we describe a novel strategy for targeting pathogens, by labeling them with a chimeric agent that comprises a peptide bacterial binder, conjugated to an immune-protein tag that is recognizable by the complement system, thereby recruiting the immune system against the targeted pathogen. The chimeric tag was developed by conjugating the peptide bacterial binder with the C3b complement system activating protein. We showed that the chimeric C3b tag preserved its activity and was able to bind the C5 complement protein with strong binding affinity. Using this approach, we have demonstrated that the chimeric agent was able to eradicate 90% of complement-resistant E. coli bacterial cells. By showing enhancement of complement sensitivity in complement-resistant pathogens, this work demonstrates the basis for a new therapeutic approach for targeting pathogenic bacteria, which could open a new era in the development of selective and effective antimicrobial agents.
Collapse
Affiliation(s)
- Yael Belo
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| | - Einav Malach
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| | - Zvi Hayouka
- Institute of Biochemistry,
Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural,
Food & Environment, The Hebrew University
of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
3
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Meskini M, Zamani MS, Amanzadeh A, Bouzari S, Karimipoor M, Fuso A, Fateh A, Siadat SD. Epigenetic modulation of cytokine expression in Mycobacterium tuberculosis-infected monocyte derived-dendritic cells: Implications for tuberculosis diagnosis. Cytokine 2024; 181:156693. [PMID: 38986252 DOI: 10.1016/j.cyto.2024.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND To delineate alterations in DNA methylation at high resolution within the genomic profile of monocyte-derived-dendritic cells (mo-DCs) in connection with Mycobacterium tuberculosis (MTB) infection, with particular emphasis on pro/ anti-inflammatory genes. METHODS In the context of this investigation, mo-DCs were infected by various active strains of MTB (Rifampicin-resistant [RIFR], H37Rv, multidrug-resistant [MDR], and extensively drug-resistant [XDR]). Subsequently, the pro/anti-inflammatory hub gene expression levels within the IL-6, IL-12, IFN-γ, IL-1β, TNF-α, and IL-10 pathways were evaluated employing real-time reverse transcription-polymerase chain reaction (RT-PCR). Additionally, the effects of MTB infection on mo-DC protein expression were examined through western blot analysis. The methylation status (%) of TNF-α and IL-10 was considered through Methylation Sensitive-High Resolution Melting (MS-HRM). RESULTS The results revealed an up-regulation of all pro-inflammatory genes among all groups, with TNF-α exhibiting the highest expression level. Conversely, the anti-inflammatory gene (IL-10) showed a down-regulated expression level. Furthermore, the DNA methylation status (%) of TNF-α decreased significantly among all the groups (P < 0.001), although there were no notable distinctions in the DNA methylation status (%) of IL-10 when compared to the control group (P > 0.05). CONCLUSION MTB infection induces DNA methylation changes in mo-DCs. The hypo-methylation of TNF-α may induce the up-regulation of this gene. This correlation revealed that the more resistant the MTB strain (XDR) is, the lower the methylation status (%) in the TNF-α gene.
Collapse
Affiliation(s)
- Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Saber Zamani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
di Cologna NDM, Andresen S, Samaddar S, Archer-Hartmann S, Rogers AM, Kajfasz JK, Ganguly T, Garcia BA, Saengpet I, Peterson AM, Azadi P, Szymanski CM, Lemos JA, Abranches J. Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence. Mol Microbiol 2024; 122:133-151. [PMID: 37972006 PMCID: PMC11096274 DOI: 10.1111/mmi.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.
Collapse
Affiliation(s)
| | - Silke Andresen
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sandip Samaddar
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | | | - Ashley Marie Rogers
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Irene Saengpet
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
6
|
Yang Y, Fang H, Xie Z, Ren F, Yan L, Zhang M, Xu G, Song Z, Chen Z, Sun W, Shan B, Zhu ZJ, Xu D. Yersinia infection induces glucose depletion and AMPK-dependent inhibition of pyroptosis in mice. Nat Microbiol 2024; 9:2144-2159. [PMID: 38844594 DOI: 10.1038/s41564-024-01734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 08/09/2024]
Abstract
Nutritional status and pyroptosis are important for host defence against infections. However, the molecular link that integrates nutrient sensing into pyroptosis during microbial infection is unclear. Here, using metabolic profiling, we found that Yersinia pseudotuberculosis infection results in a significant decrease in intracellular glucose levels in macrophages. This leads to activation of the glucose and energy sensor AMPK, which phosphorylates the essential kinase RIPK1 at S321 during caspase-8-mediated pyroptosis. This phosphorylation inhibits RIPK1 activation and thereby restrains pyroptosis. Boosting the AMPK-RIPK1 cascade by glucose deprivation, AMPK agonists, or RIPK1-S321E knockin suppresses pyroptosis, leading to increased susceptibility to Y. pseudotuberculosis infection in mice. Ablation of AMPK in macrophages or glucose supplementation in mice is protective against infection. Thus, we reveal a molecular link between glucose sensing and pyroptosis, and unveil a mechanism by which Y. pseudotuberculosis reduces glucose levels to impact host AMPK activation and limit host pyroptosis to facilitate infection.
Collapse
Affiliation(s)
- Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhangdan Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lingjie Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ziwen Song
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zezhao Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Maltz-Matyschsyk M, Melchiorre CK, Knecht DA, Lynes MA. Bacterial metallothionein, PmtA, a novel stress protein found on the bacterial surface of Pseudomonas aeruginosa and involved in management of oxidative stress and phagocytosis. mSphere 2024; 9:e0021024. [PMID: 38712943 PMCID: PMC11237414 DOI: 10.1128/msphere.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Messaritakis I, Koulouris A, Boukla E, Vogiatzoglou K, Lagkouvardos I, Intze E, Sfakianaki M, Chondrozoumaki M, Karagianni M, Athanasakis E, Xynos E, Tsiaoussis J, Christodoulakis M, Flamourakis ME, Tsagkataki ES, Giannikaki L, Chliara E, Mavroudis D, Tzardi M, Souglakos J. Exploring Gut Microbiome Composition and Circulating Microbial DNA Fragments in Patients with Stage II/III Colorectal Cancer: A Comprehensive Analysis. Cancers (Basel) 2024; 16:1923. [PMID: 38792001 PMCID: PMC11119035 DOI: 10.3390/cancers16101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. METHODS A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted. RESULTS Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters. CONCLUSIONS The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Andreas Koulouris
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Eleni Boukla
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Maria Chondrozoumaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Michaela Karagianni
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Elias Athanasakis
- Department of General Surgery, Heraklion University Hospital, 71100 Heraklion, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | | | - Eleni S. Tsagkataki
- Department of General Surgery, Venizeleio General Hospital, 71409 Heraklion, Greece (M.E.F.)
| | - Linda Giannikaki
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Evdoxia Chliara
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital of Heraklion, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
9
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Xian W, Fu J, Zhang Q, Li C, Zhao YB, Tang Z, Yuan Y, Wang Y, Zhou Y, Brzoic PS, Zheng N, Ouyang S, Luo ZQ, Liu X. The Shigella kinase effector OspG modulates host ubiquitin signaling to escape septin-cage entrapment. Nat Commun 2024; 15:3890. [PMID: 38719850 PMCID: PMC11078946 DOI: 10.1038/s41467-024-48205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.
Collapse
Affiliation(s)
- Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, 130021, Changchun, China
| | - Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan-Bo Zhao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Peter S Brzoic
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
11
|
Toshchakov VY. Peptide-Based Inhibitors of the Induced Signaling Protein Interactions: Current State and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:784-798. [PMID: 38880642 DOI: 10.1134/s000629792405002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Formation of the transient protein complexes in response to activation of cellular receptors is a common mechanism by which cells respond to external stimuli. This article presents the concept of blocking interactions of signaling proteins by the peptide inhibitors, and describes the progress achieved to date in the development of signaling inhibitors that act by blocking the signal-dependent protein interactions.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, 354340, Russia.
| |
Collapse
|
12
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Herbst CH, Bouteau A, Menykő EJ, Qin Z, Gyenge E, Su Q, Cooper V, Mabbott NA, Igyártó BZ. Dendritic cells overcome Cre/Lox induced gene deficiency by siphoning cytosolic material from surrounding cells. iScience 2024; 27:109119. [PMID: 38384841 PMCID: PMC10879714 DOI: 10.1016/j.isci.2024.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
In a previous report, keratinocytes were shown to share their gene expression profile with surrounding Langerhans cells (LCs), influencing LC biology. Here, we investigated whether transferred material could substitute for lost gene products in cells subjected to Cre/Lox conditional gene deletion. We found that in human Langerin-Cre mice, epidermal LCs and CD11b+CD103+ mesenteric DCs overcome gene deletion if the deleted gene was expressed by neighboring cells. The mechanism of material transfer differed from traditional antigen uptake routes, relying on calcium and PI3K, being susceptible to polyguanylic acid inhibition, and remaining unaffected by inflammation. Termed intracellular monitoring, this process was specific to DCs, occurring in all murine DC subsets tested and human monocyte-derived DCs. The transferred material was presented on MHC-I and MHC-II, suggesting a role in regulating immune responses.
Collapse
Affiliation(s)
- Christopher H Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelin J Menykő
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ervin Gyenge
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qingtai Su
- OncoNano Medicine, Inc, Southlake, TX 76092, USA
| | - Vincent Cooper
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Botond Z Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Xu Y, Ding K, Peng T. Chemical Proteomics Reveals N ε-Fatty-Acylation of Septins by Rho Inactivation Domain (RID) of the Vibrio MARTX Toxin to Alter Septin Localization and Organization. Mol Cell Proteomics 2024; 23:100730. [PMID: 38311109 PMCID: PMC10924143 DOI: 10.1016/j.mcpro.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Vibrio species, the Gram-negative bacterial pathogens causing cholera and sepsis, produce multiple secreted virulence factors for infection and pathogenesis. Among these is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin that releases several critical effector domains with distinct functions inside eukaryotic host cells. One such effector domain, the Rho inactivation domain (RID), has been discovered to catalyze long-chain Nε-fatty-acylation on lysine residues of Rho GTPases, causing inactivation of Rho GTPases and disruption of the host actin cytoskeleton. However, whether RID modifies other host proteins to exert additional functions remains to be determined. Herein, we describe the integration of bioorthogonal chemical labeling and quantitative proteomics to globally profile the target proteins modified by RID in living cells. More than 246 proteins are identified as new RID substrates, including many involved in GTPase regulation, cytoskeletal organization, and cell division. We demonstrate that RID extensively Nε-fatty-acylates septin proteins, the fourth cytoskeletal component of mammalian cells with important roles in diverse cellular processes. While affinity purification and mass spectrometry analysis show that RID-mediated Nε-fatty-acylation does not affect septin-septin interactions, this modification increases the membrane association of septins and confers localization to detergent-resistant membrane rafts. As a result, the filamentous assembly and organization of septins are disrupted by RID-mediated Nε-fatty-acylation, further contributing to cytoskeletal and mitotic defects that phenocopy the effects of septin depletion. Overall, our work greatly expands the substrate scope and function of RID and demonstrates the role of RID-mediated Nε-fatty-acylation in manipulating septin localization and organization.
Collapse
Affiliation(s)
- Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China.
| |
Collapse
|
15
|
Song Y, Zhang S, Zhao N, Nong C, He Y, Bao R. Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress. PLoS Pathog 2024; 20:e1011946. [PMID: 38198506 PMCID: PMC10805311 DOI: 10.1371/journal.ppat.1011946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/23/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ninglin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Wiesmann CL, Wang NR, Zhang Y, Liu Z, Haney CH. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. FEMS Microbiol Rev 2023; 47:fuac048. [PMID: 36521845 PMCID: PMC10719066 DOI: 10.1093/femsre/fuac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/17/2023] Open
Abstract
Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
Ramsundar K, Jain RK, Pitchaipillai SG. Inhibition of Quorum Sensing Controlled Virulence Factors and Biofilm Formation of Streptococcus mutans Isolated From Orthodontic Subjects by 4-Hydroxycinnamic Acid. Cureus 2023; 15:e47490. [PMID: 38021948 PMCID: PMC10663405 DOI: 10.7759/cureus.47490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Dental plaque biofilms are a collection of microorganisms that are adhered to the tooth enamel surface. Inhibition of plaque biofilms is required to prevent dental caries and periodontitis and currently, there are many chemical and herbal products in use for inhibition of biofilms but with limited success. Materials and methods Dental plaque collection was done from subjects undergoing orthodontic therapy followed by isolation of Streptococcus mutans. Isolated S. mutans were subjected to disk diffusion assay with 4-HCA (baseline 10mg/mL) for the zone of inhibition and broth micro-dilution to evaluate the minimum inhibitory concentration (MIC) and sub-MIC. Crystal violet staining was done for biofilm inhibition assay. Results Growth of S. mutans was inhibited by 4-HCA at concentrations as low as 0.31 mg/mL. 4-HCA (40μL) inhibited the bacterial growth and a clear zone (15 mm) was observed. 4-Hydroxycinnamic acids treated culture showed progressive reduction in the biofilm production at the concentration of 0.01 mg/mL. The 4-HCA concentration as low as 4 mg and 2 mg has remarkably inhibited biofilm formation of 49.3% and 34.3%, respectively. Conclusion The anti-quorum sensing and anti-biofilm activity of 4-Hydroxycinnamic acid against S. mutans isolated from subjects undergoing orthodontic treatment showed a remarkable result.
Collapse
Affiliation(s)
- Kavitha Ramsundar
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sankar G Pitchaipillai
- Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
19
|
van der Donk LEH, Bermejo-Jambrina M, van Hamme JL, Volkers MMW, van Nuenen AC, Kootstra NA, Geijtenbeek TBH. SARS-CoV-2 suppresses TLR4-induced immunity by dendritic cells via C-type lectin receptor DC-SIGN. PLoS Pathog 2023; 19:e1011735. [PMID: 37844099 PMCID: PMC10602378 DOI: 10.1371/journal.ppat.1011735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
SARS-CoV-2 causes COVID-19, an infectious disease with symptoms ranging from a mild cold to severe pneumonia, inflammation, and even death. Although strong inflammatory responses are a major factor in causing morbidity and mortality, superinfections with bacteria during severe COVID-19 often cause pneumonia, bacteremia and sepsis. Aberrant immune responses might underlie increased sensitivity to bacteria during COVID-19 but the mechanisms remain unclear. Here we investigated whether SARS-CoV-2 directly suppresses immune responses to bacteria. We studied the functionality of human dendritic cells (DCs) towards a variety of bacterial triggers after exposure to SARS-CoV-2 Spike (S) protein and SARS-CoV-2 primary isolate (hCoV-19/Italy). Notably, pre-exposure of DCs to either SARS-CoV-2 S protein or a SARS-CoV-2 isolate led to reduced type I interferon (IFN) and cytokine responses in response to Toll-like receptor (TLR)4 agonist lipopolysaccharide (LPS), whereas other TLR agonists were not affected. SARS-CoV-2 S protein interacted with the C-type lectin receptor DC-SIGN and, notably, blocking DC-SIGN with antibodies restored type I IFN and cytokine responses to LPS. Moreover, blocking the kinase Raf-1 by a small molecule inhibitor restored immune responses to LPS. These results suggest that SARS-CoV-2 modulates DC function upon TLR4 triggering via DC-SIGN-induced Raf-1 pathway. These data imply that SARS-CoV-2 actively suppresses DC function via DC-SIGN, which might account for the higher mortality rates observed in patients with COVID-19 and bacterial superinfections.
Collapse
Affiliation(s)
- Lieve E. H. van der Donk
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - John L. van Hamme
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mette M. W. Volkers
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ad C. van Nuenen
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, Galán JE. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat Microbiol 2023; 8:1880-1895. [PMID: 37640963 PMCID: PMC10962312 DOI: 10.1038/s41564-023-01459-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Cell-intrinsic defences constitute the first line of defence against intracellular pathogens. The guanosine triphosphatase RAB32 orchestrates one such defence response against the bacterial pathogen Salmonella, through delivery of antimicrobial itaconate. Here we show that the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) orchestrates this defence response by scaffolding a complex between RAB32 and aconitate decarboxylase 1, which synthesizes itaconate from mitochondrial precursors. Itaconate delivery to Salmonella-containing vacuoles was impaired and Salmonella replication increased in LRRK2-deficient cells. Loss of LRRK2 also restored virulence of a Salmonella mutant defective in neutralizing this RAB32-dependent host defence pathway in mice. Cryo-electron tomography revealed tether formation between Salmonella-containing vacuoles and host mitochondria upon Salmonella infection, which was significantly impaired in LRRK2-deficient cells. This positions LRRK2 centrally within a host defence mechanism, which may have favoured selection of a common familial Parkinson's disease mutant allele in the human population.
Collapse
Affiliation(s)
- Huan Lian
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Donghyun Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Science Institute, Yale University School of Medicine, New Haven, CT, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meixin Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Florian Schueder
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Science Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
22
|
Herbst CH, Bouteau A, Menykő EJ, Qin Z, Su Q, Buelvas DM, Gyenge E, Mabbott NA, Igyártó BZ. Dendritic Cells Overcome Cre/Lox Induced Gene Deficiency by Siphoning Material From Neighboring Cells Using Intracellular Monitoring-a Novel Mechanism of Antigen Acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550169. [PMID: 37546718 PMCID: PMC10401943 DOI: 10.1101/2023.07.22.550169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Macrophages and dendritic cells (DCs) in peripheral tissue interact closely with their local microenvironment by scavenging protein and nucleic acids released by neighboring cells. Material transfer between cell types is necessary for pathogen detection and antigen presentation, but thought to be relatively limited in scale. Recent reports, however, demonstrate that the quantity of transferred material can be quite large when DCs are in direct contact with live cells. This observation may be problematic for conditional gene deletion models that assume gene products will remain in the cell they are produced in. Here, we investigate whether conditional gene deletions induced by the widely used Cre/Lox system can be overcome at the protein level in DCs. Of concern, using the human Langerin Cre mouse model, we find that epidermal Langerhans cells and CD11b+CD103+ mesenteric DCs can overcome gene deletion if the deleted gene is expressed by neighboring cells. Surprisingly, we also find that the mechanism of material transfer does not resemble known mechanisms of antigen uptake, is dependent on extra- and intracellular calcium, PI3K, and scavenger receptors, and mediates a majority of material transfer to DCs. We term this novel process intracellular monitoring, and find that it is specific to DCs, but occurs in all murine DC subsets tested, as well as in human DCs. Transferred material is successfully presented and cross presented on MHC-II and MHC-I, and occurs between allogeneic donor and acceptors cells-implicating this widespread and unique process in immunosurveillance and organ transplantation.
Collapse
Affiliation(s)
- Christopher H. Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Aurélie Bouteau
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Evelin J. Menykő
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Zhen Qin
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Qingtai Su
- OncoNano Medicine, Inc., Southlake, TX 76092, U.S
| | - Dunia M. Buelvas
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Ervin Gyenge
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| | - Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, U.S
| |
Collapse
|
23
|
Ta A, Ricci-Azevedo R, Vasudevan SO, Wright SS, Kumari P, Havira MS, Surendran Nair M, Rathinam VA, Vanaja SK. A bacterial autotransporter impairs innate immune responses by targeting the transcription factor TFE3. Nat Commun 2023; 14:2035. [PMID: 37041208 PMCID: PMC10090168 DOI: 10.1038/s41467-023-37812-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Type I interferons (IFNs) are consequential cytokines in antibacterial defense. Whether and how bacterial pathogens inhibit innate immune receptor-driven type I IFN expression remains mostly unknown. By screening a library of enterohemorrhagic Escherichia coli (EHEC) mutants, we uncovered EhaF, an uncharacterized protein, as an inhibitor of innate immune responses including IFNs. Further analyses identified EhaF as a secreted autotransporter-a type of bacterial secretion system with no known innate immune-modulatory function-that translocates into host cell cytosol and inhibit IFN response to EHEC. Mechanistically, EhaF interacts with and inhibits the MiT/TFE family transcription factor TFE3 resulting in impaired TANK phosphorylation and consequently, reduced IRF3 activation and type I IFN expression. Notably, EhaF-mediated innate immune suppression promotes EHEC colonization and pathogenesis in vivo. Overall, this study has uncovered a previously unknown autotransporter-based bacterial strategy that targets a specific transcription factor to subvert innate host defense.
Collapse
Affiliation(s)
- Atri Ta
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Rafael Ricci-Azevedo
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Swathy O Vasudevan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Skylar S Wright
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Puja Kumari
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
24
|
Duncan-Lowey J, Crabill E, Jarret A, Reed SCO, Roy CR. The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling. Proc Natl Acad Sci U S A 2023; 120:e2217602120. [PMID: 36893270 PMCID: PMC10089202 DOI: 10.1073/pnas.2217602120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.
Collapse
Affiliation(s)
- Jeffrey Duncan-Lowey
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Emerson Crabill
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
- Department of Biology, Angelo State University, San Angelo, TX76909
| | - Abigail Jarret
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06536
| | - Shawna C. O. Reed
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| |
Collapse
|
25
|
Role of mitochondria in regulating immune response during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:159-200. [PMID: 36858655 DOI: 10.1016/bs.ircmb.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
Collapse
|
26
|
Boulay A, Trabanelli S, Boireau S, Boyer-Clavel M, Nisole S, Romero P, Jandus C, Beignon AS, Arhel NJ. Assessing the Impact of Persistent HIV Infection on Innate Lymphoid Cells Using In Vitro Models. Immunohorizons 2023; 7:243-255. [PMID: 37000496 PMCID: PMC10563434 DOI: 10.4049/immunohorizons.2300007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/01/2023] Open
Abstract
Pathogens that persist in their host induce immune dysfunctions even in the absence of detectable replication. To better understand the phenotypic and functional changes that persistent infections induce in sentinel innate immune cells, we developed human PBMC-based HIV models of persistent infection. Autologous nonactivated PBMCs were cocultured with chronically infected, acutely infected, or uninfected cells and were then analyzed by unsupervised high-dimensional flow cytometry. Using this approach, we identified prevalent patterns of innate immune dysfunctions associated with persistent HIV infections that at least in part mirror immune dysfunctions observed in patients. In one or more models of chronic infection, bystander CD16+ NK cells expressing markers of activation, such as CD94, CD45RO, CD62L, CD69, CD25, and immune checkpoints PD1, Tim3, TIGIT, NKG2A and Lag3, were significantly reduced. Conversely, helper ILC subsets expressing PDL1/PDL2 were significantly enriched in chronic infection compared with either uninfected or acute infection, suggesting that chronic HIV-1 infection was associated with an inhibitory environment for bystander ILC and NK subsets. The cell-based models of persistent infection that we describe here provide versatile tools to explore the molecular mechanisms of these immune dysfunctions and unveil the contribution of innate immunity in sustaining pathogen persistence.
Collapse
Affiliation(s)
- Aude Boulay
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Stéphanie Boireau
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Épalinges, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Anne-Sophie Beignon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie J. Arhel
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
27
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Mushtaq M, Khan S, Hassan M, Al-Harbi AI, Hameed AR, Khan K, Ismail S, Irfan M, Ahmad S. Computational Design of a Chimeric Vaccine against Plesiomonas shigelloides Using Pan-Genome and Reverse Vaccinology. Vaccines (Basel) 2022; 10:1886. [PMID: 36366394 PMCID: PMC9697808 DOI: 10.3390/vaccines10111886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models.
Collapse
Affiliation(s)
- Mahnoor Mushtaq
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24461, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda 24461, Pakistan
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Alaa R. Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad 59058, Iraq
| | | | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| |
Collapse
|
29
|
Herbst C, Harshyne LA, Igyártó BZ. Intracellular monitoring by dendritic cells – a new way to stay informed – from a simple scavenger to an active gatherer. Front Immunol 2022; 13:1053582. [PMID: 36389660 PMCID: PMC9647004 DOI: 10.3389/fimmu.2022.1053582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are required for the initiation of the adaptive immune response. Their ability to acquire antigens in the periphery is a critical step in this process. DCs express a wide variety of adhesion molecules and possess an extremely fluid plasma membrane that facilitates scavenging the extracellular environment and capturing material like exosomes, apoptotic bodies, and pathogens. Besides these standard routes, the acquisition of antigens by DCs can be further facilitated by tunneling nanotubes, trogocytosis, and gap junctions. However, in this article, we will argue that this is an incomplete picture, as certain observations in the literature cannot be explained if we assume DCs acquire antigens only through these means. Instead, it is more likely that DCs preferentially use adhesion molecules to form long-lasting cell-cell interactions to actively siphon material from cells they are in direct contact with. It is highly likely that DCs use this mechanism to continually capture membrane and cytosolic material directly from surrounding cells, which they scan to assess the health of the donor cell. Doing so would provide an array of advantages for the host immune system, as it would not be reliant on compromised cells to release antigens into the extracellular milieu. Therefore, we propose updating our view of DC antigen acquisition to include a process of active, contact-dependent capture of material directly from neighboring cell cytosol (cytocytosis), which we would term intracellular monitoring.
Collapse
Affiliation(s)
- Christopher Herbst
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Larry A. Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Botond Z. Igyártó,
| |
Collapse
|
30
|
Abstract
Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
31
|
Aspalathus linearis (Rooibos) and Agmatine May Act Synergistically to Beneficially Modulate Intestinal Tight Junction Integrity and Inflammatory Profile. Pharmaceuticals (Basel) 2022; 15:ph15091097. [PMID: 36145318 PMCID: PMC9501288 DOI: 10.3390/ph15091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17β-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not β-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.
Collapse
|
32
|
TBK1 is part of a galectin 8 dependent membrane damage recognition complex and drives autophagy upon Adenovirus endosomal escape. PLoS Pathog 2022; 18:e1010736. [PMID: 35857795 PMCID: PMC9342788 DOI: 10.1371/journal.ppat.1010736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022] Open
Abstract
Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage. Rapid detection of invading pathogens is crucial for cell survival. Membrane alterations in this process are detected by cells but are rarely studied in the context of viral infections. TBK1 is an important kinase driving innate immunity and autophagy in response to pathogen invasion. Here we report that TBK1 promotes autophagy in response to membrane penetration by adenoviruses. We demonstrate that TBK1 is rapidly activated and recruited to virus membrane penetration sites, and promotes autophagy through its kinase activity. We show that TBK1 recruitment depends on membrane damage recognition via galectin 8 but occurs independently of classical autophagy receptors or functional autophagy. Moreover, we demonstrate that TBK1 activation is part of a wider cellular response to endo-lysosomal damage. Our work highlights a prominent role for TBK1 in the swift cellular response to membrane damage and the downstream activation of autophagy.
Collapse
|
33
|
Rida T, Ahmad S, Ullah A, Ismail S, Tahir ul Qamar M, Afsheen Z, Khurram M, Saqib Ishaq M, Alkhathami AG, Alatawi EA, Alrumaihi F, Allemailem KS. Pan-Genome Analysis of Oral Bacterial Pathogens to Predict a Potential Novel Multi-Epitopes Vaccine Candidate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8408. [PMID: 35886259 PMCID: PMC9320593 DOI: 10.3390/ijerph19148408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium, mainly present in the oral cavity and causes periodontal infections. Currently, no licensed vaccine is available against P. gingivalis and other oral bacterial pathogens. To develop a vaccine against P. gingivalis, herein, we applied a bacterial pan-genome analysis (BPGA) on the bacterial genomes that retrieved a total number of 4908 core proteins, which were further utilized for the identification of good vaccine candidates. After several vaccine candidacy analyses, three proteins, namely lytic transglycosylase domain-containing protein, FKBP-type peptidyl-propyl cis-trans isomerase and superoxide dismutase, were shortlisted for epitopes prediction. In the epitopes prediction phase, different types of B and T-cell epitopes were predicted and only those with an antigenic, immunogenic, non-allergenic, and non-toxic profile were selected. Moreover, all the predicted epitopes were joined with each other to make a multi-epitopes vaccine construct, which was linked further to the cholera toxin B-subunit to enhance the antigenicity of the vaccine. For downward analysis, a three dimensional structure of the designed vaccine was modeled. The modeled structure was checked for binding potency with major histocompatibility complex I (MHC-I), major histocompatibility complex II (MHC-II), and Toll-like receptor 4 (TLR-4) immune cell receptors which revealed that the designed vaccine performed proper binding with respect to immune cell receptors. Additionally, the binding efficacy of the vaccine was validated through a molecular dynamic simulation that interpreted strong intermolecular vaccine-receptor binding and confirmed the exposed situation of vaccine epitopes to the host immune system. In conclusion, the study suggested that the model vaccine construct has the potency to generate protective host immune responses and that it might be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
Affiliation(s)
- Tehniyat Rida
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan;
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Ali G. Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
34
|
Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa. Microb Pathog 2022; 169:105654. [PMID: 35753599 DOI: 10.1016/j.micpath.2022.105654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is the major cause of corneal infections in India and worldwide. The increase in antimicrobial resistance among Pseudomonas has prompted rise in significant research to develop alternative therapeutics. Antimicrobial peptides (AMPs) are considered as potent alternatives to combat bacterial infections. In this study, we investigated the role of S100A12, a host defense peptide, against PAO1 and an ocular clinical isolate. Increased expression of S100A12 was observed in corneal tissues obtained from Pseudomonas keratitis patients by immunohistochemistry. S100A12 significantly inhibited growth of Pseudomonas in vitro as determined from colony forming units. Furthermore, recombinant S100A12 reduced the corneal opacity and the bacterial load in a mouse model of Pseudomonas keratitis. Transcriptome changes in PAO1 in response to S100A12 was investigated using RNA sequencing. The pathway analysis of transcriptome data revealed that S100A12 inhibits expression of genes involved in pyoverdine synthesis and biofilm formation. It also impedes several important pathways like redox, pyocyanin synthesis and type 6 secretion system (T6SS). The transcriptome data was further validated by checking the expression of several affected genes by quantitative PCR. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics to combat infection in future.
Collapse
|
35
|
Al-Megrin WAI, Karkashan A, Alnuqaydan AM, Aba Alkhayl FF, Alrumaihi F, Almatroudi A, Allemailem KS. Design of a Multi-Epitopes Based Chimeric Vaccine against Enterobacter cloacae Using Pan-Genome and Reverse Vaccinology Approaches. Vaccines (Basel) 2022; 10:886. [PMID: 35746494 PMCID: PMC9227637 DOI: 10.3390/vaccines10060886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Enterobacter cloacae (EC) is a significant emerging pathogen that is occasionally associated with lung infection, surgical site infection, urinary infection, sepsis, and outbreaks in neonatal intensive care units. In light of the fact that there is currently no approved vaccine or therapeutic option for the treatment of EC, the current study was developed to concentrate on applications based on modern computational approaches to design a multi-epitope-based E. cloacae peptide vaccine (MEBEPV) expressing the antigenic determinants prioritized from the EC genome. Integrated computational analyses identified two potential protein targets (phosphoporin protein-PhoE and putative outer-membrane porin protein) for further exploration on the basis of pangenome subtractive proteomics and immunoinformatic in-depth examination of the core proteomes. Then, a multi-epitope peptide vaccine was designed, which comprised shortlisted epitopes that were capable of eliciting both innate and adaptive immunity, as well as the cholera toxin's B-subunit, which was used as an adjuvant in the vaccine formulation. To ensure maximum expression, the vaccine's 3D structure was developed and the loop was refined, improving the stability by disulfide engineering, and the physicochemical characteristics of the recombinant vaccine sequence were found to be ideal for both in vitro and in vivo experimentation. Blind docking was then used for the prediction of the MEBEPV predominant blinding mode with MHCI, MHCII, and TLR3 innate immune receptors, with lowest global energy of -18.64 kJ/mol, -48.25 kJ/mol, and -5.20 kJ/mol for MHC-I, MHC-II, and TLR-4, respectively, with docked complexes considered for simulation. In MD and MMGBSA investigations, the docked models of MEBEPV-TLR3, MEBEPV-MHCI, and MEBEPV-MHCII were found to be stable during the course of the simulation. MM-GBSA analysis calculated -122.17 total net binding free energies for the TLR3-vaccine complex, -125.4 for the MHC I-vaccine complex, and -187.94 for the MHC II-vaccine complex. Next, MM-PBSA analysis calculated -115.63 binding free energy for the TLR3-vaccine complex, -118.19 for the MHC I-vaccine complex, and -184.61 for the MHC II-vaccine complex. When the vaccine was tested in silico, researchers discovered that it was capable of inducing both types of immune responses (cell mediated and humoral) at the same time. Even though the suggested MEBEPV has the potential to be a powerful contender against E. cloacae-associated illnesses, further testing in the laboratory will be required before it can be declared safe and immunogenic.
Collapse
Affiliation(s)
- Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Alaa Karkashan
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (F.A.); (A.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (F.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (F.A.); (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (F.A.); (A.A.)
| |
Collapse
|
36
|
Mohus RM, Gustad LT, Furberg AS, Moen MK, Liyanarachi KV, Askim Å, Åsberg SE, DeWan AT, Rogne T, Simonsen GS, Nilsen TIL, Åsvold BO, Damås JK, Solligård E. Explaining sex differences in risk of bloodstream infections using mediation analysis in the population-based HUNT study in Norway. Sci Rep 2022; 12:8436. [PMID: 35589812 PMCID: PMC9118181 DOI: 10.1038/s41598-022-12569-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Previous studies indicate sex differences in incidence and severity of bloodstream infections (BSI). We examined the effect of sex on risk of BSI, BSI mortality, and BSI caused by the most common infecting bacteria. Using causal mediation analyses, we assessed if this effect is mediated by health behaviours (smoking, alcohol consumption), education, cardiovascular risk factors (systolic blood pressure, non-HDL cholesterol, body mass index) and selected comorbidities. This prospective study included 64,040 participants (46.8% men) in the population-based HUNT2 Survey (1995-1997) linked with hospital records in incident BSI. During median follow-up of 15.2 years, 1840 (2.9%) participants (51.3% men) experienced a BSI and 396 (0.6%) died (56.6% men). Men had 41% higher risk of first-time BSI (95% confidence interval (CI), 28-54%) than women. Together, health behaviours, education, cardiovascular risk factors and comorbidities mediated 34% of the excess risk of BSI observed in men. The HR of BSI mortality was 1.87 (95% CI 1.53-2.28), for BSI due to S. aureus 2.09 (1.28-2.54), S. pneumoniae 1.36 (1.05-1.76), E. coli 0.97 (0.84-1.13) in men vs women. This study shows that men have higher risk of BSI and BSI mortality than women. One-third of this effect was mediated by potential modifiable risk factors for incident BSI.
Collapse
Affiliation(s)
- Randi Marie Mohus
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Torgarden, Postboks 3250, 7006 Trondheim, Norway
| | - Lise T. Gustad
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,Nord-Trøndelag Hospital Trust, Levanger, Norway ,grid.465487.cFaculty of Health Sciences, Nord University, Levanger, Norway
| | - Anne-Sofie Furberg
- grid.412244.50000 0004 4689 5540Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.411834.b0000 0004 0434 9525Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Martine Kjølberg Moen
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Torgarden, Postboks 3250, 7006 Trondheim, Norway
| | - Kristin Vardheim Liyanarachi
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Åsa Askim
- grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Torgarden, Postboks 3250, 7006 Trondheim, Norway
| | - Signe E. Åsberg
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew T. DeWan
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.47100.320000000419368710Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT USA
| | - Tormod Rogne
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.47100.320000000419368710Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT USA
| | - Gunnar Skov Simonsen
- grid.412244.50000 0004 4689 5540Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.10919.300000000122595234Research Group for Host-Microbe Interaction, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway ,grid.418193.60000 0001 1541 4204Norwegian Institute of Public Health, Oslo, Norway
| | - Tom Ivar Lund Nilsen
- grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Torgarden, Postboks 3250, 7006 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Olav Åsvold
- grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Kristian Damås
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erik Solligård
- grid.5947.f0000 0001 1516 2393Gemini Center for Sepsis Research, Institute of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Torgarden, Postboks 3250, 7006 Trondheim, Norway
| |
Collapse
|
37
|
Pope RL, Chitrakar A, Sah P, Shadid T, Ballard JD, Zenewicz LA. Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infect Immun 2022; 90:e0007322. [PMID: 35377172 PMCID: PMC9022501 DOI: 10.1128/iai.00073-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/20/2022] Open
Abstract
Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.
Collapse
Affiliation(s)
- Rosemary L. Pope
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tyler Shadid
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
38
|
A Biomimetic Porcine Urothelial Model for Assessing Escherichia coli Pathogenicity. Microorganisms 2022; 10:microorganisms10040783. [PMID: 35456833 PMCID: PMC9029248 DOI: 10.3390/microorganisms10040783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Urinary tract infections can be severe, sometimes fatal, diseases whose etiological pathogens are predominantly uropathogenic strains of E. coli (UPEC). To investigate the UPEC pathogenesis, several models have already been established with minor or major disadvantages. The aim was to develop a simple, fast, and inexpensive biomimetic in vitro model based on normal porcine urothelial (NPU) cells that are genetically and physiologically similar to human bladder urothelium and to perform basic studies of E. coli pathogenicity. Initially, the model was tested using a set of control E. coli strains and, subsequently, with human E. coli strains isolated either from patients with urinary infections or from the feces of healthy individuals. A drop in viability of NPU cells was used as a measure of the pathogenicity of the individual strain tested. To visualize the subcellular events, transmission and scanning electron microscopy was performed. The strains were tested for the presence of different virulence-associated genes, phylogroup, type of core lipid, O-serotype, and type of lipopolysaccharide and a statistical analysis of possible correlations between strains’ characteristics and the effect on the model was performed. Results showed that our model has the discriminatory power to distinguish pathogenic from non-pathogenic E. coli strains, and to identify new, potentially pathogenic strains.
Collapse
|
39
|
Uehara I, Kajita M, Tanimura A, Hida S, Onda M, Naito Z, Taki S, Tanaka N. 2-Deoxy-d-glucose induces deglycosylation of proinflammatory cytokine receptors and strongly reduces immunological responses in mouse models of inflammation. Pharmacol Res Perspect 2022; 10:e00940. [PMID: 35212163 PMCID: PMC8873284 DOI: 10.1002/prp2.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Anti‐proinflammatory cytokine therapies against interleukin (IL)‐6, tumor necrosis factor (TNF)‐α, and IL‐1 are major advancements in treating inflammatory diseases, especially rheumatoid arthritis. Such therapies are mainly performed by injection of antibodies against cytokines or cytokine receptors. We initially found that the glycolytic inhibitor 2‐deoxy‐d‐glucose (2‐DG), a simple monosaccharide, attenuated cellular responses to IL‐6 by inhibiting N‐linked glycosylation of the IL‐6 receptor gp130. Aglycoforms of gp130 did not bind to IL‐6 or activate downstream intracellular signals that included Janus kinases. 2‐DG completely inhibited dextran sodium sulfate‐induced colitis, a mouse model for inflammatory bowel disease, and alleviated laminarin‐induced arthritis in the SKG mouse, an experimental model for human rheumatoid arthritis. These diseases have been shown to be partially dependent on IL‐6. We also found that 2‐DG inhibited signals for other proinflammatory cytokines such as TNF‐α, IL‐1β, and interferon ‐γ, and accordingly, prevented death by another inflammatory disease, lipopolysaccharide (LPS) shock. Furthermore, 2‐DG prevented LPS shock, a model for a cytokine storm, and LPS‐induced pulmonary inflammation, a model for acute respiratory distress syndrome of coronavirus disease 2019 (COVID‐19). These results suggest that targeted therapies that inhibit cytokine receptor glycosylation are effective for treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Atsuko Tanimura
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Munehiko Onda
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Zenya Naito
- Department of Pathology, Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
40
|
You L, Zhou J, Xin Z, Hauck JS, Na F, Tang J, Zhou X, Lei Z, Ying B. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome areas. PRECISION CLINICAL MEDICINE 2022; 5:pbac005. [PMID: 35692444 PMCID: PMC9026200 DOI: 10.1093/pcmedi/pbac005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Microbiome research has extended into the cancer area in the past decades. Microbes can affect oncogenesis, progression, and treatment response through various mechanisms, including direct regulation and indirect impacts. Microbiota-associated detection methods and agents have been developed to facilitate cancer diagnosis and therapy. Additionally, the cancer microbiome has recently been redefined. The identification of intra-tumoral microbes and cancer-related circulating microbial DNA (cmDNA) has promoted novel research in the cancer-microbiome area. In this review, we define the human system of commensal microbes and the cancer microbiome from a brand-new perspective and emphasize the potential value of cmDNA as a promising biomarker in cancer liquid biopsy. We outline all existing studies on the relationship between cmDNA and cancer and the outlook for potential preclinical and clinical applications of cmDNA in cancer precision medicine, as well as critical problems to be overcome in this burgeoning field.
Collapse
Affiliation(s)
- Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000,China
| | - Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zichen Lei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Kumar A, Varma VP, Sridhar K, Abdullah M, Vyas P, Ashiq Thalappil M, Chang YF, Faisal SM. Deciphering the Role of Leptospira Surface Protein LigA in Modulating the Host Innate Immune Response. Front Immunol 2022; 12:807775. [PMID: 34975922 PMCID: PMC8716722 DOI: 10.3389/fimmu.2021.807775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Leptospira, a zoonotic pathogen, is known to infect various hosts and can establish persistent infection. This remarkable ability of bacteria is attributed to its potential to modulate (activate or evade) the host immune response by exploiting its surface proteins. We have identified and characterized the domain of the variable region of Leptospira immunoglobulin-like protein A (LAV) involved in immune modulation. The 11th domain (A11) of the variable region of LigA (LAV) induces a strong TLR4 dependent innate response leading to subsequent induction of humoral and cellular immune responses in mice. A11 is also involved in acquiring complement regulator FH and binds to host protease Plasminogen (PLG), there by mediating functional activity to escape from complement-mediated killing. The deletion of A11 domain significantly impaired TLR4 signaling and subsequent reduction in the innate and adaptive immune response. It also inhibited the binding of FH and PLG thereby mediating killing of bacteria. Our study discovered an unprecedented role of LAV as a nuclease capable of degrading Neutrophil Extracellular Traps (NETs). This nuclease activity was primarily mediated by A11. These results highlighted the moonlighting function of LigA and demonstrated that a single domain of a surface protein is involved in modulating the host innate immune defenses, which might allow the persistence of Leptospira in different hosts for a long term without clearance.
Collapse
Affiliation(s)
- Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Vivek P Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Kavela Sridhar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Mohd Abdullah
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Department of Biosciences, Integral University, Lucknow, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
42
|
Gobert GN, McManus DP, McMullan G, Creevey CJ, Carson J, Jones MK, Nawaratna SSK, Weerakoon KG, You H. Adult schistosomes have an epithelial bacterial population distinct from the surrounding mammalian host blood. PLoS One 2022; 17:e0263188. [PMID: 35085360 PMCID: PMC8794206 DOI: 10.1371/journal.pone.0263188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background
Schistosomiasis is a neglected tropical parasitic and chronic disease affecting hundreds of millions of people. Adult schistosomes reside in the blood stream of the definitive mammalian host. These helminth parasites possess two epithelial surfaces, the tegument and the gastrodermis, both of which interact with the host during immune evasion and in nutrient uptake.
Methods
Female ARC Swiss mice (4–6 weeks old) were infected percutaneously with Schistosoma japonicum cercariae freshly shed from Oncomelania hupensis quadrasi snails (Philippines strain). Fluorescent in situ hybridisation (FISH) was performed by using fresh adult S. japonicum perfused from those infected mice. Adult S. japonicum worms were processed to isolate the tegument from the carcass containing the gastrodermis; blood and bile were collected individually from infected and uninfected mice. Total DNA extracted from all those samples were used for microbiome profiling.
Results
FISH and microbiome profiling showed the presence of bacterial populations on two epithelial surfaces of adult worms, suggesting they were distinct not only from the host blood but also from each other. Whereas microbial diversity was reduced overall in the parasite epithelial tissues when compared with that of host blood, specific bacterial taxa, including Anoxybacillus and Escherichia, were elevated on the tegument. Minimal differences were evident in the microbiome of host blood during an active infection, compared with that of control uninfected blood. However, sampling of bile from infected animals identified some differences compared with controls, including elevated levels of Limnohabitans, Clostridium and Curvibacter.
Conclusions
Using FISH and microbial profiling, we were able to demonstrate, for the first time, that bacteria are presented on the epithelial surfaces of adult schistosomes. These schistosome surface-associated bacteria, which are distinct from the host blood microenvironment, should be considered as a new and important component of the host-schistosome interaction. The importance of individual bacterial species in relation to schistosome parasitism needs further elucidation.
Collapse
Affiliation(s)
- Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (HY); (GNG)
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoff McMullan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Jack Carson
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Malcolm K. Jones
- School of Veterinary Science, University of Queensland, Brisbane, Queensland, Australia
| | - Sujeevi S. K. Nawaratna
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Kosala G. Weerakoon
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Hong You
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (HY); (GNG)
| |
Collapse
|
43
|
Fromm K, Dehio C. The Impact of Bartonella VirB/VirD4 Type IV Secretion System Effectors on Eukaryotic Host Cells. Front Microbiol 2022; 12:762582. [PMID: 34975788 PMCID: PMC8714903 DOI: 10.3389/fmicb.2021.762582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
44
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
45
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
46
|
Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021; 11:biom11091291. [PMID: 34572504 PMCID: PMC8464963 DOI: 10.3390/biom11091291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.
Collapse
|
47
|
Balhuizen MD, van Dijk A, Jansen JWA, van de Lest CHA, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicles Protect Gram-Negative Bacteria against Host Defense Peptides. mSphere 2021; 6:e0052321. [PMID: 34232080 PMCID: PMC8386409 DOI: 10.1128/msphere.00523-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/11/2023] Open
Abstract
Host defense peptides (HDPs) are part of the innate immune system and constitute a first line of defense against invading pathogens. They possess antimicrobial activity against a broad spectrum of pathogens. However, pathogens have been known to adapt to hostile environments. Therefore, the bacterial response to treatment with HDPs was investigated. Previous observations suggested that sublethal concentrations of HDPs increase the release of outer membrane vesicles (OMVs) in Escherichia coli. First, the effects of sublethal treatment with HDPs CATH-2, PMAP-36, and LL-37 on OMV release of several Gram-negative bacteria were analyzed. Treatment with PMAP-36 and CATH-2 induced release of OMVs, but treatment with LL-37 did not. The OMVs were further characterized with respect to morphological properties. The HDP-induced OMVs often had disc-like shapes. The beneficial effect of bacterial OMV release was studied by determining the susceptibility of E. coli toward HDPs in the presence of OMVs. The minimal bactericidal concentration was increased in the presence of OMVs. It is concluded that OMV release is a means of bacteria to dispose of HDP-affected membrane. Furthermore, OMVs act as a decoy for HDPs and thereby protect the bacterium. IMPORTANCE Antibiotic resistance is a pressing problem and estimated to be a leading cause of mortality by 2050. Antimicrobial peptides, also known as host defense peptides (HDPs), and HDP-derived antimicrobials have potent antimicrobial activity and high potential as alternatives to antibiotics due to low resistance development. Some resistance mechanisms have developed in bacteria, and complete understanding of bacterial defense against HDPs will aid their use in the clinic. This study provides insight into outer membrane vesicles (OMVs) as potential defense mechanisms against HDPs, which will allow anticipation of unforeseen resistance to HDPs in clinical use and possibly prevention of bacterial resistance by the means of OMVs.
Collapse
Affiliation(s)
- Melanie D. Balhuizen
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen W. A. Jansen
- Section of Cell Biology, Metabolism and Cancer, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris H. A. van de Lest
- Section of Cell Biology, Metabolism and Cancer, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J. A. Veldhuizen
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Section of Molecular Host Defence, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Host-pathogen interaction between macrophage co-cultures with Staphylococcus aureus biofilms. Eur J Clin Microbiol Infect Dis 2021; 40:2563-2574. [PMID: 34312744 DOI: 10.1007/s10096-021-04306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The ability of Staphylococcus aureus to form biofilms is an important virulence factor. During the infectious process, the interaction between biofilms and immune cells is determinant; however, the properties that make biofilms resistant to the immune system are not well characterized. In order to better understand this, we evaluated the in vitro interaction of macrophages during the early stages of S. aureus biofilm formation. Biofilm formation was evaluated by crystal violet staining, light microscopy, and confocal scanning laser microscopy. Furthermore, different activation on L-arginine pathways such as nitric oxide (NO•) release and the arginase, the production of reactive oxygen species (ROS), the total oxidative stress response (OSR), and levels of cytokine liberation, were determined. Our findings show that the interaction between biofilms and macrophages results in stimuli for catabolism of L-arginine via arginase, but not for NO•, an increase of ROS production, and activation of the non-enzymatic OSR. We also observed the production of IL-6, but not of TNFα o IL-10 in these co-cultures. These results contribute to a better understanding of host-pathogen interactions and suggest that biofilms increase resistance against immune cell mechanisms, a phenomenon that could contribute to the ability of S. aureus biofilms to establish mature biofilms.
Collapse
|
49
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
50
|
Tritten L, Burkman EJ, Clark T, Verocai GG. Secretory microRNA Profiles of Third- and Fourth-Stage Dirofilaria immitis Larvae with Different Macrocyclic Lactone Susceptibility: In Search of Biomarkers for Early Detection of Infection. Pathogens 2021; 10:pathogens10070786. [PMID: 34206439 PMCID: PMC8308655 DOI: 10.3390/pathogens10070786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/30/2023] Open
Abstract
The canine heartworm, Dirofilaria immitis, is among the most important parasites of dogs in the United States and worldwide, and may cause severe and potentially fatal disease. Current diagnostic recommendations rely on serological detection of an adult female antigen, and visualization of microfilariae in the blood. Therefore, a reliable diagnosis can be only performed approximately six months post-infection. There is a growing need to characterize novel diagnostic markers that are capable of detecting the early stages of heartworm infection, in special markers associated with third-stage larvae (L3) and fourth-stage larvae (L4). The early detection of infection would guide medical interventions that could impede the development of patent infections and further parasite transmission. We cultured D. immitis L3 and L4 of two laboratorial strains with different susceptibility statuses to macrocyclic lactone drugs in vitro. Excretory/secretory microRNAs were sequenced and analyzed. We identified two miRNA novel candidates secreted abundantly by both L3 and L4 of both strains. These candidates were previously detected in the secretions of other D. immitis stages and one of them was found in the blood of D. immitis-infected dogs. These miRNAs have not been found in the secretions of other nematodes and could be D. immitis-specific diagnostic biomarkers, which could allow for the early detection of infection.
Collapse
Affiliation(s)
- Lucienne Tritten
- Institute of Parasitology, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (L.T.); (G.G.V.); Tel.: +41-44-635-8501 (L.T.); +1-979-862-4999 (G.G.V.)
| | - Erica J. Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Tobias Clark
- Veterinary Medicine Research and Development, Zoetis Inc., 333 Portage Street, Kalamazoo, MI 49007, USA;
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (L.T.); (G.G.V.); Tel.: +41-44-635-8501 (L.T.); +1-979-862-4999 (G.G.V.)
| |
Collapse
|