1
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XH, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 PMCID: PMC12064062 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A. Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B. Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A. Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y. Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N. Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T. Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Sun Q, Zhou Q, Qiao Y, Chen X, Sun H, Wang H. Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization. Nucleic Acids Res 2025; 53:gkae1271. [PMID: 39777468 PMCID: PMC11705077 DOI: 10.1093/nar/gkae1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization. By integrated analyses of global RBP binding and 3D genome mapping profiles from both K562 and HepG2 cells, our study unveils the prevalent enrichment of RBPs on TAD boundaries and define boundary-associated RBPs (baRBPs). We found that baRBP binding is correlated with enhanced TAD insulation strength and in a CTCF-independent manner. Moreover, baRBP binding is associated with nascent promoter transcription. Additional experimental testing was performed using RBFox2 as a paradigm. Knockdown of RBFox2 in K562 cells causes mild TAD reorganization. Moreover, RBFox2 enrichment on TAD boundaries is a conserved phenomenon in C2C12 myoblast (MB) cells. RBFox2 is downregulated and its bound boundaries are remodeled during MB differentiation into myotubes. Finally, transcriptional inhibition indeed decreases RBFox2 binding and disrupts TAD boundary insulation. Altogether, our findings demonstrate that RBPs can play an active role in modulating TAD organization through co-transcriptional association and synergistic actions with nascent promoter transcripts.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Qin Zhou
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Yulong Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Hao Sun
- Warshel Institute for Computational Biology, Faculty of Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
3
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 PMCID: PMC11653684 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Weiwei Liu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuxin Huang
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
4
|
Cho N, Kim SY, Lee SG, Park C, Choi S, Kim EM, Kim KK. Alternative splicing of PBRM1 mediates resistance to PD-1 blockade therapy in renal cancer. EMBO J 2024; 43:5421-5444. [PMID: 39375538 PMCID: PMC11574163 DOI: 10.1038/s44318-024-00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Alternative pre-mRNA splicing (AS) is a biological process that results in proteomic diversity. However, implications of AS alterations in cancer remain poorly understood. Herein, we performed a comprehensive AS analysis in cancer driver gene transcripts across fifteen cancer types and found global alterations in inclusion rates of the PBAF SWI/SNF chromatin remodeling complex subunit Polybromo 1 (PBRM1) exon 27 (E27) in most types of cancer tissues compared with those in normal tissues. Further analysis confirmed that PBRM1 E27 is excluded by the direct binding of RBFOX2 to intronic UGCAUG elements. In addition, the E27-included PBRM1 isoform upregulated PD-L1 expression via enhanced PBAF complex recruitment to the PD-L1 promoter. PBRM1 wild-type patients with clear cell renal cell carcinoma were resistant to PD-1 blockade therapy when they expressed low RBFOX2 mRNA levels. Overall, our study suggests targeting of RBFOX2-mediated AS of PBRM1 as a potential therapeutic strategy for immune checkpoint blockade.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Eun-Mi Kim
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Shen J, Shentu J, Zhong C, Huang Q, Duan S. RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy. Clin Transl Med 2024; 14:e1788. [PMID: 39243148 PMCID: PMC11380049 DOI: 10.1002/ctm2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Chenming Zhong
- Medical Genetics Center, School of MedicineNingbo UniversityNingboChina
| | - Qiankai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
6
|
Huang F, Jin L, Zhang X, Wang M, Zhou C. Integrated pan-cancer analysis reveals the immunological and prognostic potential of RBFOX2 in human tumors. Front Pharmacol 2024; 15:1302134. [PMID: 38881877 PMCID: PMC11176534 DOI: 10.3389/fphar.2024.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.
Collapse
Affiliation(s)
- Fengxian Huang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, Xi'an, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Alternative Splicing in High-Risk Wilms' Tumors. Int J Mol Sci 2024; 25:4520. [PMID: 38674106 PMCID: PMC11050615 DOI: 10.3390/ijms25084520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The significant heterogeneity of Wilms' tumors between different patients is thought to arise from genetic and epigenetic distortions that occur during various stages of fetal kidney development in a way that is poorly understood. To address this, we characterized the heterogeneity of alternative mRNA splicing in Wilms' tumors using a publicly available RNAseq dataset of high-risk Wilms' tumors and normal kidney samples. Through Pareto task inference and cell deconvolution, we found that the tumors and normal kidney samples are organized according to progressive stages of kidney development within a triangle-shaped region in latent space, whose vertices, or "archetypes", resemble the cap mesenchyme, the nephrogenic stroma, and epithelial tubular structures of the fetal kidney. We identified a set of genes that are alternatively spliced between tumors located in different regions of latent space and found that many of these genes are associated with the epithelial-to-mesenchymal transition (EMT) and muscle development. Using motif enrichment analysis, we identified putative splicing regulators, some of which are associated with kidney development. Our findings provide new insights into the etiology of Wilms' tumors and suggest that specific splicing mechanisms in early stages of development may contribute to tumor development in different patients.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Tel-HaShomer Medical Centre, Ramat Gan 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| |
Collapse
|
8
|
Fan D, Zhang Y, Lu L, Yin F, Liu B. Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique. BMC Genomics 2024; 25:159. [PMID: 38331723 PMCID: PMC10851481 DOI: 10.1186/s12864-024-10076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. METHODS MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. RESULTS The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. CONCLUSION Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Yunjie Zhang
- Department of Nursing, The First Hospital of QinHuangdao, Qinhuangdao City, 066000, Hebei Province, China
| | - Lanyu Lu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China.
| |
Collapse
|
9
|
Wang W, Li W, Liu W, Wang Z, Xie B, Yang X, Tang Z. Exploring Multi-Tissue Alternative Splicing and Skeletal Muscle Metabolism Regulation in Obese- and Lean-Type Pigs. Genes (Basel) 2024; 15:196. [PMID: 38397185 PMCID: PMC10888101 DOI: 10.3390/genes15020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Alternative splicing (AS) is a crucial mechanism in post-transcriptional regulation, contributing significantly to the diversity of the transcriptome and proteome. In this study, we performed a comprehensive AS profile in nine tissues obtained from Duroc (lean-type) and Luchuan (obese-type) pigs. Notably, 94,990 AS events from 14,393 genes were identified. Among these AS events, it was observed that 80% belonged to the skipped exon (SE) type. Functional enrichment analysis showed that genes with more than ten AS events were closely associated with tissue-specific functions. Additionally, the analysis of overlap between differentially alternative splicing genes (DSGs) and differentially expressed genes (DEGs) revealed the highest number of overlapped genes in the heart and skeletal muscle. The novelty of our study is that it identified and validated three genes (PYGM, MAPK11 and CAMK2B) in the glucagon signaling pathway, and their alternative splicing differences were highly significant across two pig breeds. In conclusion, our study offers novel insights into the molecular regulation of diverse tissue physiologies and the phenotypic differences between obese- and lean-type pigs, which are helpful for pig breeding.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China;
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
| | - Wangchang Li
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weiwei Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zishuai Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bingkun Xie
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530001, China;
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Zhonglin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China;
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.L.); (W.L.); (Z.W.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530001, China;
| |
Collapse
|
10
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
11
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Wiedner HJ, Blue RE, Sadovsky M, Mills CA, Wehrens XH, Herring LE, Giudice J. RBFOX2 regulated EYA3 isoforms partner with SIX4 or ZBTB1 to control transcription during myogenesis. iScience 2023; 26:108258. [PMID: 38026174 PMCID: PMC10665822 DOI: 10.1016/j.isci.2023.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matheus Sadovsky
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Li S, Chen Y, Xie Y, Zhan H, Zeng Y, Zeng K, Wang L, Zhan Z, Li C, Zhao L, Chen X, Tan Y, Wang Z, Bu J, Song Y, Deng F, Zhou A. FBXO7 Confers Mesenchymal Properties and Chemoresistance in Glioblastoma by Controlling Rbfox2-Mediated Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303561. [PMID: 37822160 PMCID: PMC10667838 DOI: 10.1002/advs.202303561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Mesenchymal glioblastoma (GBM) is highly resistant to radio-and chemotherapy and correlates with worse survival outcomes in GBM patients; however, the underlying mechanism determining the mesenchymal phenotype remains largely unclear. Herein, it is revealed that FBXO7, a substrate-recognition component of the SCF complex implicated in the pathogenesis of Parkinson's disease, confers mesenchymal properties and chemoresistance in GBM by controlling Rbfox2-mediated alternative splicing. Specifically, FBXO7 ubiquitinates Rbfox2 Lys249 through K63-linked ubiquitin chains upon arginine dimethylation at Arg341 and Arg441 by PRMT5, leading to Rbfox2 stabilization. FBXO7 controls Rbfox2-mediated splicing of mesenchymal genes, including FoxM1, Mta1, and Postn. FBXO7-induced exon Va inclusion of FoxM1 promotes FoxM1 phosphorylation by MEK1 and nuclear translocation, thereby upregulates CD44, CD9, and ID1 levels, resulting in GBM stem cell self-renewal and mesenchymal transformation. Moreover, FBXO7 is stabilized by temozolomide, and FBXO7 depletion sensitizes tumor xenografts in mice to chemotherapy. The findings demonstrate that the FBXO7-Rbfox2 axis-mediated splicing contributes to mesenchymal transformation and tumorigenesis, and targeting FBXO7 represents a potential strategy for GBM treatment.
Collapse
Affiliation(s)
- Shangbiao Li
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yanwen Chen
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yuxin Xie
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Hongchao Zhan
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yu Zeng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Kunlin Zeng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Li Wang
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Ziling Zhan
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Cuiying Li
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Liqian Zhao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xiaoxia Chen
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Yujing Tan
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Zhongyong Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhou215004China
| | - Junguo Bu
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Ye Song
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fan Deng
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
| | - Aidong Zhou
- Department of Radiation OncologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Department of Cell BiologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhou510515China
- Guangdong Province Key Laboratory of Molecular Tumor PathologySouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
14
|
Ura H, Togi S, Niida Y. Target-capture full-length double-stranded cDNA long-read sequencing through Nanopore revealed novel intron retention in patient with tuberous sclerosis complex. Front Genet 2023; 14:1256064. [PMID: 37829285 PMCID: PMC10565506 DOI: 10.3389/fgene.2023.1256064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a relatively common autosomal dominant disorder characterized by multiple dysplastic organ lesions and neuropsychiatric symptoms caused by loss-of-function mutation of either TSC1 or TSC2. The genetic diagnosis of inherited diseases, including TSC, in the clinical field is widespread using next-generation sequencing. The mutations in protein-coding exon tend to be verified because mutations directly cause abnormal protein. However, it is relatively difficult to verify mutations in the intron region because it is required to investigate whether the intron mutations affect the abnormal splicing of transcripts. In this study, we developed a target-capture full-length double-stranded cDNA sequencing method using Nanopore long-read sequencer (Nanopore long-read target sequencing). This method revealed the occurrence of intron mutation in the TSC2 gene and found that the intron mutation produces novel intron retention splicing transcripts that generate truncated proteins. The protein-coding transcripts were decreased due to the expression of the novel intron retention transcripts, which caused TSC in patients with the intron mutation. Our results indicate that Nanopore long-read target sequencing is useful for the detection of mutations and confers information on the full-length alternative splicing of transcripts for genetic diagnosis.
Collapse
Affiliation(s)
- Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
15
|
Deng K, Liu Z, Su Y, Zhang Z, Fan Y, Zhang Y, Wang F. RUNX1T1 modulates myogenic differentiation by regulating the calcium signaling pathway and the alternative splicing of ROCK2. FASEB J 2023; 37:e23044. [PMID: 37342905 DOI: 10.1096/fj.202300677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yalong Su
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Joglekar A, Foord C, Jarroux J, Pollard S, Tilgner HU. From words to complete phrases: insight into single-cell isoforms using short and long reads. Transcription 2023; 14:92-104. [PMID: 37314295 PMCID: PMC10807471 DOI: 10.1080/21541264.2023.2213514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
The profiling of gene expression patterns to glean biological insights from single cells has become commonplace over the last few years. However, this approach overlooks the transcript contents that can differ between individual cells and cell populations. In this review, we describe early work in the field of single-cell short-read sequencing as well as full-length isoforms from single cells. We then describe recent work in single-cell long-read sequencing wherein some transcript elements have been observed to work in tandem. Based on earlier work in bulk tissue, we motivate the study of combination patterns of other RNA variables. Given that we are still blind to some aspects of isoform biology, we suggest possible future avenues such as CRISPR screens which can further illuminate the function of RNA variables in distinct cell populations.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Shaun Pollard
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Cai S, Si N, Wang Y, Yin N. Transcriptomic analysis of the upper lip and primary palate development in mice. Front Genet 2023; 13:1039850. [PMID: 36685938 PMCID: PMC9852879 DOI: 10.3389/fgene.2022.1039850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Normal fusion of the upper lip and primary palate is a complex process involving a series of characteristic and orderly regulated cellular events. Cleft lip with or without palate (CL/P), one of the most common congenital malformations, may be induced by abnormalities in any of these events. However, less is known about the precise regulatory process in the fusion of the upper lip and primary palate. Methods: Lambdoidal junction tissues of mice from embryonic days 10.5, 11.5, and 12.5- three key fusion stages-were acquired for RNA sequencing. Results: Gene expression profiles in distinct fusion stages of mice were identified. Some of the differentially expressed genes (DEGs) have been reported to affect upper lip and primary palate development. However, other DEGs, such as Krt5, Pax1, Ambn, Hey2, and Tnmd, have not previously been investigated. Gene set enrichment analysis (GSEA) of these DEGs revealed the sequential intensification of Wnt, PI3K-Akt, MAPK, Hippo, and TGF-beta signaling pathways and identified relatively highly expressed genes including Tnn, Wnt3a, and Wnt16. We also observed substantial alternative splicing events during the fusion of the upper lip and primary palate and identified potentially important genes including Gtpbp8, Armcx1, Tle3, and Numa1. Protein-protein interaction (PPI) network analysis identified a series of hub genes, including Col1a2, Fos, Bmp2, Shh, Col1a1, Wnt3a, Anxa1, Gem, etc. Conclusion: Overall, the results of this study provided a comprehensive analysis of the development of the upper lip and primary palate. Our work provides insight into future studies of normal upper lip and primary palate development and the etiology of CL/P.
Collapse
Affiliation(s)
- Sini Cai
- The Department of Cleft Lip and Palate of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nuo Si
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanyang Wang
- The Department of Cleft Lip and Palate of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Ningbei Yin,
| |
Collapse
|
18
|
Wiedner HJ, Torres EV, Blue RE, Tsai Y, Parker J, Giudice J. SET domain containing 2 (SETD2) influences metabolism and alternative splicing during myogenesis. FEBS J 2022; 289:6799-6816. [PMID: 35724320 PMCID: PMC9796740 DOI: 10.1111/febs.16553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
Epigenetic regulatory mechanisms are increasingly recognized as crucial determinants of cellular specification and differentiation. During muscle cell differentiation (myogenesis), extensive remodelling of histone acetylation and methylation occurs. Several of these histone modifications aid in the expression of muscle-specific genes and the silencing of genes that block lineage commitment. Therefore, the identification of new epigenetic regulatory mechanisms is of high interest. Still, the functional relevance of numerous histone modifications during myogenesis remain completely uncertain. In this study, we focus on the function of H3K36me3 and its epigenetic writer, SET domain containing 2 (SETD2), in the context of muscle cell differentiation. We first observed that SETD2 expression increases during myogenesis. Targeted depletion of SETD2 in undifferentiated (myoblasts) and differentiated (myotubes) muscle cells reduced H3K36me3 levels and induced profound changes in gene expression and slight alterations in alternative splicing, as determined by deep RNA-sequencing analysis. Enzymes that function in metabolic pathways were upregulated in response to SETD2 depletion. Furthermore, we demonstrated that upregulation of several glycolytic enzymes was associated with an increase in intracellular pyruvate levels in SETD2-depleted cells, indicating a novel role for SETD2 in metabolic programming during myogenesis. Together, our results provide new insight into the signalling pathways controlled by chromatin-modifying enzymes and their associated histone modifications during muscle cell differentiation.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA,Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA
| | - Eduardo V. Torres
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA
| | - R. Eric Blue
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA
| | - Yi‐Hsuan Tsai
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillUSA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA,Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillUSA
| | - Jimena Giudice
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA,Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA,McAllister Heart Institute, School of MedicineThe University of North Carolina at Chapel HillUSA
| |
Collapse
|
19
|
Wheeler JR, Whitney ON, Vogler TO, Nguyen ED, Pawlikowski B, Lester E, Cutler A, Elston T, Dalla Betta N, Parker KR, Yost KE, Vogel H, Rando TA, Chang HY, Johnson AM, Parker R, Olwin BB. RNA-binding proteins direct myogenic cell fate decisions. eLife 2022; 11:e75844. [PMID: 35695839 PMCID: PMC9191894 DOI: 10.7554/elife.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.
Collapse
Affiliation(s)
- Joshua R Wheeler
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Neuropathology, Stanford UniversityStanfordUnited States
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Thomas O Vogler
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
- Department of Surgery, University of ColoradoAuroraUnited States
| | - Eric D Nguyen
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Bradley Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Evan Lester
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Alicia Cutler
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Tiffany Elston
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Nicole Dalla Betta
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Kevin R Parker
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Kathryn E Yost
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Hannes Vogel
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of MedicineStanfordUnited States
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care SystemPalo AltoUnited States
| | - Howard Y Chang
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Aaron M Johnson
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado School of Medicine, RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Roy Parker
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
20
|
LncRNA MIAT Promotes Spinal Cord Injury Recovery in Rats by Regulating RBFOX2-Mediated Alternative Splicing of MCL-1. Mol Neurobiol 2022; 59:4854-4868. [PMID: 35641779 DOI: 10.1007/s12035-022-02896-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
LncRNA myocardial infarction-associated transcript (MIAT) alleviates acute spinal cord injury (ASCI)-induced neuronal cell apoptosis, but the specific mechanism of it involved in regulating SCI progression needs further exploration. Here, a SCI rat model was established, followed by administration with adenovirus-mediated MIAT overexpression vector (Ad-MIAT) alone or together with Ad-RBFOX2 (RNA binding fox-1 homolog 2). The data indicated that MIAT overexpression promoted motor function recovery, improved morphology of injured tissues, and restrained neuron loss and cell apoptosis in SCI rats. Then, PC-12 cells were treated with H2O2 to induce cell injury. And highly expressed MIAT suppressed H2O2-caused decrease in cell viability and increase in cell apoptosis. MIAT stabilized RBFOX2 protein expression by binding to RBFOX2, thereby promoting RBFOX2-induced upregulation of anti-apoptotic MCL-1L (myeloid cell leukemia sequence 1) and reduction of pro-apoptotic MCL-1S. And silencing RBFOX2 in vitro blocked the inhibitory effect of MIAT on cell apoptosis. Moreover, MCL-1-specific steric-blocking oligonucleotides (SBOs) were used to transfer the MCL-1 pre-mRNA splicing pattern from MCL-1L to MCL-1S. SBOs reversed the protection effect of RBFOX2 overexpression on H2O2-induced cell injury. Furthermore, overexpression of MCL-1L instead of MCL-1S facilitated autophagy activation in H2O2-stimulated cells. Interestingly, co-overexpression of MIAT and RBFOX2 had a better promoting effect on SCI recovery. In conclusion, MIAT mitigated SCI by promoting RBFOX2-mediated alternative splicing of MCL-1. Our findings might provide a promising therapeutic target for SCI.
Collapse
|
21
|
Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals (Basel) 2022; 12:ani12111356. [PMID: 35681821 PMCID: PMC9204547 DOI: 10.3390/ani12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.
Collapse
|
22
|
Ura H, Togi S, Niida Y. A comparison of mRNA sequencing (RNA-Seq) library preparation methods for transcriptome analysis. BMC Genomics 2022; 23:303. [PMID: 35418012 PMCID: PMC9008973 DOI: 10.1186/s12864-022-08543-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND mRNA sequencing is a powerful technique, which is used to investigate the transcriptome status of a gene of interest, such as its transcription level and splicing variants. Presently, several RNA sequencing (RNA-Seq) methods have been developed; however, the relative advantage of each method has remained unknown. Here we used three commercially available RNA-Seq library preparation kits; the traditional method (TruSeq), in addition to full-length double-stranded cDNA methods (SMARTer and TeloPrime) to investigate the advantages and disadvantages of these three approaches in transcriptome analysis. RESULTS We observed that the number of expressed genes detected from the TeloPrime sequencing method was fewer than that obtained using the TruSeq and SMARTer. We also observed that the expression patterns between TruSeq and SMARTer correlated strongly. Alternatively, SMARTer and TeloPrime methods underestimated the expression of relatively long transcripts. Moreover, genes having low expression levels were undetected stochastically regardless of any three methods used. Furthermore, although TeloPrime detected a significantly higher proportion at the transcription start site (TSS), its coverage of the gene body was not uniform. SMARTer is proposed to be yielded for nonspecific genomic DNA amplification. In contrast, the detected splicing event number was highest in the TruSeq. The percent spliced in index (PSI) of the three methods was highly correlated. CONCLUSIONS TruSeq detected transcripts and splicing events better than the other methods and measured expression levels of genes, in addition to splicing events accurately. However, although detected transcripts and splicing events in TeloPrime were fewer, the coverage at TSS was highest. Additionally, SMARTer was better than TeloPrime with regards to the detected number of transcripts and splicing events among the understudied full-length double-stranded cDNA methods. In conclusion, for short-read sequencing, TruSeq has relative advantages for use in transcriptome analysis.
Collapse
Affiliation(s)
- Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan. .,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan.
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan.,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan.,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0923, Japan
| |
Collapse
|
23
|
Hinkle ER, Wiedner HJ, Torres EV, Jackson M, Black AJ, Blue RE, Harris SE, Guzman BB, Gentile GM, Lee EY, Tsai YH, Parker J, Dominguez D, Giudice J. Alternative splicing regulation of membrane trafficking genes during myogenesis. RNA (NEW YORK, N.Y.) 2022; 28:523-540. [PMID: 35082143 PMCID: PMC8925968 DOI: 10.1261/rna.078993.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eduardo V Torres
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Micaela Jackson
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
24
|
The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. Int J Mol Sci 2022; 23:ijms23052517. [PMID: 35269658 PMCID: PMC8909990 DOI: 10.3390/ijms23052517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing, the process by which exons within a pre-mRNA transcript are differentially joined or skipped, is crucial in skeletal muscle since it is required both during myogenesis and in post-natal life to reprogram the transcripts of contractile proteins, metabolic enzymes, and transcription factors in functionally distinct muscle fiber types. The importance of such events is underlined by the numerosity of pathological conditions caused by alternative splicing aberrations. Importantly, many skeletal muscle Ca2+ homeostasis genes are also regulated by alternative splicing mechanisms, among which is the Mitochondrial Ca2+ Uniporter (MCU) genuine activator MICU1 which regulates MCU opening upon cell stimulation. We have previously shown that murine skeletal muscle MICU1 is subjected to alternative splicing, thereby generating a splice variant-which was named MICU1.1-that confers unique properties to the mitochondrial Ca2+ uptake and ensuring sufficient ATP production for muscle contraction. Here we extended the analysis of MICU1 alternative splicing to human tissues, finding two additional splicing variants that were characterized by their ability to regulate mitochondrial Ca2+ uptake. Furthermore, we found that MICU1 alternative splicing is induced during myogenesis by the splicing factor RBFOX2. These results highlight the complexity of the alternative splicing mechanisms in skeletal muscle and the regulation of mitochondrial Ca2+ among tissues.
Collapse
|
25
|
Choi S, Cho N, Kim KK. Non-canonical splice junction processing increases the diversity of RBFOX2 splicing isoforms. Int J Biochem Cell Biol 2022; 144:106172. [PMID: 35124219 DOI: 10.1016/j.biocel.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
The underlying mechanisms of splicing regulation through non-canonical splice junction processing remain largely unknown. Here, we identified two RBFOX2 splicing isoforms by alternative 3' splice site selection of exon 9; the non-canonical splice junction processed RBFOX2 transcript (RBFOX2-N.C.) was expressed by the selection of the 3' splice GG acceptor sequence. The cytoplasmic localization of RBFOX2-C., a canonical splice junction-processed RBFOX2 transcript, was different from that of RBFOX2-N.C., which showed nuclear localization. In addition, we confirmed that RBFOX2-C. showed a significantly stronger localization into stress granules than RBFOX2-N.C. upon sodium arsenite treatment. Next, we investigated the importance of non-canonical 3' splice GG sequence selection of specific cis-regulatory elements using minigene constructs of the RBFOX2 gene. We found that the non-canonical 3' splice GG sequence and suboptimal branch point site adjacent region were critical for RBFOX2-N.C. expression through a non-canonical 3' splice selection. Our results suggest a regulatory mechanism for the non-canonical 3' splice selection in the RBFOX2 gene, providing a basis for studies related to the regulation of alternative pre-mRNA splicing through non-canonical splice junction processing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
26
|
Wang F, Tan P, Zhang P, Ren Y, Zhou J, Li Y, Hou S, Li S, Zhang L, Ma Y, Wang C, Tang W, Wang X, Huo Y, Hu Y, Cui T, Niu C, Wang D, Liu B, Lan Y, Yu J. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. SCIENCE ADVANCES 2022; 8:eabg5369. [PMID: 34995116 PMCID: PMC8741192 DOI: 10.1126/sciadv.abg5369] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Shuaili Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Linlin Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanbo Tang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| |
Collapse
|
27
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
28
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
29
|
Cao J, Verma SK, Jaworski E, Mohan S, Nagasawa CK, Rayavara K, Sooter A, Miller SN, Holcomb RJ, Powell MJ, Ji P, Elrod ND, Yildirim E, Wagner EJ, Popov V, Garg NJ, Routh AL, Kuyumcu-Martinez MN. RBFOX2 is critical for maintaining alternative polyadenylation patterns and mitochondrial health in rat myoblasts. Cell Rep 2021; 37:109910. [PMID: 34731606 PMCID: PMC8600936 DOI: 10.1016/j.celrep.2021.109910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Mohan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chloe K Nagasawa
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kempaiah Rayavara
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda Sooter
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sierra N Miller
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Richard J Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mason J Powell
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience, Cell biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
30
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
31
|
Freitag N, Xie Y, Adam LM, Borowski S, Blois SM, Barrientos G. Expression of the alternative splicing regulator Rbfox2 during placental development is differentially regulated in preeclampsia mouse models. Am J Reprod Immunol 2021; 86:e13491. [PMID: 34363260 DOI: 10.1111/aji.13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Proper placental development is pivotal to ensure healthy pregnancy outcomes. Among the multiple cellular mechanisms involved in the orchestration of this process, little is known on the role of alternative splicing events in the modulation of trophoblast cell biology. Here, we evaluated the expression of the alternative splicing regulator Rbfox2 in the pre- and post-placentation period in mouse pregnancies in both healthy and pathological settings. METHOD OF STUDY Immunofluorescence analysis of Rbfox2 expression in mouse implantation sites collected during the pre-placentation period (E5-E7) and post-placentation (E13). RESULTS We identified a progressive increase of Rbfox2 levels throughout the peri-implantation period with a shift from a cytoplasmatic expression on E5-E6 to a predominantly nuclear expression on E7, together with a prominent expression of this factor in both subcellular compartments of the primitive placenta. Our results further showed that in contrast to healthy gestations, Rbfox2 expression decreased in preeclamptic models during the post-placentation period. Finally, we further demonstrated enhanced expression of Rbfox2 proteins in allogeneic pregnancy compared to syngeneic models. CONCLUSIONS Our findings uncover a novel role for Rbfox2-controlled splicing events in the modulation of trophoblast function, with potential implications for the pathogenesis of preeclampsia and other pregnancy complications originated from defective placentation.
Collapse
Affiliation(s)
- Nancy Freitag
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, AG GlycoImmunology, and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Reproductive Medicine Center, Taihe Hospital, Hubei Medical University, Shiyan, China
| | - Lisa-Marie Adam
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophia Borowski
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, AG GlycoImmunology, and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Luo C, Xu X, Liu C, He S, Chen J, Feng Y, Liu S, Peng W, Zhou Y, Liu Y, Wei P, Li B, Mai H, Xia X, Bei J. RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004852. [PMID: 34180133 PMCID: PMC8373120 DOI: 10.1002/advs.202004852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/29/2021] [Indexed: 05/05/2023]
Abstract
20-30% of patients with nasopharyngeal carcinoma (NPC) develop distant metastasis or recurrence leading to poor survival, of which the underlying key molecular events have yet to be addressed. Here alternative splicing events in 85 NPC samples are profiled using transcriptome analysis and it is revealed that the long isoform of GOLIM4 (-L) with exon-7 is highly expressed in NPC and associated with poor prognosis. Lines of evidence demonstrate the pro-tumorigenic function of GOLIM4-L in NPC cells. It is further revealed that RBFOX2 binds to a GGAA motif in exon-7 and promotes its inclusion forming GOLIM4-L. RBFOX2 knockdown suppresses the tumorigenesis of NPC cells, phenocopying GOLIM4-L knockdown, which is significantly rescued by GOLIM4-L overexpression. High expression of RBFOX2 is correlated with the exon-7 inclusion of GOLIM4 in NPC biopsies and associated with worse prognosis. It is observed that RBFOX2 and GOLIM4 can influence vesicle-mediated transport through maintaining the organization of Golgi apparatus. Finally, it is revealed that RAB26 interacts with GOLIM4 and mediates its tumorigenic potentials in NPC cells. Taken together, the findings provide insights into how alternative splicing contributes to NPC development, by highlighting a functional link between GOLIM4-L and its splicing regulator RBFOX2 activating vesicle-mediated transport involving RAB26.
Collapse
Affiliation(s)
- Chun‐Ling Luo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Xiao‐Chen Xu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Chu‐Jun Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Shuai He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Jie‐Rong Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Yan‐Chun Feng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Shu‐Qiang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Wan Peng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Ya‐Qing Zhou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Yu‐Xiang Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Pan‐Pan Wei
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Bo Li
- Department of Biochemistry and Molecular BiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Hai‐Qiang Mai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
| | - Xiao‐Jun Xia
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jin‐Xin Bei
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Medical OncologyNational Cancer Centre of SingaporeSingapore169610Singapore
| |
Collapse
|
33
|
Cao J, Routh AL, Kuyumcu-Martinez MN. Nanopore sequencing reveals full-length Tropomyosin 1 isoforms and their regulation by RNA-binding proteins during rat heart development. J Cell Mol Med 2021; 25:8352-8362. [PMID: 34302435 PMCID: PMC8419188 DOI: 10.1111/jcmm.16795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short‐read RNA‐sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full‐length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin‐binding protein required for cytoskeletal functions in non‐muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non‐muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full‐length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long‐read cDNA sequencing without gene‐specific PCR amplification. In rat hearts, we identified full‐length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle‐specific exons are connected generating predominantly muscle‐specific Tpm1 isoforms in adult hearts. We found that the RNA‐binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA‐binding protein PTBP1. In sum, we defined full‐length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into the regulation of Tpm1 AS by RNA‐binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine full‐length AS variants of muscle‐enriched genes.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
34
|
Zhou D, Couture S, Scott MS, Abou Elela S. RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners. Nucleic Acids Res 2021; 49:8370-8383. [PMID: 34244793 PMCID: PMC8373071 DOI: 10.1093/nar/gkab595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/12/2022] Open
Abstract
RBFOX2 controls the splicing of a large number of transcripts implicated in cell differentiation and development. Parsing RNA-binding protein datasets, we uncover that RBFOX2 can interact with hnRNPC, hnRNPM and SRSF1 to regulate splicing of a broad range of splicing events using different sequence motifs and binding modes. Using immunoprecipitation, specific RBP knockdown, RNA-seq and splice-sensitive PCR, we show that RBFOX2 can target splice sites using three binding configurations: single, multiple or secondary modes. In the single binding mode RBFOX2 is recruited to its target splice sites through a single canonical binding motif, while in the multiple binding mode RBFOX2 binding sites include the adjacent binding of at least one other RNA binding protein partner. Finally, in the secondary binding mode RBFOX2 likely does not bind the RNA directly but is recruited to splice sites lacking its canonical binding motif through the binding of one of its protein partners. These dynamic modes bind distinct sets of transcripts at different positions and distances relative to alternative splice sites explaining the heterogeneity of RBFOX2 targets and splicing outcomes.
Collapse
Affiliation(s)
- Delong Zhou
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sonia Couture
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
35
|
Lee JS, Lamarche-Vane N, Richard S. Microexon alternative splicing of small GTPase regulators: Implication in central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1678. [PMID: 34155820 DOI: 10.1002/wrna.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion. The functional consequences of including microexons within mRNAs have been extensively documented in the central nervous system (CNS) and aberrations in their inclusion have been observed to lead to abnormal processes. Despite the increasing evidence for microexons impacting cellular physiology within CNS, mechanistic details illustrating their functional importance in diseases of the CNS is still limited. In this review, we discuss the unique characteristics of microexons, and how RBPs participate in regulating their inclusion and exclusion during splicing. We consider recent findings of microexon alternative splicing and their implication for regulating the function of small GTPases in the context of the microglia, and we extrapolate these findings to what is known in neurons. We further discuss the emerging evidence for dysregulation of the Rho GTPase pathway in CNS diseases and the consequences contributed by the mis-splicing of microexons. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Jee-San Lee
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Chen J, Liu Y, Min J, Wang H, Li F, Xu C, Gong A, Xu M. Alternative splicing of lncRNAs in human diseases. Am J Cancer Res 2021; 11:624-639. [PMID: 33791145 PMCID: PMC7994174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023] Open
Abstract
Alternative splicing (AS), a vital post-transcription process for eukaryote gene expression regulating, can efficiently improve gene utilization and increase the variety of RNA transcripts and proteins. However, AS of non-coding RNAs (ncRNAs) has not been paid enough attention to compared with that of protein-coding RNAs (mRNAs) for a long time. In fact, AS of ncRNAs, especially long noncoding RNAs (lncRNAs), also plays a significant regulatory role in the human disease. Recently, some bifunctional genes transcribed into both mRNA and lncRNA transcripts by AS have been observed. Here, we focus on the AS of lncRNAs and bifunctional genes producing lncRNA transcripts and propose a strategy for the future research of lncRNA AS.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Jingyu Min
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Chunhui Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
37
|
Ura H, Togi S, Niida Y. Target-capture full-length double-strand cDNA sequencing for alternative splicing analysis. RNA Biol 2021; 18:1600-1607. [PMID: 33472537 DOI: 10.1080/15476286.2021.1872961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing is a regulated process by which eukaryotic genes may produce diverse biological products. Defects in the process typically affect cellular function and can lead to disease. Next-generation sequencing (NGS) technologies have been developed to detect alternative splicing events; however, the alternative splicing events detected by standard RNA-Seq may or may not be derived from full-length RNA. The SMARTer method provides full-length double-strand cDNA synthesis, and the resulting gene expression patterns correlate strongly with standard RNA-Seq. However, it also yields non-specific genomic DNA amplification. We improved the SMARTer method by employing a target-capture full-length double-strand cDNA sequencing method. High-fidelity, full-length cDNA is generated by the SMARTer method, followed by target-specific capture with exon probes. The expression pattern observed with this SMARTer Capture method was highly correlated with the results of the original SMARTer method. The number and accuracy of the detected splicing events were increased by eliminating non-specific genomic DNA amplification by the SMARTer Capture. Compared to the original SMARTer method, the SMARTer Capture provided 4-fold greater detection of alternative splicing events at the same read number, and it took less than 1/100 of read number to detect the same number of splicing events. The percent splicing in index (PSI) of the SMARTer Capture is highly correlated with the PSI of the SMARTer. These results indicate that the SMARTer Capture represents an improvement of the SMARTer method to accurately characterize alternative splicing repertories in targeted genes without biases.
Collapse
Affiliation(s)
- Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan.,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan.,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan.,Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
38
|
Farboud B, Novak CS, Nicoll M, Quiogue A, Meyer BJ. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex. eLife 2020; 9:62963. [PMID: 33372658 PMCID: PMC7787662 DOI: 10.7554/elife.62963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.
Collapse
Affiliation(s)
- Behnom Farboud
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Catherine S Novak
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Monique Nicoll
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Alyssa Quiogue
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Barbara J Meyer
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
39
|
Smith JA, Curry EG, Blue RE, Roden C, Dundon SER, Rodríguez-Vargas A, Jordan DC, Chen X, Lyons SM, Crutchley J, Anderson P, Horb ME, Gladfelter AS, Giudice J. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. J Cell Biol 2020; 219:133869. [PMID: 32328638 PMCID: PMC7147106 DOI: 10.1083/jcb.201911129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile-X mental retardation autosomal homologue-1 (FXR1) is a muscle-enriched RNA-binding protein. FXR1 depletion is perinatally lethal in mice, Xenopus, and zebrafish; however, the mechanisms driving these phenotypes remain unclear. The FXR1 gene undergoes alternative splicing, producing multiple protein isoforms and mis-splicing has been implicated in disease. Furthermore, mutations that cause frameshifts in muscle-specific isoforms result in congenital multi-minicore myopathy. We observed that FXR1 alternative splicing is pronounced in the serine- and arginine-rich intrinsically disordered domain; these domains are known to promote biomolecular condensation. Here, we show that tissue-specific splicing of fxr1 is required for Xenopus development and alters the disordered domain of FXR1. FXR1 isoforms vary in the formation of RNA-dependent biomolecular condensates in cells and in vitro. This work shows that regulation of tissue-specific splicing can influence FXR1 condensates in muscle development and how mis-splicing promotes disease.
Collapse
Affiliation(s)
- Jean A Smith
- Department of Biology, Stetson University, DeLand, FL.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ennessa G Curry
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - R Eric Blue
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samantha E R Dundon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Anthony Rodríguez-Vargas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Danielle C Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Xiaomin Chen
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - John Crutchley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jimena Giudice
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
40
|
Heyl F, Maticzka D, Uhl M, Backofen R. Galaxy CLIP-Explorer: a web server for CLIP-Seq data analysis. Gigascience 2020; 9:giaa108. [PMID: 33179042 PMCID: PMC7657819 DOI: 10.1093/gigascience/giaa108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Post-transcriptional regulation via RNA-binding proteins plays a fundamental role in every organism, but the regulatory mechanisms lack important understanding. Nevertheless, they can be elucidated by cross-linking immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). CLIP-Seq answers questions about the functional role of an RNA-binding protein and its targets by determining binding sites on a nucleotide level and associated sequence and structural binding patterns. In recent years the amount of CLIP-Seq data skyrocketed, urging the need for an automatic data analysis that can deal with different experimental set-ups. However, noncanonical data, new protocols, and a huge variety of tools, especially for peak calling, made it difficult to define a standard. FINDINGS CLIP-Explorer is a flexible and reproducible data analysis pipeline for iCLIP data that supports for the first time eCLIP, FLASH, and uvCLAP data. Individual steps like peak calling can be changed to adapt to different experimental settings. We validate CLIP-Explorer on eCLIP data, finding similar or nearly identical motifs for various proteins in comparison with other databases. In addition, we detect new sequence motifs for PTBP1 and U2AF2. Finally, we optimize the peak calling with 3 different peak callers on RBFOX2 data, discuss the difficulty of the peak-calling step, and give advice for different experimental set-ups. CONCLUSION CLIP-Explorer finally fills the demand for a flexible CLIP-Seq data analysis pipeline that is applicable to the up-to-date CLIP protocols. The article further shows the limitations of current peak-calling algorithms and the importance of a robust peak detection.
Collapse
Affiliation(s)
- Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Am J Cancer Res 2020; 10:11159-11177. [PMID: 33042276 PMCID: PMC7532667 DOI: 10.7150/thno.44389] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The adult skeletal muscle can self-repair efficiently following mechanical or pathological damage due to its remarkable regenerative capacity. However, regulatory mechanisms underlying muscle regeneration are complicated and have not been fully elucidated. Alternative splicing (AS) is a major mechanism responsible for post-transcriptional regulation. Many aberrant AS events have been identified in patients with muscular dystrophy which is accompanied by abnormal muscle regeneration. However, little is known about the correlation between AS and muscle regeneration. It has been reported that RNA binding motif protein 24 (Rbm24), a tissue-specific splicing factor, is involved in embryo myogenesis while the role of Rbm24 in adult myogenesis (also called muscle regeneration) is poorly understood. Methods: To investigate the role of Rbm24 in adult skeletal muscle, we generated Rbm24 conditional knockout mice and satellite cell-specific knockout mice. Furthermore, a cardiotoxin (CTX)-induced injury model was utilized to assess the effects of Rbm24 on skeletal muscle regeneration. Genome-wide RNA-Seq was performed to identify the changes in AS following loss of Rbm24. Results: Rbm24 knockout mice displayed abnormal regeneration 4 months after tamoxifen treatment. Using RNA-Seq, we found that Rbm24 regulated a complex network of AS events involved in multiple biological processes, including myogenesis, muscle regeneration and muscle hypertrophy. Moreover, using a CTX-induced injury model, we showed that loss of Rbm24 in skeletal muscle resulted in myogenic fusion and differentiation defects and significantly delayed muscle regeneration. Furthermore, satellite cell-specific Rbm24 knockout mice recapitulated the defects in regeneration seen in the global Rbm24 knockout mice. Importantly, we demonstrated that Rbm24 regulated AS of Mef2d, Naca, Rock2 and Lrrfip1 which are essential for myogenic differentiation and muscle regeneration. Conclusions: The present study demonstrated that Rbm24 regulates dynamic changes in AS and is essential for adult skeletal muscle regeneration.
Collapse
|
42
|
Sulakhe D, D'Souza M, Wang S, Balasubramanian S, Athri P, Xie B, Canzar S, Agam G, Gilliam TC, Maltsev N. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform 2020; 20:1754-1768. [PMID: 29931155 DOI: 10.1093/bib/bby047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the emphasis of scientific inquiry has shifted from whole-genome analyses to an understanding of cellular responses specific to tissue, developmental stage or environmental conditions. One of the central mechanisms underlying the diversity and adaptability of the contextual responses is alternative splicing (AS). It enables a single gene to encode multiple isoforms with distinct biological functions. However, to date, the functions of the vast majority of differentially spliced protein isoforms are not known. Integration of genomic, proteomic, functional, phenotypic and contextual information is essential for supporting isoform-based modeling and analysis. Such integrative proteogenomics approaches promise to provide insights into the functions of the alternatively spliced protein isoforms and provide high-confidence hypotheses to be validated experimentally. This manuscript provides a survey of the public databases supporting isoform-based biology. It also presents an overview of the potential global impact of AS on the human canonical gene functions, molecular interactions and cellular pathways.
Collapse
Affiliation(s)
- Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Genentech, Inc. 1 DNA Way, Mail Stop: 35-6J, South San Francisco, CA, USA
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, Kasavanahalli, Carmelaram P.O., Bengaluru, Karnataka, India
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Stefan Canzar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| |
Collapse
|
43
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Denichenko P, Jbara A, Karni R, Ariel I, Yagel S. Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta 2020; 100:142-149. [PMID: 32762877 DOI: 10.1016/j.placenta.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.
Collapse
Affiliation(s)
- Debra Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Caryn Greenfield
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Eisenberg-Loebl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Denichenko
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Amina Jbara
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rotem Karni
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Ilana Ariel
- Department of Pathology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
44
|
Microexons: at the nexus of nervous system development, behaviour and autism spectrum disorder. Curr Opin Genet Dev 2020; 65:22-33. [PMID: 32535349 DOI: 10.1016/j.gde.2020.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The discovery and characterization of a network of highly conserved neuronal microexons has provided fundamental new insight into mechanisms underlying nervous system development and function, as well as an important basis for pathway convergence in autism spectrum disorder. In the past few years, considerable progress has been made in comprehensively determining the repertoires of factors that control neuronal microexons. These results have illuminated molecular mechanisms that activate the splicing of microexons, including those that control gene expression programs critical for neurogenesis, as well as synaptic protein translation and neuronal activity. Remarkably, individual disruption of specific microexons in these pathways results in autism-like phenotypes and cognitive impairment in mice. This review discusses these findings and their implications for delivering new therapeutic strategies for neurological disorders.
Collapse
|
45
|
Misra C, Bangru S, Lin F, Lam K, Koenig SN, Lubbers ER, Hedhli J, Murphy NP, Parker DJ, Dobrucki LW, Cooper TA, Tajkhorshid E, Mohler PJ, Kalsotra A. Aberrant Expression of a Non-muscle RBFOX2 Isoform Triggers Cardiac Conduction Defects in Myotonic Dystrophy. Dev Cell 2020; 52:748-763.e6. [PMID: 32109384 PMCID: PMC7098852 DOI: 10.1016/j.devcel.2020.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals. Mice engineered to express the non-muscle RBFOX240 isoform in heart via tetracycline-inducible transgenesis, or CRISPR/Cas9-mediated genome editing, reproduced DM1-related cardiac conduction delay and spontaneous episodes of arrhythmia. Further, by integrating RNA binding with cardiac transcriptome datasets from DM1 patients and mice expressing the non-muscle RBFOX2 isoform, we identified RBFOX240-driven splicing defects in voltage-gated sodium and potassium channels, which alter their electrophysiological properties. Thus, our results uncover a trans-dominant role for an aberrantly expressed RBFOX240 isoform in DM1 cardiac pathogenesis.
Collapse
Affiliation(s)
- Chaitali Misra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Feikai Lin
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Kin Lam
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sara N Koenig
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ellen R Lubbers
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Nathaniel P Murphy
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Darren J Parker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
46
|
He L, Kang Z, Kang Y, Xiang W, Pan C, Chen H, Zhu H, Qu L, Lan X, Song X. Goat CMTM2: mRNA expression profiles of different alternative spliced variants and associations analyses with growth traits. 3 Biotech 2020; 10:131. [PMID: 32154044 DOI: 10.1007/s13205-020-2125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
CKLF like MARVEL transmembrane domain containing 2 (CMTM2) plays crucial roles in spermiogenesis, skeletogenous, growth, and development through PI3K/Akt and other pathways. The purpose of this study was to explore the expression profile and variation of different spliced CMTM2 gene in Shaanbei white cashmere goats, as well as to find the relationships between a CMTM2 promoter region 14 bp genetic variant and growth traits in 1366 Shaanbei white cashmere goats. In this study, we identified alternative CMTM2 splicing and detected the effects of the spliced variants on mRNA expression levels in tissues. Meanwhile, an unreported spliced variant of CMTM2 in goat was identified using in CDS cloning and RT-PCR, namely, CMTM2-AS2. Compared with the normal transcript (CMTM2-AS1), the novel variant had the higher expression level in muscle and liver tissues, indicating that it plays an effective role in growth traits. Furthermore, a 14 bp deletion was detected within CMTM2 promoter region, and the different genotypes were significantly associated with growth traits (e.g., body length, circumference of cannon bone) in the large group of 1366 individuals in Shaanbei white cashmere goats. We found that the body length of the individuals with II (n = 571) genotype had better phenotypes than those with DD (n = 118) and ID (n = 650) genotypes. These results have direct guiding significance for goat breeding in the future and provide a new idea for studying the characteristics and functions of CMTM2 gene in goats.
Collapse
|
47
|
Ouyang H, Yu J, Chen X, Wang Z, Nie Q. A novel transcript of MEF2D promotes myoblast differentiation and its variations associated with growth traits in chicken. PeerJ 2020; 8:e8351. [PMID: 32117604 PMCID: PMC7006513 DOI: 10.7717/peerj.8351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
Background Development of skeletal muscle is closely related to broiler production traits. The myocyte-specific enhancer binding factor (MEF) 2D gene (MEF2D) and its variant transcripts play important parts in myogenesis. Methods To identify the transcript variants of chicken MEF2D gene and their function, this study cloned chicken MEF2D gene and identified its transcript variants from different tissue samples. The expression levels of different transcripts of MEF2D gene in different tissues and different periods were measured, and their effects on myoblast proliferation and differentiation were investigated. Variations in MEF2D were identified and association analysis with chicken production traits carried out. Results Four novel transcript variants of MEF2D were obtained, all of which contained highly conserved sequences, including MADS-Box and MEF2-Domain functional regions. Transcript MEF2D-V4 was expressed specifically in muscle, and its expression was increased during embryonic muscle development. The MEF2D-V4 could promote differentiation of chicken myoblasts and its expression was regulated by RBFOX2. The single nucleotide polymorphism g.36186C > T generated a TAG stop codon, caused MEF2D-V4 to terminate translation early, and was associated with several growth traits, especially on early body weight. Conclusion We cloned the muscle-specific transcript of MEF2D and preliminarily revealed its role in embryonic muscle development.
Collapse
Affiliation(s)
- Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1565. [PMID: 31429211 PMCID: PMC7006490 DOI: 10.1002/wrna.1565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
RNA-protein interactions are pivotal for the regulation of gene expression from bacteria to human. RNA-protein interactions are dynamic; they change over biologically relevant timescales. Understanding the regulation of gene expression at the RNA level therefore requires knowledge of the dynamics of RNA-protein interactions. Here, we discuss the main experimental approaches to measure dynamic aspects of RNA-protein interactions. We cover techniques that assess dynamics of cellular RNA-protein interactions that accompany biological processes over timescales of hours or longer and techniques measuring the kinetic dynamics of RNA-protein interactions in vitro. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Evolution and Genomics > Ribonomics.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
49
|
Lee S, Cieply B, Yang Y, Peart N, Glaser C, Chan P, Carstens RP. Esrp1-Regulated Splicing of Arhgef11 Isoforms Is Required for Epithelial Tight Junction Integrity. Cell Rep 2019; 25:2417-2430.e5. [PMID: 30485810 PMCID: PMC6371790 DOI: 10.1016/j.celrep.2018.10.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
The epithelial-specific splicing regulators Esrp1 and Esrp2 are required for mammalian development, including establishment of epidermal barrier functions. However, the mechanisms by which Esrp ablation causes defects in epithelial barriers remain undefined. We determined that the ablation of Esrp1 and Esrp2 impairs epithelial tight junction (TJ) integrity through loss of the epithelial isoform of Rho GTP exchange factor Arhgef11. Arhgef11 is required for the maintenance of TJs via RhoA activation and myosin light chain (MLC) phosphorylation. Ablation or depletion of Esrp1/2 or Arhgef11 inhibits MLC phosphorylation and only the epithelial Arhgef11 isoform rescues MLC phosphorylation in Arhgef11 KO epithelial cells. Mesenchymal Arhgef11 transcripts contain a C-terminal exon that binds to PAK4 and inhibits RhoA activation byArhgef11. Deletion of the mesenchymal-specific Arhgef11 exon in Esrp1/2 KO epithelial cells using CRISPR/Cas9 restored TJ function, illustrating how splicing alterations can be mechanistically linked to disease phenotypes that result from impaired functions of splicing regulators.
Collapse
Affiliation(s)
- SungKyoung Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Cieply
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yueqin Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natoya Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl Glaser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Chan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis. Cell Rep 2019; 24:197-208. [PMID: 29972780 DOI: 10.1016/j.celrep.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Maintenance of skeletal muscle mass requires a dynamic balance between protein synthesis and tightly controlled protein degradation by the calpain, autophagy-lysosome, and ubiquitin-proteasome systems (proteostasis). Several sensing and gene-regulatory mechanisms act together to maintain this balance in response to changing conditions. Here, we show that deletion of the highly conserved Rbfox1 and Rbfox2 alternative splicing regulators in adult mouse skeletal muscle causes rapid, severe loss of muscle mass. Rbfox deletion did not cause a reduction in global protein synthesis, but it led to altered splicing of hundreds of gene transcripts, including capn3, which produced an active form of calpain3 protease. Rbfox knockout also led to a reduction in autophagy flux, likely producing a compensatory increase in general protein degradation by the proteasome. Our results indicate that the Rbfox-splicing factors are essential for the maintenance of skeletal muscle mass and proteostasis.
Collapse
|