1
|
Ando Y, Horiuchi Y, Hatazawa S, Mataki M, Nakamura A, Murakami T. Hyperdifferentiated murine melanoma cells promote adaptive anti-tumor immunity but activate the immune checkpoint system. Oncoimmunology 2025; 14:2437211. [PMID: 39648330 PMCID: PMC11633153 DOI: 10.1080/2162402x.2024.2437211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Accumulating evidence suggests that phenotype switching of cancer cells is essential for therapeutic resistance. However, the immunological characteristics of drug-induced phenotype-switching melanoma cells (PSMCs) are unknown. We investigated PSMC elimination by host immunity using hyperdifferentiated melanoma model cells derived from murine B16F10 melanoma cells. Exposure of B16F10 cells to staurosporine induced a hyperdifferentiated phenotype associated with transient drug tolerance. Staurosporine-induced hyperdifferentiated B16F10 (sB16F10) cells expressed calreticulin on their surface and were phagocytosed efficiently. Furthermore, the inoculation of mice with sB16F10 cells induced immune responses against tumor-derived antigens. Despite the immunogenicity of sB16F10 cells, they activated the PD-1/PD-L1 immune checkpoint system and strongly resisted T cell-mediated tumor destruction. However, in vivo treatment with immune checkpoint inhibitors successfully eliminated the tumor. Thus, hyperdifferentiated melanoma cells have conflicting immunological properties - enhanced immunogenicity and immune evasion. Inhibiting the ability of PSMCs to evade T cell-mediated elimination might lead to complete melanoma eradication.
Collapse
Affiliation(s)
- Yukie Ando
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Sara Hatazawa
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Momo Mataki
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| |
Collapse
|
2
|
McKenney CD, Regot S. Cell cycle regulation by the ribotoxic stress response. Trends Cell Biol 2025:S0962-8924(25)00106-0. [PMID: 40379527 DOI: 10.1016/j.tcb.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells must sense and respond to numerous stimuli to maintain their function. Stress-activated protein kinases (SAPKs) are part of an integrated network that responds to these stimuli and have critical roles in determining cell behavior. Over the past 5 years, ribosomes and the ribotoxic stress response (RSR) have unexpectedly emerged as critical regulators of the SAPK network and drivers of global cell fate changes. In particular, RSR-SAPK signaling has potent effects on cellular proliferation, with important implications for senescence and cancer. In this review, we discuss cell cycle regulation by the SAPK p38, with a particular focus on how ribotoxic stress affects key cell cycle transitions.
Collapse
Affiliation(s)
- Connor D McKenney
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ryu A, Honma K, Tsuzaki S, Yoshioka R, Tanada S, Yamamoto T, Satomi H, Nagata S, Yamasaki T, Ohue M. DNA Flow Cytometry Analysis in Body Cavity Fluids Using Liquid-Based Cytology. Diagn Cytopathol 2025; 53:227-237. [PMID: 40001281 DOI: 10.1002/dc.25451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND DNA flow cytometry using LC-1000 is utilized for analyzing cellular and nuclear lengths and DNA content in individual cells with samples in cell preservation solutions to acquire the cell proliferation index (CPIx). This study aimed to evaluate the performance of body cavity fluid cytology using LC-1000. As cell preservation solutions, liquid-based cytology (LBC) by Cellprep (CP) was compared with CelVerse (CeV), specifically designed for the LC-1000. METHODS Overall, we evaluated 43 samples (20 malignant and 23 benign) of body cavity fluids suspended in CeV and 59 samples (28 malignant and 31 benign) suspended in CP. The CPIx was compared between malignant and benign cases of CeV and CP. Further, the subject groups were divided according to the SubG1% in a sample. RESULTS The CPIx in CeV was 0.14-10.22 (median 0.62) in malignant cases and 0.09-4.64 (median 0.19) in benign cases (p < 0.001); additionally, CP displayed 0.14-9.87 (median 0.84) in malignant cases and 0.11-3.02 (median 0.22) in benign cases (p < 0.001). The area under the curve (AUC) was 0.811 for CeV and 0.776 for CP. The difference in SubG1% between the CeV and CP groups was statistically significant (p < 0.0001) and influenced the AUC in CP. CONCLUSION The CPIx in CeV or CP samples using the LC-1000 may be applicable as an objective indicator in body cavity fluid cytology. Samples preserved in CeV provided more consistent results, unaffected by SubG1%, when compared to those stored in CP.
Collapse
Affiliation(s)
- Ayumi Ryu
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
- Department of Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Sayoko Tsuzaki
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Risa Yoshioka
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Satoshi Tanada
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Takashi Yamamoto
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Hidetoshi Satomi
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoyuki Yamasaki
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Masayuki Ohue
- Department of Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Coquelet H, Leman G, Maarouf A, Petit C, Toutain B, Henry C, Boissard A, Guette C, Lelièvre E, Vidi PA, Guillon J, Coqueret O. A non-canonical role for the tyrosyl tRNA synthetase: YARS regulates senescence induction and escape and controls the transcription of LIN9. FEBS J 2025; 292:1602-1632. [PMID: 39756023 DOI: 10.1111/febs.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025]
Abstract
Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized. We have recently described that malignant cells capable of evading senescence have an increased expression of specific tRNAs, such as tRNA-Leu-CAA and tRNA-Tyr-GTA, alongside the activation of their corresponding tRNA ligases, namely LARS and YARS. We have previously shown that YARS promotes senescence escape by activating proliferation and cell cycle genes but its functions during this proliferative arrest remain largely unknown. In this study, we have continued to characterize the functions of YARS, describing non-canonical transcriptional functions of the ligase. Our results show that YARS is present in the nucleus of proliferating and senescent cells and interacts with the Trim28 transcriptional regulator. Importantly, YARS binds to the LIN9 promoter, a critical member of the Dream complex responsible for regulating cell cycle gene transcription. The ligase facilitates the binding and the phosphorylation of the type II RNA polymerase and promotes the deposition of activating epigenetic marks on the LIN9 promoter. Consequently, during senescence escape, YARS activates LIN9 expression and both proteins are necessary to induce the proliferation of emergent cells. These results underscore unconventional transcriptional functions of YARS in activating LIN9 expression in proliferating cells and during senescence escape.
Collapse
Affiliation(s)
- Hugo Coquelet
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | - Geraldine Leman
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | | | - Coralie Petit
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | | | - Cécile Henry
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | - Alice Boissard
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | | | - Eric Lelièvre
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | | | - Jordan Guillon
- Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France
| | | |
Collapse
|
5
|
Lee H, Massaro M, Abdelfattah N, Baudo G, Liu H, Yun K, Blanco E. Nuclear respiratory factor-1 (NRF1) induction as a powerful strategy to deter mitochondrial dysfunction and senescence in mesenchymal stem cells. Aging Cell 2025; 24:e14446. [PMID: 39720856 PMCID: PMC11984659 DOI: 10.1111/acel.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies due to their self-renewal and differentiation capabilities. Pathological microenvironments expose MSCs to senescence-inducing factors such as reactive oxygen species (ROS), resulting in MSC functional decline and loss of stemness. Oxidative stress leads to mitochondrial dysfunction, a hallmark of senescence, and is prevalent in aging tissues characterized by elevated ROS levels. We hypothesized that overexpression of nuclear respiratory factor-1 (NRF1), a driver of mitochondrial biogenesis, could metabolically potentiate MSCs and prevent MSC senescence. Single-cell RNA sequencing (scRNA-Seq) revealed that MSCs transfected with NRF1 messenger RNA (mRNA) exhibited upregulated expression of genes associated with oxidative phosphorylation (OXPHOS), decreased glycolytic markers, and suppression of senescence-related pathways. To test whether NRF1 induction could mitigate stress-induced premature senescence, we exposed MSCs to hydrogen peroxide (H2O2) and validated our findings in a replicative senescence model. NRF1 mRNA transfection significantly increased mitochondrial mass and improved aberrant mitochondrial processes associated with senescence, including reduced mitochondrial and intracellular total ROS production. Mitochondrial health and dynamics were preserved, and respiratory function was restored, as evidenced by enhanced OXPHOS, reduced glycolysis, and increased ATP production. Notably, NRF1 overexpression led to decreased senescence-associated β-galactosidase (SA-β-gal) activity and reduced expression of senescence markers p53, p21, and p16. Our findings demonstrate that NRF1 induction attenuates MSC senescence by enhancing mitochondrial function, suggesting potential translational applications for MSC-based therapies and senescence-targeted interventions.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Matteo Massaro
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | | | - Gherardo Baudo
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Haoran Liu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Kyuson Yun
- Department of NeurologyHouston Methodist Research InstituteHoustonTexasUSA
- Department of NeurologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Elvin Blanco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- Department of CardiologyHouston Methodist DeBakey Heart and Vascular Center, Houston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
6
|
Fujimaki K, Jambhekar A, Lahav G. DNA damage checkpoints balance a tradeoff between diploid- and polyploid-derived arrest failures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638318. [PMID: 39990415 PMCID: PMC11844538 DOI: 10.1101/2025.02.14.638318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The DNA damage checkpoint system ensures genomic integrity by preventing the division of damaged cells. This system operates primarily through theG 1 ∕ S andG 2 ∕ M checkpoints, which are susceptible to failure; how these checkpoints coordinate quantitatively to ensure optimal cellular outcomes remains unclear. In this study, we exposed non-cancerous human cells to exogenous DNA damage and used single-cell imaging to monitor spontaneous arrest failure. We discovered that cells fail to arrest in two major paths, resulting in two types with distinct characteristics, including ploidy, nuclear morphology, and micronuclei composition. Computational simulations and experiments revealed strengthening one checkpoint reduced one mode of arrest failure but increased the other, leading to a critical tradeoff for optimizing total arrest failure rates. Our findings suggest optimal checkpoint strengths for minimizing total error are inherently suboptimal for any single failure type, elucidating the systemic cause of genomic instability and tetraploid-like cells in response to DNA damage.
Collapse
Affiliation(s)
- Kotaro Fujimaki
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School
| |
Collapse
|
7
|
Maipas A, Sato A, Moriyama Y, Yamamoto T, Kono K. Knockdown of CNOT3, a subunit of the CCR4-NOT deadenylase complex, sensitizes A549 human non-small cell lung cancer cells to senescence-inducing stimuli. Biochem Biophys Res Commun 2025; 748:151294. [PMID: 39823890 DOI: 10.1016/j.bbrc.2025.151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells. Previous work has shown that CNOT3 knockdown upregulates p21 (CDKN1A), a cyclin-dependent kinase inhibitor. Since p21 is one of the key regulators of cellular senescence, we hypothesized that CNOT3 downregulation might lead to cellular senescence. Indeed, CNOT3 knockdown upregulates several key cellular senescence hallmarks, including p53, senescence-associated β-galactosidase activity, and senescence-associated secretory phenotype in subpopulation of A549 cell culture. The senescent cell hallmarks were more prominent in the culture after additional treatment with BI 2536, a polo-like kinase 1 inhibitor. These results suggest that CNOT3 downregulation followed by BI 2536 treatment upregulates the hallmarks of cellular senescence in A549 cell culture.
Collapse
Affiliation(s)
- Aisulu Maipas
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan; Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Atsuko Sato
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Yohsuke Moriyama
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan.
| | - Keiko Kono
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
8
|
Yan W, Li Y, Wang G, Huang Y, Xie P. Clinical application and immune infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail 2025; 12:250-270. [PMID: 39275894 PMCID: PMC11769652 DOI: 10.1002/ehf2.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.
Collapse
Affiliation(s)
- Wenting Yan
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Yanling Li
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| | - Gang Wang
- First Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Yuan Huang
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Ping Xie
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
9
|
Alavimanesh S, Nayerain Jazi N, Choubani M, Saeidi F, Afkhami H, Yarahmadi A, Ronaghi H, Khani P, Modarressi MH. Cellular senescence in the tumor with a bone niche microenvironment: friend or foe? Clin Exp Med 2025; 25:44. [PMID: 39849183 PMCID: PMC11759293 DOI: 10.1007/s10238-025-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
Collapse
Affiliation(s)
- Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negar Nayerain Jazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Choubani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
10
|
Nakanishi M. Cellular senescence as a source of chronic microinflammation that promotes the aging process. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:224-237. [PMID: 40222899 DOI: 10.2183/pjab.101.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Why and how do we age? This physiological phenomenon that we all experience remains a great mystery, largely unexplained even in this age of scientific and technological progress. Aging is a significant risk factor for numerous diseases, including cancer. However, underlying mechanisms responsible for this association remain to be elucidated. Recent findings have elucidated the significance of the accumulation of senescent cells and other inflammatory cells in organs and tissues with age, and their deleterious effects, such as the induction of inflammation in the microenvironment, as underlying factors contributing to organ dysfunction and disease development. Cellular senescence is a cellular phenomenon characterized by a permanent cessation of cell proliferation and secretion of several proinflammatory cytokines (senescence associated secretory phenotypes). Notably, the elimination of senescent cells from aging individuals has been demonstrated to alleviate age-related organ and tissue dysfunction, as well as various geriatric diseases. This review summarizes the molecular mechanisms by which senescent cells are induced and contribute to age-related diseases, as well as the technologies that ameliorate them.
Collapse
Affiliation(s)
- Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
11
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Hayashi K, Horisaka K, Harada Y, Ogawa Y, Yamashita T, Kitano T, Wakita M, Fukusumi T, Inohara H, Hara E, Matsumoto T. Polyploidy mitigates the impact of DNA damage while simultaneously bearing its burden. Cell Death Discov 2024; 10:436. [PMID: 39397009 PMCID: PMC11471775 DOI: 10.1038/s41420-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Polyploidy is frequently enhanced under pathological conditions, such as tissue injury and cancer in humans. Polyploidization is critically involved in cancer evolution, including cancer initiation and the acquisition of drug resistance. However, the effect of polyploidy on cell fate remains unclear. In this study, we explored the effects of polyploidization on cellular responses to DNA damage and cell cycle progression. Through various comparisons based on ploidy stratifications of cultured cells, we found that polyploidization and the accumulation of genomic DNA damage mutually induce each other, resulting in polyploid cells consistently containing more genomic DNA damage than diploid cells under both physiological and stress conditions. Notably, despite substantial DNA damage, polyploid cells demonstrated a higher tolerance to its impact, exhibiting delayed cell cycle arrest and reduced secretion of inflammatory cytokines associated with DNA damage-induced senescence. Consistently, in mice with ploidy tracing, hepatocytes with high ploidy appeared to potentially persist in the damaged liver, while being susceptible to DNA damage. Polyploidy acts as a reservoir of genomic damage by mitigating the impact of DNA damage, while simultaneously enhancing its accumulation.
Collapse
Affiliation(s)
- Kazuki Hayashi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Kisara Horisaka
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Harada
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Ogawa
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Takako Yamashita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Taku Kitano
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Wakita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tomonori Matsumoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan.
| |
Collapse
|
13
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
14
|
Wei Y, Mou S, Yang Q, Liu F, Cooper ME, Chai Z. To target cellular senescence in diabetic kidney disease: the known and the unknown. Clin Sci (Lond) 2024; 138:991-1007. [PMID: 39139135 PMCID: PMC11327223 DOI: 10.1042/cs20240717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Cellular senescence represents a condition of irreversible cell cycle arrest, characterized by heightened senescence-associated beta-galactosidase (SA-β-Gal) activity, senescence-associated secretory phenotype (SASP), and activation of the DNA damage response (DDR). Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease (ESRD) globally, with ongoing unmet needs in terms of current treatments. The role of senescence in the pathogenesis of DKD has attracted substantial attention with evidence of premature senescence in this condition. The process of cellular senescence in DKD appears to be associated with mitochondrial redox pathways, autophagy, and endoplasmic reticulum (ER) stress. Increasing accumulation of senescent cells in the diabetic kidney not only leads to an impaired capacity for repair of renal injury, but also the secretion of pro-inflammatory and profibrotic cytokines and growth factors causing inflammation and fibrosis. Current treatments for diabetes exhibit varying degrees of renoprotection, potentially via mitigation of senescence in the diabetic kidney. Targeting senescent cell clearance through pharmaceutical interventions could emerge as a promising strategy for preventing and treating DKD. In this paper, we review the current understanding of senescence in DKD and summarize the possible therapeutic interventions relevant to senescence in this field.
Collapse
Affiliation(s)
- Yuehan Wei
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Guerrero Zuniga A, Aikin TJ, McKenney C, Lendner Y, Phung A, Hook PW, Meltzer A, Timp W, Regot S. Sustained ERK signaling promotes G2 cell cycle exit and primes cells for whole-genome duplication. Dev Cell 2024; 59:1724-1736.e4. [PMID: 38640927 PMCID: PMC11233237 DOI: 10.1016/j.devcel.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Whole-genome duplication (WGD) is a frequent event in cancer evolution that fuels chromosomal instability. WGD can result from mitotic errors or endoreduplication, yet the molecular mechanisms that drive WGD remain unclear. Here, we use live single-cell analysis to characterize cell-cycle dynamics upon aberrant Ras-ERK signaling. We find that sustained ERK signaling in human cells leads to reactivation of the APC/C in G2, resulting in tetraploid G0-like cells that are primed for WGD. This process is independent of DNA damage or p53 but dependent on p21. Transcriptomics analysis and live-cell imaging showed that constitutive ERK activity promotes p21 expression, which is necessary and sufficient to inhibit CDK activity and which prematurely activates the anaphase-promoting complex (APC/C). Finally, either loss of p53 or reduced ERK signaling allowed for endoreduplication, completing a WGD event. Thus, sustained ERK signaling-induced G2 cell cycle exit represents an alternative path to WGD.
Collapse
Affiliation(s)
- Adler Guerrero Zuniga
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timothy J Aikin
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yovel Lendner
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alain Phung
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul W Hook
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Meltzer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Donati M, Kazakov DV. Beyond typical histology of BAP1-inactivated melanocytoma. Pathol Res Pract 2024; 259:155162. [PMID: 38326181 DOI: 10.1016/j.prp.2024.155162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BAP1-inactivated melanocytoma (BIM) is a novel subgroup of melanocytic neoplasm listed in the 5th edition of WHO classification of skin tumor. BIM is characterized by two molecular alterations, including a mitogenic driver mutation (usually BRAF gene) and the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, which encodes for BRCA1-associated protein (BAP1). The latter represents a nuclear-localized deubiquitinase involved in several cellular processes including cell cycle regulation, chromatin remodeling, DNA damage response, differentiation, senescence and cell death. BIMs are histologically characterized by a population of large epithelioid melanocytes with well-demarcated cytoplasmic borders and copious eosinophilic cytoplasm, demonstrating loss of BAP1 nuclear expression by immunohistochemistry. Recently, we have published a series of 50 cases, extending the morphological spectrum of the neoplasm and highlighting some new microscopic features. In the current article, we focus on some new histological features, attempting to explain and link them to certain mechanisms of tumor development, including senescence, endoreplication, endocycling, asymmetric cytokinesis, entosis and others. In light of the morphological and molecular findings observed in BIM, we postulated that this entity unmasks a fine mechanism of tumor in which both clonal/stochastic and hierarchical model can be unified.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy.
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| |
Collapse
|
17
|
Imawari Y, Nakanishi M. Senescence and senolysis in cancer: The latest findings. Cancer Sci 2024; 115:2107-2116. [PMID: 38641866 PMCID: PMC11247613 DOI: 10.1111/cas.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Aging is a life phenomenon that occurs in most living organisms and is a major risk factor for many diseases, including cancer. Cellular senescence is a cellular trait induced by various genomic and epigenetic stresses. Senescent cells are characterized by irreversible cell growth arrest and excessive secretion of inflammatory cytokines (senescence-associated secretory phenotypes, SASP). Chronic tissue microinflammation induced by SASP contributes to the pathogenesis of a variety of age-related diseases, including cancer. Senolysis is a promising new strategy to selectively eliminate senescent cells in order to suppress chronic inflammation, suggesting its potential use as an anticancer therapy. This review summarizes recent findings on the molecular basis of senescence in cancer cells and senolysis.
Collapse
Affiliation(s)
- Yoshimi Imawari
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
| |
Collapse
|
18
|
McKenney C, Lendner Y, Guerrero-Zuniga A, Sinha N, Veresko B, Aikin TJ, Regot S. CDK4/6 activity is required during G 2 arrest to prevent stress-induced endoreplication. Science 2024; 384:eadi2421. [PMID: 38696576 PMCID: PMC11305671 DOI: 10.1126/science.adi2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/05/2024] [Indexed: 05/04/2024]
Abstract
Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.
Collapse
Affiliation(s)
- Connor McKenney
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program; Baltimore, USA
| | - Yovel Lendner
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
| | - Adler Guerrero-Zuniga
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program; Baltimore, USA
| | - Niladri Sinha
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
| | - Benjamin Veresko
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
| | - Timothy J. Aikin
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
- The Biochemistry, Cellular, and Molecular Biology Graduate Program; Baltimore, USA
| | - Sergi Regot
- Dept. Molecular Biology and Genetics, The Johns Hopkins University School of Medicine; Baltimore, USA
- Dept. Oncology, The Johns Hopkins University School of Medicine; Baltimore, USA
| |
Collapse
|
19
|
Bennett DC. Review: Are moles senescent? Pigment Cell Melanoma Res 2024; 37:391-402. [PMID: 38361107 DOI: 10.1111/pcmr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Melanocytic nevi (skin moles) have been regarded as a valuable example of cell senescence occurring in vivo. However, a study of induced nevi in a mouse model reported that the nevi were arrested by cell interactions rather than a cell-autonomous process like senescence, and that size distributions of cell nests within nevi could not be accounted for by a stochastic model of oncogene-induced senescence. Moreover, others reported that some molecular markers used to identify cell senescence in human nevi are also found in melanoma cells-not senescent. It has thus been questioned whether nevi really are senescent, with potential implications for melanoma diagnosis and therapy. Here I review these areas, along with the genetic, biological, and molecular evidence supporting senescence in nevi. In conclusion, there is strong evidence that cells of acquired human benign (banal) nevi are very largely senescent, though some must contain a minor non-senescent cell subpopulation. There is also persuasive evidence that this senescence is primarily induced by dysfunctional telomeres rather than directly oncogene-induced.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
20
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
21
|
Schwach V, Slaats RH, Cofiño-Fabres C, ten Den SA, Rivera-Arbeláez JM, Dannenberg M, van Boheemen C, Ribeiro MC, van der Zanden SY, Nollet EE, van der Velden J, Neefjes J, Cao L, Passier R. A safety screening platform for individualized cardiotoxicity assessment. iScience 2024; 27:109139. [PMID: 38384853 PMCID: PMC10879698 DOI: 10.1016/j.isci.2024.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Cardiotoxicity remains a major cause of drug withdrawal, partially due to lacking predictability of animal models. Additionally, risk of cardiotoxicity following treatment of cancer patients is treatment limiting. It is unclear which patients will develop heart failure following therapy. Human pluripotent stem cell (hPSC)-derived cardiomyocytes present an unlimited cell source and may offer individualized solutions to this problem. We developed a platform to predict molecular and functional aspects of cardiotoxicity. Our platform can discriminate between the different cardiotoxic mechanisms of existing and novel anthracyclines Doxorubicin, Aclarubicin, and Amrubicin. Doxorubicin and Aclarubicin unlike Amrubicin substantially affected the transcriptome, mitochondrial membrane integrity, contractile force and transcription factor availability. Cardiomyocytes recovered fully within two or three weeks, corresponding to the intermittent clinical treatment regimen. Our system permits the study of hPSC-cardiomyocyte recovery and the effects of accumulated dose after multiple dosing, allowing individualized cardiotoxicity evaluation, which effects millions of cancer patients treated annually.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | - Rolf H. Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | - Carla Cofiño-Fabres
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | - Simone A. ten Den
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | - José M. Rivera-Arbeláez
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Maureen Dannenberg
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | - Chiara van Boheemen
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
| | | | - Sabina Y. van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Edgar E. Nollet
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Lu Cao
- Leiden Institute of Advanced Computer Science (LIACS), Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
22
|
Suda K, Moriyama Y, Razali N, Chiu Y, Masukagami Y, Nishimura K, Barbee H, Takase H, Sugiyama S, Yamazaki Y, Sato Y, Higashiyama T, Johmura Y, Nakanishi M, Kono K. Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts. NATURE AGING 2024; 4:319-335. [PMID: 38388781 PMCID: PMC10950784 DOI: 10.1038/s43587-024-00575-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.
Collapse
Affiliation(s)
- Kojiro Suda
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yohsuke Moriyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Nurhanani Razali
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yatzu Chiu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Hunter Barbee
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinju Sugiyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuta Yamazaki
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Keiko Kono
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
23
|
Manohar S, Estrada ME, Uliana F, Vuina K, Alvarez PM, de Bruin RAM, Neurohr GE. Genome homeostasis defects drive enlarged cells into senescence. Mol Cell 2023; 83:4032-4046.e6. [PMID: 37977116 PMCID: PMC10659931 DOI: 10.1016/j.molcel.2023.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.
Collapse
Affiliation(s)
- Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Marianna E Estrada
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Federico Uliana
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Patricia Moyano Alvarez
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Gabriel E Neurohr
- Institute for Biochemistry, Department of Biology, ETH Zürich 8093, Zürich, Zürich, Switzerland.
| |
Collapse
|
24
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
25
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
26
|
Mattiello L, Soliman Abdel Rehim S, Manic G, Vitale I. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Methods Cell Biol 2023; 181:43-58. [PMID: 38302243 DOI: 10.1016/bs.mcb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Senescence is a state of irreversible cell cycle arrest accompanied by the acquisition of the senescence-associated secretory phenotype (SASP), which is activated in response to a variety of damaging stimuli, including genotoxic therapy. Accumulating evidence indicates that mitotic stress also promotes entry into senescence. This occurs via a mechanism involving defective mitoses and mitotic arrest, followed by abortion of cell division and slippage in the G1 phase. In this process, mitotic slippage leads to the generation of senescent cells characterized by a large cell body and a multinucleated and/or enlarged nuclear size. Here, we provide a detailed protocol for the assessment of cell proliferation and mitotic slippage in colorectal cancer cells upon pharmacological inhibition of the mitotic kinesin KIF11, best known as EG5. This approach can be used for preliminary characterization of senescence induction by therapeutics, but requires validation with standard senescence assays.
Collapse
Affiliation(s)
- Luca Mattiello
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Sara Soliman Abdel Rehim
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gwenola Manic
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Ilio Vitale
- IIGM-Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
27
|
Li D, Johmura Y, Morimoto S, Doi M, Nakanishi K, Ozawa M, Tsunekawa Y, Inoue-Yamauchi A, Naruse H, Matsukawa T, Takeshita Y, Suzuki N, Aoki M, Nishiyama A, Zeng X, Konishi C, Suzuki N, Nishiyama A, Harris AS, Morita M, Yamaguchi K, Furukawa Y, Nakai K, Tsuji S, Yamazaki S, Yamanashi Y, Shimada S, Okada T, Okano H, Toda T, Nakanishi M. LONRF2 is a protein quality control ubiquitin ligase whose deficiency causes late-onset neurological deficits. NATURE AGING 2023; 3:1001-1019. [PMID: 37474791 DOI: 10.1038/s43587-023-00464-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
Protein misfolding is a major factor of neurodegenerative diseases. Post-mitotic neurons are highly susceptible to protein aggregates that are not diluted by mitosis. Therefore, post-mitotic cells may have a specific protein quality control system. Here, we show that LONRF2 is a bona fide protein quality control ubiquitin ligase induced in post-mitotic senescent cells. Under unperturbed conditions, LONRF2 is predominantly expressed in neurons. LONRF2 binds and ubiquitylates abnormally structured TDP-43 and hnRNP M1 and artificially misfolded proteins. Lonrf2-/- mice exhibit age-dependent TDP-43-mediated motor neuron (MN) degeneration and cerebellar ataxia. Mouse induced pluripotent stem cell-derived MNs lacking LONRF2 showed reduced survival, shortening of neurites and accumulation of pTDP-43 and G3BP1 after long-term culture. The shortening of neurites in MNs from patients with amyotrophic lateral sclerosis is rescued by ectopic expression of LONRF2. Our findings reveal that LONRF2 is a protein quality control ligase whose loss may contribute to MN degeneration and motor deficits.
Collapse
Affiliation(s)
- Dan Li
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Nakanishi
- Department of Pediatrics, Central Hospital, and Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The University of Tokyo, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | | | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Zeng
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan
| | | | - Mariko Morita
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis in silico, Human Genome Center, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuji Yamanashi
- Division of Genetics, The University of Tokyo, Tokyo, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
Cornwell JA, Crncec A, Afifi MM, Tang K, Amin R, Cappell SD. Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature 2023; 619:363-370. [PMID: 37407814 PMCID: PMC10338338 DOI: 10.1038/s41586-023-06274-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
In mammalian cells, the decision to proliferate is thought to be irreversibly made at the restriction point of the cell cycle1,2, when mitogen signalling engages a positive feedback loop between cyclin A2/cyclin-dependent kinase 2 (CDK2) and the retinoblastoma protein3-5. Contrary to this textbook model, here we show that the decision to proliferate is actually fully reversible. Instead, we find that all cycling cells will exit the cell cycle in the absence of mitogens unless they make it to mitosis and divide first. This temporal competition between two fates, mitosis and cell cycle exit, arises because cyclin A2/CDK2 activity depends upon CDK4/6 activity throughout the cell cycle, not just in G1 phase. Without mitogens, mitosis is only observed when the half-life of cyclin A2 protein is long enough to sustain CDK2 activity throughout G2/M. Thus, cells are dependent on mitogens and CDK4/6 activity to maintain CDK2 activity and retinoblastoma protein phosphorylation throughout interphase. Consequently, even a 2-h delay in a cell's progression towards mitosis can induce cell cycle exit if mitogen signalling is lost. Our results uncover the molecular mechanism underlying the restriction point phenomenon, reveal an unexpected role for CDK4/6 activity in S and G2 phases and explain the behaviour of all cells following loss of mitogen signalling.
Collapse
Affiliation(s)
- James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adrijana Crncec
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marwa M Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kristina Tang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
29
|
Lee SH, Yang JH, Park UH, Choi H, Kim YS, Yoon BE, Han HJ, Kim HT, Um SJ, Kim EJ. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp Mol Med 2023; 55:1232-1246. [PMID: 37258580 PMCID: PMC10318011 DOI: 10.1038/s12276-023-01012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
SIRT1, a member of the mammalian sirtuin family, is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase with key roles in aging-related diseases and cellular senescence. However, the mechanism by which SIRT1 protein homeostasis is controlled under senescent conditions remains elusive. Here, we revealed that SIRT1 protein is significantly downregulated due to ubiquitin-mediated proteasomal degradation during stress-induced premature senescence (SIPS) and that SIRT1 physically associates with anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase. Ubiquitin-dependent SIRT1 degradation is stimulated by the APC/C coactivator Cdh1 and not by the coactivator Cdc20. We found that Cdh1 depletion impaired the SIPS-promoted downregulation of SIRT1 expression and reduced cellular senescence, likely through SIRT1-driven p53 inactivation. In contrast, AROS, a SIRT1 activator, reversed the SIRT1 degradation induced by diverse stressors and antagonized Cdh1 function through competitive interactions with SIRT1. Furthermore, our data indicate opposite roles for Cdh1 and AROS in the epigenetic regulation of the senescence-associated secretory phenotype genes IL-6 and IL-8. Finally, we demonstrated that pinosylvin restores downregulated AROS (and SIRT1) expression levels in bleomycin-induced mouse pulmonary senescent tissue while repressing bleomycin-promoted Cdh1 expression. Overall, our study provides the first evidence of the reciprocal regulation of SIRT1 stability by APC/C-Cdh1 and AROS during stress-induced premature senescence, and our findings suggest pinosylvin as a potential senolytic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ji-Hye Yang
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea
| | - Hanbyeul Choi
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, 31151, Cheonan-si, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology/Institute of Bioscience, Sejong University, Seoul, 143-747, Korea.
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
30
|
Lindqvist A, Hao Z, Akopyan K. Using an ImageJ-based script to detect replication stress and associated cell cycle exit from G2 phase by fluorescence microscopy. Methods Cell Biol 2023; 182:187-197. [PMID: 38359976 DOI: 10.1016/bs.mcb.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Replication stress risks genomic integrity. Depending on the level, replication stress can lead to slower progression through S phase and entry into G2 phase with DNA damage. In G2 phase, cells either recover and eventually enter mitosis or permanently withdraw from the cell cycle. Here we describe a method to detect cell cycle distribution, replication stress and cell cycle exit from G2 phase using fluorescence microscopy. We provide a script to automate the analysis using ImageJ. The focus has been to make a script and setup that is accessible to people without extensive computer knowledge.
Collapse
Affiliation(s)
- Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Zhiyu Hao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023; 290:1212-1220. [PMID: 34921507 DOI: 10.1111/febs.16325] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
Affiliation(s)
- Eleanor Sheekey
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Choi D, Ishii T, Ishikawa M, Ootake T, Kamei H, Nagai K, Sueishi K. Vertical Vibration of Mouse Osteoblasts Promotes Cellular Differentiation and Cell Cycle Progression and Induces Aging In Vitro. Biomedicines 2023; 11:biomedicines11020444. [PMID: 36830981 PMCID: PMC9953217 DOI: 10.3390/biomedicines11020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of the vibration of osteoblasts on the cell cycle, cell differentiation, and aging. MATERIALS AND METHODS Primary maxilla osteoblasts harvested from eight-week-old mice were subjected to vibration at 3, 30, and 300 Hz once daily for 30 min; control group, 0 Hz. A cell proliferation assay and Cell-Clock Cell Cycle Assay were performed 24 h after vibration. Osteoblast differentiation assay, aging marker genes, SA-β-Gal activity, and telomere length (qPCR) were assayed two weeks post- vibration once every two days. RESULTS Cell proliferation increased significantly at 30 and 300 Hz rather than 0 Hz. Several cells were in the late G2/M stage of the cell cycle at 30 Hz. The osteoblast differentiation assay was significantly higher at 30 Hz than at 0 Hz. Runx2 mRNA was downregulated at 30 Hz compared to that at 0 Hz, while osteopontin, osteocalcin, and sclerostin mRNA were upregulated. p53/p21, p16, and c-fos were activated at 30 Hz. SA-β-Gal activity increased significantly at 30 or 300 Hz. Telomere length was significantly lower at 30 or 300 Hz. CONCLUSIONS The results suggest that providing optimal vibration to osteoblasts promotes cell cycle progression and differentiation and induces cell aging.
Collapse
Affiliation(s)
- Daehwan Choi
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takenobu Ishii
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Orthodontics, Tokyo Dental College Chiba Dental Center, 1-2-2, Masago, Mihama-ku, Chiba 261-0011, Japan
- Correspondence: ; Tel.: +81-03-5375-1724
| | - Munetada Ishikawa
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Tomohisa Ootake
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Hirokazu Kamei
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kohei Nagai
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, 2-9-18, KandaMisaki-Cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Orthodontics, Tokyo Dental College Chiba Dental Center, 1-2-2, Masago, Mihama-ku, Chiba 261-0011, Japan
| |
Collapse
|
34
|
Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell 2023; 186:528-542.e14. [PMID: 36681079 DOI: 10.1016/j.cell.2022.12.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.
Collapse
|
35
|
Mitochondrial Metabolism in X-Irradiated Cells Undergoing Irreversible Cell-Cycle Arrest. Int J Mol Sci 2023; 24:ijms24031833. [PMID: 36768155 PMCID: PMC9916319 DOI: 10.3390/ijms24031833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Irreversible cell-cycle-arrested cells not undergoing cell divisions have been thought to be metabolically less active because of the unnecessary consumption of energy for cell division. On the other hand, they might be actively involved in the tissue microenvironment through an inflammatory response. In this study, we examined the mitochondria-dependent metabolism in human cells irreversibly arrested in response to ionizing radiation to confirm this possibility. Human primary WI-38 fibroblast cells and the BJ-5ta fibroblast-like cell line were exposed to 20 Gy X-rays and cultured for up to 9 days after irradiation. The mitochondrial morphology and membrane potential were evaluated in the cells using the mitochondrial-specific fluorescent reagents MitoTracker Green (MTG) and 5,5',6,6'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1), respectively. The ratio of the mean MTG-stained total mitochondrial area per unit cell area decreased for up to 9 days after X-irradiation. The fraction of the high mitochondrial membrane potential area visualized by JC-1 staining reached its minimum 2 days after irradiation and then increased (particularly, WI-38 cells increased 1.8-fold the value of the control). Their chronological changes indicate that the mitochondrial volume in the irreversible cell-cycle-arrested cells showed significant increase concurrently with cellular volume expansion, indicating that the mitochondria-dependent energy metabolism was still active. These results indicate that the energy metabolism in X-ray-induced senescent-like cells is active compared to nonirradiated normal cells, even though they do not undergo cell divisions.
Collapse
|
36
|
Oda T, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Sasaki N. DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif 2023:e13398. [PMID: 36642815 DOI: 10.1111/cpr.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Cellular senescence is linked to a wide range of age-related diseases and can be triggered by a variety of stresses, including DNA damage. A variety of genotoxic stressors, such as anti-cancer drugs, cause DNA double-strand breaks (DSBs), which trigger the accumulation of the tumour suppressor protein p53 in the nucleus. Cellular stresses stabilize and activate the p53 signalling pathway, which regulates various cellular processes, such as apoptosis, DNA repair, and senescence. Although p53 signalling is a well-known tumour suppressor pathway, it remains unclear how it is regulated during cellular senescence. Here, we show that p53-binding protein 1 (53BP1) accumulation in the nuclear foci is required for DNA damage-induced cellular senescence via p53 activation. In human immortalized fibroblast, shRNA-mediated 53BP1 depletion decreased not only the expression of p53-target genes but also the cellular senescence induced by adriamycin treatment. Furthermore, we confirmed that DSBs trigger the hyperaccumulation of 53BP1 in the nuclear foci, which plays a key role in the regulation of cellular senescence. To prevent the accumulation of 53BP1 in the nuclear foci, we used phase separation inhibitors, and siRNA against RNF168, which accumulates at DSB loci and forms complexes with 53BP1. This blocks the formation of 53BP1 nuclear foci and DNA damage-induced cellular senescence by activating the p53 signaling pathway. In conclusion, we demonstrated that increased accumulation of 53BP1 in the nuclear foci following DNA damage activates p53 and governs cellular senescence via a liquid-liquid phase separation mechanism.
Collapse
Affiliation(s)
- Tsukasa Oda
- Laboratory of Mucosal Ecosystem Design, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Nanami Gotoh
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuhiro Kasamatsu
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Handa
- Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takayuki Saitoh
- Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
37
|
Wong GCN, Chow KHM. DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2023; 94:S429-S451. [PMID: 35848025 PMCID: PMC10473156 DOI: 10.3233/jad-220203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.
Collapse
Affiliation(s)
- Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
38
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
39
|
Wang TW, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Yoshimura A, Nakanishi M. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 2022; 611:358-364. [PMID: 36323784 DOI: 10.1038/s41586-022-05388-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The accumulation of senescent cells is a major cause of age-related inflammation and predisposes to a variety of age-related diseases1. However, little is known about the molecular basis underlying this accumulation and its potential as a target to ameliorate the ageing process. Here we show that senescent cells heterogeneously express the immune checkpoint protein programmed death-ligand 1 (PD-L1) and that PD-L1+ senescent cells accumulate with age in vivo. PD-L1- cells are sensitive to T cell surveillance, whereas PD-L1+ cells are resistant, even in the presence of senescence-associated secretory phenotypes (SASP). Single-cell analysis of p16+ cells in vivo revealed that PD-L1 expression correlated with higher levels of SASP. Consistent with this, administration of programmed cell death protein 1 (PD-1) antibody to naturally ageing mice or a mouse model with normal livers or induced nonalcoholic steatohepatitis reduces the total number of p16+ cells in vivo as well as the PD-L1+ population in an activated CD8+ T cell-dependent manner, ameliorating various ageing-related phenotypes. These results suggest that the heterogeneous expression of PD-L1 has an important role in the accumulation of senescent cells and inflammation associated with ageing, and the elimination of PD-L1+ senescent cells by immune checkpoint blockade may be a promising strategy for anti-ageing therapy.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa, Japan.
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Migita
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
Okamura K, Sato M, Suzuki T, Nohara K. Inorganic arsenic exposure-induced premature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicol Appl Pharmacol 2022; 454:116231. [PMID: 36089002 DOI: 10.1016/j.taap.2022.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Exposure to inorganic arsenic has been known to induce cancers in various organs, however, the underlying mechanisms remain unclear. Premature senescence refers to the irreversible growth arrest induced by stress stimuli. The senescence-associated secretory phenotype (SASP), particularly in fibroblasts, has been shown to promote cancer development. In this study, we examined whether arsenite exposure causes premature senescence and induction of SASP in liver fibroblasts using the human hepatic stellate cell line, LX-2. Exposure of LX-2 cells to 5 or 7.5 μM of sodium arsenite for 144 h induced the features of senescence in the cells, including morphological changes, growth inhibition, increased senescence-associated β-galactosidase activity, increased P21 gene expression, and decreased LAMINB1 gene expression. The mRNA expressions of SASP factors, such as MMP1, MMP3, IL-8, IL-1β, and CXCL1, were also highly upregulated. The wound healing assay revealed that the conditioned medium from LX-2 cells with arsenite-induced senescence increased the migration activity of cells of the human hepatoma cell line, Huh-7. Gene expression data of liver cancer samples from the Human Protein Atlas showed that high expression levels of the SASP factors that were upregulated in the cells with arsenite-induced senescence were strongly associated with a poor prognosis. In addition, the cellular levels of γ-H2AX, a DNA double-strand break marker, were increased by arsenite exposure, suggesting that DNA damage could contribute to premature senescence induction. These results show that arsenite exposure induces premature senescence in hepatic stellate cells and suggest that the SASP factors from the senescent cells promote hepatic carcinogenesis.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Miyuki Sato
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
41
|
Stallaert W, Taylor SR, Kedziora KM, Taylor CD, Sobon HK, Young CL, Limas JC, Varblow Holloway J, Johnson MS, Cook JG, Purvis JE. The molecular architecture of cell cycle arrest. Mol Syst Biol 2022; 18:e11087. [PMID: 36161508 PMCID: PMC9511499 DOI: 10.15252/msb.202211087] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Present address:
Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Sovanny R Taylor
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Katarzyna M Kedziora
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Bioinformatics and Analytics Research Collaborative (BARC)University of North Carolina at Chapel HillChapel HillNCUSA
| | - Colin D Taylor
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Holly K Sobon
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Catherine L Young
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Juanita C Limas
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jonah Varblow Holloway
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Martha S Johnson
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Department of PharmacologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jeremy E Purvis
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
42
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
43
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
44
|
Antitumor Effects of Ral-GTPases Downregulation in Glioblastoma. Int J Mol Sci 2022; 23:ijms23158199. [PMID: 35897776 PMCID: PMC9330696 DOI: 10.3390/ijms23158199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.
Collapse
|
45
|
Suzuki K, Kawamura K, Ujiie R, Nakayama T, Mitsutake N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503448. [PMID: 35483779 DOI: 10.1016/j.mrgentox.2022.503448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 μM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Risa Ujiie
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takahumi Nakayama
- Department of Molecular Medicine, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
46
|
Lossaint G, Horvat A, Gire V, Bacevic K, Mrouj K, Charrier-Savournin F, Georget V, Fisher D, Dulic V. Reciprocal regulation of p21 and Chk1 controls the Cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J Cell Sci 2022; 135:274865. [PMID: 35343565 DOI: 10.1242/jcs.259114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Senescence is an irreversible proliferation withdrawal that can be initiated after DNA damage-induced cell cycle arrest in G2 phase to prevent genomic instability. Senescence onset in G2 requires p53 and RB family tumour suppressors, but how they are regulated to convert a temporary cell cycle arrest into a permanent one remains unknown. Here, we show that a previously unrecognised balance between the CDK inhibitor p21 and Chk1 controls D-type cyclin-CDK activity during G2 arrest. In non-transformed cells, p21 activates RB in G2 by inhibiting Cyclin D1-CDK2/CDK4. The resulting G2 exit, which precedes appearance of senescence markers, is associated with a mitotic bypass, Chk1 downregulation and DNA damage foci reduction. In p53/RB-proficient cancer cells, compromised G2 exit correlates with sustained Chk1 activity, delayed p21 induction, untimely Cyclin E1 re-expression and genome reduplication. Conversely, Chk1 depletion promotes senescence by inducing p21 binding to Cyclin D1 and Cyclin E1-CDK complexes and down-regulating CDK6, whereas Chk2 knockdown enables RB phosphorylation and delays G2 exit. In conclusion, p21 and Chk2 oppose Chk1 to maintain RB activity, thus promoting DNA damage-induced senescence onset in G2.
Collapse
Affiliation(s)
| | | | | | | | - Karim Mrouj
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France.,Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
47
|
Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin AT. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J 2022; 41:e108599. [PMID: 35037284 PMCID: PMC8922273 DOI: 10.15252/embj.2021108599] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.
Collapse
Affiliation(s)
- Lisa Crozier
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Reece Foy
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Robert H Whitaker
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Andrea Corno
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
- Present address:
Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Adrian T Saurin
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
48
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
49
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
50
|
Nagata T, Minami K, Yamamoto M, Hiraki T, Idogawa M, Fujimoto K, Kageyama S, Tabata K, Kawahara K, Ueda K, Ikeda R, Kato Y, Komatsu M, Tanimoto A, Furukawa T, Sato M. BHLHE41/DEC2 Expression Induces Autophagic Cell Death in Lung Cancer Cells and Is Associated with Favorable Prognosis for Patients with Lung Adenocarcinoma. Int J Mol Sci 2021; 22:ijms222111509. [PMID: 34768959 PMCID: PMC8584041 DOI: 10.3390/ijms222111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer constitutes a threat to human health. BHLHE41 plays important roles in circadian rhythm and cell differentiation as a negative regulatory transcription factor. This study investigates the role of BHLHE41 in lung cancer progression. We analyzed BHLHE41 function via in silico and immunohistochemical studies of 177 surgically resected non-small cell lung cancer (NSCLC) samples and 18 early lung squamous cell carcinoma (LUSC) cases. We also examined doxycycline (DOX)-inducible BHLHE41-expressing A549 and H2030 adenocarcinoma cells. BHLHE41 expression was higher in normal lung than in lung adenocarcinoma (LUAD) tissues and was associated with better prognosis for the overall survival (OS) of patients. In total, 15 of 132 LUAD tissues expressed BHLHE41 in normal lung epithelial cells. Staining was mainly observed in adenocarcinoma in situ and the lepidic growth part of invasive cancer tissue. BHLHE41 expression constituted a favorable prognostic factor for OS (p = 0.049) and cause-specific survival (p = 0.042) in patients with LUAD. During early LUSC, 7 of 18 cases expressed BHLHE41, and this expression was inversely correlated with the depth of invasion. DOX suppressed cell proliferation and increased the autophagy protein LC3, while chloroquine enhanced LC3 accumulation and suppressed cell death. In a xenograft model, DOX suppressed tumor growth. Our results indicate that BHLHE41 expression prevents early lung tumor malignant progression by inducing autophagic cell death in NSCLC.
Collapse
Affiliation(s)
- Toshiyuki Nagata
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.N.); (K.U.); (M.S.)
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (K.M.); (M.Y.); (K.K.)
| | - Kentaro Minami
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (K.M.); (M.Y.); (K.K.)
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan;
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (K.M.); (M.Y.); (K.K.)
| | - Tsubasa Hiraki
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.H.); (K.T.); (A.T.)
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan;
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (K.F.); (Y.K.)
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; (S.K.); (M.K.)
| | - Kazuhiro Tabata
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.H.); (K.T.); (A.T.)
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (K.M.); (M.Y.); (K.K.)
| | - Kazuhiro Ueda
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.N.); (K.U.); (M.S.)
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan;
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (K.F.); (Y.K.)
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; (S.K.); (M.K.)
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.H.); (K.T.); (A.T.)
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (K.M.); (M.Y.); (K.K.)
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Correspondence: ; Tel.: +81-99-275-5490
| | - Masami Sato
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (T.N.); (K.U.); (M.S.)
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|