1
|
Muñiz-Paredes F, Ishchuk OP, Petranovic D. Impact of liquid and solid-state cultures on hemoglobin production and oxidative state in Saccharomyces cerevisiae. J Biotechnol 2025; 400:1-7. [PMID: 39929304 DOI: 10.1016/j.jbiotec.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Recombinant human hemoglobin gained attention due to its potential use as a blood-free oxygen carrier substitute. To enhance human hemoglobin production in Saccharomyces cerevisiae, various genetic engineering strategies have been employed, including: increasing intracellular heme levels, minimizing heme and protein degradation pathways, and co-expressing the α-hemoglobin stabilizing protein (AHSP). Solid-state culture (SSC) may enhance hemoglobin production by increasing heme biosynthesis, as it relates to intracellular oxygen availability. A comparative analysis of heme and hemoglobin production was conducted between liquid culture (LC) and SSC using the S. cerevisiae AHSP strain. While both systems exhibited comparable heme and hemoglobin yields per cell, a significant 18 % increase in biomass was observed in SSC. The expression of the aerobic master gene HAP1 remained consistent between both systems, however, CYC1 (regulated by HAP1) was two-fold overexpressed in SSC, indicating higher oxygen transference and possibly more efficient electron transport. Several antioxidant genes were downregulated in the SSC, suggesting that LC may be more susceptible to electron leakage during oxidative phosphorylation, potentially due to the lower expression of CYC1. It is proposed that high expression of antioxidant genes in LC inhibits biomass production due to the metabolic burden of maintaining redox homeostasis. These differences between LC and SSC may explain the suitability of SSC as a platform for recombinant protein production.
Collapse
Affiliation(s)
- Facundo Muñiz-Paredes
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden.
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden.
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden; Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads, Lyngby 2800 Kgs, Denmark.
| |
Collapse
|
2
|
Zuttion S, Senger B, Panja C, Friant S, Kucharczyk R, Becker HD. Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 2024; 706:75-95. [PMID: 39455235 DOI: 10.1016/bs.mie.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Even if a myriad of approaches has been developed to identify the subcellular localization of a protein, the easiest and fastest way remains to fuse the protein to Green Fluorescent Protein (GFP) and visualize its location using fluorescence microscopy. However, this strategy is not well suited to visualize the organellar pools of proteins that are simultaneously localized both in the cytosol and in organelles because the GFP signal of a cytosolic pool of the protein (cytosolic echoform) will inevitably mask or overlay the GFP signal of the organellar pool of the protein (organellar echoform). To solve this issue, we engineered a dedicated yeast strain expressing a Bi-Genomic Mitochondrial-Split-GFP. This split-GFP is bi-genomic because the first ten ß-strands of GFP (GFPß1-10) are encoded by the mitochondrial genome and translated by mitoribosomes whereas the remaining ß-strand of GFP (GFPß11) is fused to the protein of interest encoded by the nucleus and expressed by cytosolic ribosomes. Consequently, if the GFPß11-tagged protein localizes into mitochondria, GFP will be reconstituted by self-assembly GFPß1-10 and GFPß11 thereby generating a GFP signal restricted to mitochondria and detectable by regular fluorescence microscopy. In addition, because mitochondrial translocases and import mechanisms are evolutionary well conserved, the BiG Mito-Split-GFP yeast strain can be used to probe mitochondrial importability of proteins regardless of their organismal origins and can thus serve to identify unsuspected mitochondrial echoforms readily from any organism.
Collapse
Affiliation(s)
- Solène Zuttion
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylvie Friant
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France.
| |
Collapse
|
3
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Čáp M, Palková Z. Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast? Cells 2024; 13:599. [PMID: 38607038 PMCID: PMC11012152 DOI: 10.3390/cells13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Collapse
Affiliation(s)
- Michal Čáp
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
de Potter B, Vallee I, Camacho N, Filipe Costa Póvoas L, Bonsembiante A, Pons i Pons A, Eckhard U, Gomis-Rüth FX, Yang XL, Schimmel P, Kuhle B, Ribas de Pouplana L. Domain collapse and active site ablation generate a widespread animal mitochondrial seryl-tRNA synthetase. Nucleic Acids Res 2023; 51:10001-10010. [PMID: 37638745 PMCID: PMC10570016 DOI: 10.1093/nar/gkad696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.
Collapse
Affiliation(s)
- Bastiaan de Potter
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Utrecht University Faculty of Science, Department of Biology, Theoretical Biology and Bioinformatics Utrecht, Utrecht, The Netherlands
| | - Ingrid Vallee
- The Scripps Research Institute, Department of Molecular Medicine La Jolla, CA, USA
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Luís Filipe Costa Póvoas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Aureliano Bonsembiante
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Alba Pons i Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Ulrich Eckhard
- Molecular Biology Institute of Barcelona, Department of Structural Biology, Barcelona, Catalunya, Spain
| | | | - Xiang-Lei Yang
- The Scripps Research Institute, Department of Molecular Medicine La Jolla, CA, USA
| | - Paul Schimmel
- The Scripps Research Institute, Department of Molecular Medicine La Jolla, CA, USA
| | - Bernhard Kuhle
- The Scripps Research Institute, Department of Molecular Medicine La Jolla, CA, USA
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- ICREA, Catalan Institution for Research and Advanced Studies Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Jones JA, Wei N, Cui H, Shi Y, Fu G, Rauniyar N, Shapiro R, Morodomi Y, Berenst N, Dumitru CD, Kanaji S, Yates JR, Kanaji T, Yang XL. Nuclear translocation of an aminoacyl-tRNA synthetase may mediate a chronic "integrated stress response". Cell Rep 2023; 42:112632. [PMID: 37314928 PMCID: PMC10592355 DOI: 10.1016/j.celrep.2023.112632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Na Wei
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haissi Cui
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Shi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guangsen Fu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Navin Rauniyar
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nadine Berenst
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Khan K, Fox PL. Benefits of co-translational complex assembly for cellular fitness. Bioessays 2023; 45:e2300024. [PMID: 36916749 PMCID: PMC10121914 DOI: 10.1002/bies.202300024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Complexes of two or more proteins form many, if not most, of the intracellular "machines" that execute physical and chemical work, and transmit information. Complexes can form from stochastic post-translational interactions of fully formed proteins, but recent attention has shifted to co-translational interactions in which the most common mechanism involves binding of a mature constituent to an incomplete polypeptide emerging from a translating ribosome. Studies in yeast have revealed co-translational interactions during formation of multiple major complexes, and together with recent mammalian cell studies, suggest widespread utilization of the mechanism. These translation-dependent interactions can involve a single or multiple mRNA templates, can be uni- or bi-directional, and can use multi-protein sub-complexes as a binding component. Here, we discuss benefits of co-translational complex assembly including accuracy and efficiency, overcoming hidden interfaces, localized and hierarchical assembly, and reduction of orphan protein degradation, toxicity, and dominant-negative pathogenesis, all serving to improve cell fitness.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Jaramillo Ponce JR, Théobald‐Dietrich A, Bénas P, Paulus C, Sauter C, Frugier M. Solution X-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes. Protein Sci 2023; 32:e4564. [PMID: 36606712 PMCID: PMC9878616 DOI: 10.1002/pro.4564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl-tRNA synthetases (aaRS), the glutamyl- (ERS), glutaminyl- (QRS), and methionyl- (MRS) tRNA synthetases. In eukaryotes, such multi-aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N-terminal GST-like domain involved in the assembly of two independent complexes: the Q-complex (tRip:ERS:QRS) and the M-complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST-like domains of tRip and ERS (tRip-N:ERS-N) is central. In this study, the crystal structure of the N-terminal GST-like domain of ERS was solved and made possible further investigation of the solution architecture of the Q- and M-complexes by small-angle x-ray scattering (SAXS). This strategy relied on the engineering of a tRip-N-ERS-N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.
Collapse
Affiliation(s)
- José R. Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Anne Théobald‐Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Philippe Bénas
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Claude Sauter
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| |
Collapse
|
9
|
Kim M, Yang SH, Han HG, Kim E, Kim S, Oh YL, Ro HS. Mitochondrial Effects on the Physiological Characteristics of Lentinula edodes. MYCOBIOLOGY 2022; 50:374-381. [PMID: 36404899 PMCID: PMC9645275 DOI: 10.1080/12298093.2022.2138226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In the mating of filamentous basidiomycetes, dikaryotic mycelia are generated through the reciprocal movement of nuclei to a monokaryotic cytoplasm where a nucleus of compatible mating type resides, resulting in the establishment of two different dikaryotic strains having the same nuclei but different mitochondria. To better understand the role of mitochondria in mushrooms, we created four sets of dikaryotic strains of Lentinula edodes, including B2 × E13 (B2 side) and B2 × E13 (E13 side), B5 × E13 (B5 side) and B5 × E13 (E13 side), E8 × H3 (E8 side) and E8 × H3 (H3 side), and K3 × H3 (K3 side) and K3 × H3 (H3 side). The karyotypes and mitochondrial types of the dikaryotic strains were successfully identified by the A mating type markers and the mitochondrial variable length tandem repeat markers, respectively. Comparative analyses of the dikaryotic strains on the mycelial growth, substrate browning, fruiting characteristics, and mitochondrial gene expression revealed that certain mitochondria are more effective in the mycelial growth and the production of fruiting body, possibly through the activated energy metabolism. Our findings indicate that mitochondria affect the physiology of dikaryotic strains having the same nuclear information and therefore a selection strategy aimed at mitochondrial function is needed in the development of new mushroom strain.
Collapse
Affiliation(s)
- Minseek Kim
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Seong-Hyeok Yang
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hui-Gang Han
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Eunbi Kim
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sinil Kim
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Youn-Lee Oh
- Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Hyeon-Su Ro
- Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
10
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
11
|
Gupta A, Rangarajan PN. Histidine is essential for growth of Komagataella phaffii cultured in YPA medium. FEBS Open Bio 2022; 12:1241-1252. [PMID: 35416413 PMCID: PMC9157411 DOI: 10.1002/2211-5463.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Komagataella phaffii (a.k.a. Pichia pastoris) requires histidine for optimal growth when cultured in a medium containing yeast extract, peptone (YP) and acetate (YPA). We demonstrate that HIS4-deficient, K. phaffii strain GS115 exhibits a growth defect on YP-media containing acetate, but not on other carbon sources. K. phaffii X33, a prototroph, grows better than K. phaffii GS115 (his4), a histidine auxotroph in YPA. Normal growth of GS115 is restored either by the expression of HIS4 or by culturing in YPA containing ≥0.6 mM histidine. In presence of histidine, expression of several genes is altered including those encoding key subunits of mitochondrial ATP synthase, transporters of amino acids and nutrients, as well as biosynthetic enzymes. Thus, histidine should be included as an essential component for optimal growth of K.phaffii histidine auxotrophs cultured in YPA.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability. Acta Pharm Sin B 2022; 12:759-773. [PMID: 35256945 PMCID: PMC8897199 DOI: 10.1016/j.apsb.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor cells have unique metabolic programming that is biologically distinct from that of corresponding normal cells. Resetting tumor metabolic programming is a promising strategy to ameliorate drug resistance and improve the tumor microenvironment. Here, we show that carboxyamidotriazole (CAI), an anticancer drug, can function as a metabolic modulator that decreases glucose and lipid metabolism and increases the dependency of colon cancer cells on glutamine metabolism. CAI suppressed glucose and lipid metabolism utilization, causing inhibition of mitochondrial respiratory chain complex I, thus producing reactive oxygen species (ROS). In parallel, activation of the aryl hydrocarbon receptor (AhR) increased glutamine uptake via the transporter SLC1A5, which could activate the ROS-scavenging enzyme glutathione peroxidase. As a result, combined use of inhibitors of GLS/GDH1, CAI could effectively restrict colorectal cancer (CRC) energy metabolism. These data illuminate a new antitumor mechanism of CAI, suggesting a new strategy for CRC metabolic reprogramming treatment.
Collapse
Key Words
- 2-NBDG, glucalogue 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose
- ATP, adenosine triphosphate
- AhR
- AhR, aryl hydrocarbon receptor
- CAI
- CAI, carboxyamidotriazole
- CHIP, chromatin immunoprecipitation
- CRC, colorectal cancer
- Colorectal cancer metabolism
- DMF, 3′,4′-dimethoxyflavone
- DNA, deoxyribonucleic acid
- ECAR, extracellular acidification rate
- FACS, flow cytometry
- GDH1, glutamate dehydrogenase 1
- GLS, glutaminase
- GPx, glutathione peroxidase
- GSH, glutathione
- GSSG, oxidized glutathione
- Glutamine metabolism
- Glutaminolysis
- Kyn, kynurenine
- MT, mito-TEMPO
- Metabolic reprogramming
- Mito-Q, mitoquinone mesylate
- Mitochondrial oxidative stress
- OCR, oxygen consumption rate
- Redox homeostasis
- TCA, tricarboxylic acid
- α-KG, α-ketoglutarate
Collapse
|
13
|
Garin S, Levi O, Forrest ME, Antonellis A, Arava YS. Comprehensive characterization of mRNAs associated with yeast cytosolic aminoacyl-tRNA synthetases. RNA Biol 2021; 18:2605-2616. [PMID: 34039240 PMCID: PMC8632134 DOI: 10.1080/15476286.2021.1935116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown. Herein, we performed a comprehensive transcriptome analysis to define the mRNAs that are associated with almost all aaRSs present in S. cerevisiae cytosol. Nineteen (out of twenty) isogenic strains of GFP-tagged cytosolic aaRSs were subjected to immunoprecipitation with anti-GFP beads along with an untagged control. mRNAs associated with each aaRS were then identified by RNA-seq. The extent of mRNA association varied significantly between aaRSs, from MetRS in which none appeared to be statistically significant, to PheRS that binds hundreds of different mRNAs. Interestingly, many target mRNAs are bound by multiple aaRSs, suggesting co-regulation by this family of enzymes. Gene Ontology analyses for aaRSs with a considerable number of target mRNAs discovered an enrichment for pathways of amino acid metabolism and of ribosome biosynthesis. Furthermore, sequence and structure motif analysis revealed for some aaRSs an enrichment for motifs that resemble the anticodon stem loop of cognate tRNAs. These data suggest that aaRSs coordinate mRNA expression in response to amino acid availability and may utilize RNA elements that mimic their canonical tRNA binding partners.
Collapse
Affiliation(s)
- Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Megan E. Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoav S. Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Cela M, Théobald-Dietrich A, Rudinger-Thirion J, Wolff P, Geslain R, Frugier M. Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip. Nucleic Acids Res 2021; 49:10618-10629. [PMID: 34530443 PMCID: PMC8501954 DOI: 10.1093/nar/gkab769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.
Collapse
Affiliation(s)
- Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Anne Théobald-Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| |
Collapse
|
15
|
Amai T, Tsuji T, Ueda M, Kuroda K. Development of a mito-CRISPR system for generating mitochondrial DNA-deleted strain in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:895-901. [PMID: 33580687 DOI: 10.1093/bbb/zbaa119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a "mito-CRISPR system" that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.
Collapse
Affiliation(s)
- Takamitsu Amai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoka Tsuji
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Enkler L, Rinaldi B, de Craene JO, Hammann P, Nureki O, Senger B, Friant S, Becker HD. Cex1 is a component of the COPI intracellular trafficking machinery. Biol Open 2021; 10:bio.058528. [PMID: 33753324 PMCID: PMC8015235 DOI: 10.1242/bio.058528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 β′-COP subunit is mis-targeted in cex1Δ deletion mutant cells. Our data point to the possibility of developing Cex1 yeast-based models to study neurodegenerative disorders linked to pathogenic mutations of its human homologue SCYL1. Summary: Cex1, the yeast homologue of mammalian SCYL1, interacts with COPI coat components and is recruited to the Golgi to regulate retrograde vesicular trafficking and sorting
Collapse
Affiliation(s)
- Ludovic Enkler
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| | - Bruno Rinaldi
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| | - Johan Owen de Craene
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| | - Philippe Hammann
- 'Architecture et Réactivité de l'ARN', Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, F-67000 Strasbourg, France
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Bruno Senger
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| | - Sylvie Friant
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| | - Hubert D Becker
- Génétique Moléculaire et Cellulaire, Université de Strasbourg, CNRS, GMGM UMR7156, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
18
|
Ribeiro DM, Prod'homme A, Teixeira A, Zanzoni A, Brun C. The role of 3'UTR-protein complexes in the regulation of protein multifunctionality and subcellular localization. Nucleic Acids Res 2020; 48:6491-6502. [PMID: 32484544 PMCID: PMC7337931 DOI: 10.1093/nar/gkaa462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Multifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3'UTRs were found to regulate the cellular localization of newly synthesized proteins through the formation of 3'UTR-protein complexes. Here, we investigate the formation of 3'UTR-protein complexes involving multifunctional proteins by exploiting large-scale protein-protein and protein-RNA interaction networks. Focusing on 238 human 'extreme multifunctional' (EMF) proteins, we predicted 1411 3'UTR-protein complexes involving 54% of those proteins and evaluated their role in regulating protein cellular localization and multifunctionality. We find that EMF proteins lacking localization addressing signals, yet present at both the nucleus and cell surface, often form 3'UTR-protein complexes, and that the formation of these complexes could provide EMF proteins with the diversity of interaction partners necessary to their multifunctionality. Our findings are reinforced by archetypal moonlighting proteins predicted to form 3'UTR-protein complexes. Finally, the formation of 3'UTR-protein complexes that involves up to 17% of the proteins in the human protein-protein interaction network, may be a common and yet underestimated protein trafficking mechanism, particularly suited to regulate the localization of multifunctional proteins.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Adrien Teixeira
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Andreas Zanzoni
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France.,CNRS, Marseille, France
| |
Collapse
|
19
|
Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases. Genes (Basel) 2020; 11:genes11091056. [PMID: 32906706 PMCID: PMC7564348 DOI: 10.3390/genes11091056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.
Collapse
|
20
|
Abstract
The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.
Collapse
Affiliation(s)
- Miguel Angel Rubio Gomez
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Bader G, Enkler L, Araiso Y, Hemmerle M, Binko K, Baranowska E, De Craene JO, Ruer-Laventie J, Pieters J, Tribouillard-Tanvier D, Senger B, di Rago JP, Friant S, Kucharczyk R, Becker HD. Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP. eLife 2020; 9:56649. [PMID: 32657755 PMCID: PMC7358010 DOI: 10.7554/elife.56649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.
Collapse
Affiliation(s)
- Gaétan Bader
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Ludovic Enkler
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Yuhei Araiso
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Marine Hemmerle
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Krystyna Binko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Johan-Owen De Craene
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Bruno Senger
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, Bordeaux, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Dominique Becker
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
22
|
Abstract
Human body is a finely-tuned machine that requires homeostatic balance based on systemically controlled biological processes involving DNA replication, transcription, translation, and energy metabolism. Ubiquitously expressed aminoacyl-tRNA synthetases have been investigated for many decades, and they act as cross-over mediators of important biological processes. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC) appears to be a central machinery controlling the complexity of biological systems. The structural integrity of MSC determined by the associated components is correlated with increasing biological complexity that links to system development in higher organisms. Although the role of the MSCs is still unclear, this chapter describes the current knowledge on MSC components that are associated with and regulate functions beyond their catalytic activities with focus on human MSC.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon, South Korea.
| |
Collapse
|
23
|
Abstract
Since the origin of life, metabolism and protein synthesis have evolved together to balance the vast amounts of ATP and amino acids required for genetic translation with the rest of the cell's energy needs. A new study offers satisfying insights into a long-standing evolutionary mystery surrounding a fused, bifunctional aminoacyl-tRNA synthetase. To avoid depleting cells from an essential amino acid generated by the Krebs cycle, harvesting for Glu and Pro by the translation machinery was unified in animals, thus preventing a Pro-hungry translational apparatus from depleting the cell of essential Glu reserves.
Collapse
Affiliation(s)
- Lluís Ribas de Pouplana
- From the Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain and Catalan Institution for Research and Advanced Studies (ICREA), P/Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Levi O, Garin S, Arava Y. RNA mimicry in post-transcriptional regulation by aminoacyl tRNA synthetases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1564. [PMID: 31414576 DOI: 10.1002/wrna.1564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Aminoacyl tRNA synthetases (aaRS) are well studied for their roles in tRNA charging with cognate amino acid. Nevertheless, numerous lines of evidence indicate that these proteins have roles other than tRNA charging. These include coordination of cellular signaling cascades, induction of cytokines outside the cell and transcription regulation. Herein, we focus on their roles in post-transcriptional regulation of mRNA expression. We describe functions that are related to antitermination of transcription, RNA splicing and mRNA translation. Cases were recognition of mRNA by the aaRS involves recognition of tRNA-like structures are described. Such recognition may be achieved by repurposing tRNA-binding domains or through domains added to the aaRS later in evolution. Furthermore, we describe cases in which binding by aaRS is implicated in autogenous regulation of expression. Overall, we propose RNA-mimicry as a common mode of interaction between aaRS and mRNA which allows efficient expression regulation. This article is categorized under: RNA Processing > tRNA Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Levi O, Arava Y. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol 2019; 17:e3000274. [PMID: 31100060 PMCID: PMC6542539 DOI: 10.1371/journal.pbio.3000274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/30/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are well studied for their role in binding and charging tRNAs with cognate amino acids. Recent RNA interactome studies had suggested that these enzymes can also bind polyadenylated RNAs. Here, we explored the mRNA repertoire bound by several yeast aaRSs. RNA immunoprecipitation (RIP) followed by deep sequencing revealed unique sets of mRNAs bound by each aaRS. Interestingly, for every tested aaRSs, a preferential association with its own mRNA was observed, suggesting an autoregulatory process. Self-association of histidyl-tRNA synthetase (HisRS) was found to be mediated primarily through binding to a region predicted to fold into a tRNAHis anticodon-like structure. Introducing point mutations that are expected to disassemble this putative anticodon mimic alleviated self-association, concomitant with increased synthesis of the protein. Finally, we found that increased cellular levels of uncharged tRNAHis lead to reduced self-association and increased HisRS translation, in a manner that depends on the anticodon-like element. Together, these results reveal a novel post-transcriptional autoregulatory mechanism that exploits binding mimicry to control mRNA translation according to tRNA demands. Better known for their enzymatic role in charging tRNAs with their cognate amino acids, this study shows that tRNA synthetases also bind mRNAs, regulating translation in order to balance the production of a tRNA synthetase with the level of its cognate tRNA.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
26
|
Abstract
Together, the nuclear and mitochondrial genomes encode the oxidative phosphorylation (OXPHOS) complexes that reside in the mitochondrial inner membrane and enable aerobic life. Mitochondria maintain their own genome that is expressed and regulated by factors distinct from their nuclear counterparts. For optimal function, the cell must ensure proper stoichiometric production of OXPHOS subunits by coordinating two physically separated and evolutionarily distinct gene expression systems. Here, we review our current understanding of mitonuclear coregulation primarily at the levels of transcription and translation. Additionally, we discuss other levels of coregulation that may exist but remain largely unexplored, including mRNA modification and stability and posttranslational protein degradation.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| | - Erik McShane
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| |
Collapse
|
27
|
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr 2018; 64:1-12. [PMID: 30705506 PMCID: PMC6348405 DOI: 10.3164/jcbn.18-37] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have clarified the importance of mitochondria in various age-related degenerative diseases, including late-onset Alzheimer’s disease and Parkinson’s disease. Although mitochondrial disturbances can be involved in every step of disease progression, several observations have demonstrated that a subtle mitochondrial functional disturbance is observed preceding the actual appearance of pathophysiological alterations and can be the target of early therapeutic intervention. The signals from damaged mitochondria are transferred to the nucleus, leading to the altered expression of nuclear-encoded genes, which includes mitochondrial proteins (i.e., mitochondrial retrograde signaling). Mitochondrial retrograde signaling improves mitochondrial perturbation (i.e., mitohormesis) and is considered a homeostatic stress response against intrinsic (ex. aging or pathological mutations) and extrinsic (ex. chemicals and pathogens) stimuli. There are several branches of the mitochondrial retrograde signaling, including mitochondrial unfolded protein response (UPRMT), but recent observations increasingly show the importance of the ISR-ATF4 pathway in mitochondrial retrograde signaling. Furthermore, Nrf2, a master regulator of the oxidative stress response, interacts with ATF4 and cooperatively upregulates a battery of antioxidant and antiapoptotic genes while repressing the ATF4-mediated proapoptotic gene, CHOP. In this review article, we summarized the upstream and downstream mechanisms of ATF4 activation during mitochondrial stresses and disturbances and discuss therapeutic intervention against degenerative diseases by using Nrf2 activators.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
28
|
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 2018; 561:268-272. [PMID: 30158700 PMCID: PMC6372068 DOI: 10.1038/s41586-018-0462-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The folding of newly synthesized proteins to the native state is a major
challenge within the crowded cellular environment, as non-productive
interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by
coupling synthesis with polypeptide folding and by using molecular chaperones to
safeguard folding cotranslationally2.
However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of
folding: the assembly of polypeptides into complexes. In prokaryotes, a
proof-of-concept study showed that the assembly of heterodimeric luciferase is
an organized cotranslational process that is facilitated by spatially confined
translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental
differences—such as the rarity of polycistronic mRNAs and different
chaperone constellations—raise the question of whether assembly is also
coordinated with translation. Here we provide a systematic and mechanistic
analysis of the assembly of protein complexes in eukaryotes using ribosome
profiling. We determined the in vivo interactions of the
nascent subunits from twelve hetero-oligomeric protein complexes of
Saccharomyces cerevisiae at near-residue resolution. We
find nine complexes assemble cotranslationally; the three complexes that do not
show cotranslational interactions are regulated by dedicated assembly
chaperones5–7. Cotranslational assembly often occurs
uni-directionally, with one fully synthesized subunit engaging its nascent
partner subunit, thereby counteracting its propensity for aggregation. The onset
of cotranslational subunit association coincides directly with the full exposure
of the nascent interaction domain at the ribosomal tunnel exit. The
ribosome-associated Hsp70 chaperone Ssb8
is coordinated with assembly. Ssb transiently engages partially synthesized
interaction domains and then dissociates before the onset of partner subunit
association, presumably to prevent premature assembly interactions. Our study
shows that cotranslational subunit association is a prevalent mechanism for the
assembly of hetero-oligomers in yeast and indicates that translation, folding
and assembly of protein complexes are integrated processes in eukaryotes.
Collapse
|
29
|
Kwon NH, Lee JY, Ryu YL, Kim C, Kong J, Oh S, Kang BS, Ahn HW, Ahn SG, Jeong J, Kim HK, Kim JH, Han DY, Park MC, Kim D, Takase R, Masuda I, Hou YM, Jang SI, Chang YS, Lee DK, Kim Y, Wang MW, Basappa, Kim S. Stabilization of Cyclin-Dependent Kinase 4 by Methionyl-tRNA Synthetase in p16 INK4a-Negative Cancer. ACS Pharmacol Transl Sci 2018; 1:21-31. [PMID: 32219202 DOI: 10.1021/acsptsci.8b00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/23/2022]
Abstract
Although abnormal increases in the level or activity of cyclin-dependent kinase 4 (CDK4) occur frequently in cancer, the underlying mechanism is not fully understood. Here, we show that methionyl-tRNA synthetase (MRS) specifically stabilizes CDK4 by enhancing the formation of the complex between CDK4 and a chaperone protein. Knockdown of MRS reduced the CDK4 level, resulting in G0/G1 cell cycle arrest. The effects of MRS on CDK4 stability were more prominent in the tumor suppressor p16INK4a-negative cancer cells because of the competitive relationship of the two proteins for binding to CDK4. Suppression of MRS reduced cell transformation and the tumorigenic ability of a p16INK4a-negative breast cancer cell line in vivo. Further, the MRS levels showed a positive correlation with those of CDK4 and the downstream signals at high frequency in p16INK4a-negative human breast cancer tissues. This work revealed an unexpected functional connection between the two enzymes involving protein synthesis and the cell cycle.
Collapse
Affiliation(s)
- Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| | - Jin Young Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Ye-Lim Ryu
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Chanhee Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Seongeun Oh
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Korea
| | - Hye Won Ahn
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Sung Gwe Ahn
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Joon Jeong
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hoi Kyoung Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Dae Young Han
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Sung Ill Jang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Youngeun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore, 560 001, India
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
30
|
Schwarz MA, Lee DD, Bartlett S. Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex. Int J Biochem Cell Biol 2018; 99:197-202. [PMID: 29679766 DOI: 10.1016/j.biocel.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
Higher eukaryotes have developed extensive compartmentalization of amino acid (aa) - tRNA coupling through the formation of a multi-synthetase complex (MSC) that is composed of eight aa-tRNA synthetases (ARS) and three scaffold proteins: aminoacyl tRNA synthetase complex interacting multifunctional proteins (AIMP1, 2 and 3). Lower eukaryotes have a much smaller complex while yeast MSC consists of only two ARS (MetRS and GluRS) and one ARS cofactor 1 protein, Arc1p (Simos et al., 1996), the homolog of the mammalian AIMP1. Arc1p is reported to form a tripartite complex with GluRS and MetRS through association of the N-terminus GST-like domains (GST-L) of the three proteins (Koehler et al., 2013). Mammalian AIMP1 has no GST-L domain corresponding to Arc1p N-terminus. Instead, AIMP3, another scaffold protein of 18 kDa composed entirely of a GST-L domain, interacts with Methionyl-tRNA synthetase (MARS) (Quevillon et al., 1999) and Glutamyl-Prolyl-tRNA Synthetase (EPRS) (Cho et al., 2015). Here we report two new interactions between MSC members: AIMP1 binds to EPRS and AIMP1 binds to AIMP3. Interestingly, the interaction between AIMP1 and AIMP3 complex makes it the functional equivalent of a single Arc1p polypeptide in yeast. This interaction is not mapped to AIMP1 N-terminal coiled-coil domain, but rather requires an intact tertiary structure of the entire protein. Since AIMP1 also interacts with AIMP2, all three proteins appear to compose a core docking structure for the eight ARS in the MSC complex.
Collapse
Affiliation(s)
- Margaret A Schwarz
- Indiana University School of Medicine South Bend, IN, 46617, United States.
| | - Daniel D Lee
- Indiana University School of Medicine South Bend, IN, 46617, United States
| | - Seamus Bartlett
- University of Notre Dame Notre Dame, IN, 46556, United States
| |
Collapse
|
31
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
32
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
33
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Collapse
Affiliation(s)
- Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, Paris, France.
| |
Collapse
|
34
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
35
|
García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1167-1182. [PMID: 26876430 DOI: 10.1016/j.bbabio.2016.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Javier García-Bermúdez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
36
|
Chang CY, Chang CP, Chakraborty S, Wang SW, Tseng YK, Wang CC. Modulating the Structure and Function of an Aminoacyl-tRNA Synthetase Cofactor by Biotinylation. J Biol Chem 2016; 291:17102-11. [PMID: 27330079 DOI: 10.1074/jbc.m116.734343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRSc) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRSc and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37 °C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37 °C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRSc at 37 °C in vitro Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.
Collapse
Affiliation(s)
| | | | - Shruti Chakraborty
- the Department of Biotechnology, University of Calcutta, Kolkata 700019, India, and
| | - Shao-Win Wang
- the Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli 35053, Taiwan
| | - Yi-Kuan Tseng
- the Graduate Institute of Statistics, National Central University, Jungli District, Taoyuan 32001, Taiwan
| | | |
Collapse
|
37
|
Smolentsev N, Lütgebaucks C, Okur HI, de Beer AGF, Roke S. Intermolecular Headgroup Interaction and Hydration as Driving Forces for Lipid Transmembrane Asymmetry. J Am Chem Soc 2016; 138:4053-60. [DOI: 10.1021/jacs.5b11776] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolay Smolentsev
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Halil I. Okur
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alex G. F. de Beer
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
39
|
Wallace EWJ, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell 2015; 162:1286-98. [PMID: 26359986 DOI: 10.1016/j.cell.2015.08.041] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023]
Abstract
Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.
Collapse
Affiliation(s)
- Edward W J Wallace
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Jamie L Kear-Scott
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Evgeny V Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael H Schwartz
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Pawel R Laskowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Alexandra E Rojek
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher D Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Joshua A Riback
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael F Dion
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Edoardo M Airoldi
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Bogdan A Budnik
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
40
|
Loss of TIM50 suppresses proliferation and induces apoptosis in breast cancer. Tumour Biol 2015; 37:1279-87. [DOI: 10.1007/s13277-015-3878-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022] Open
|
41
|
Arnould T, Michel S, Renard P. Mitochondria Retrograde Signaling and the UPR mt: Where Are We in Mammals? Int J Mol Sci 2015; 16:18224-51. [PMID: 26258774 PMCID: PMC4581242 DOI: 10.3390/ijms160818224] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 06/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial unfolded protein response is a form of retrograde signaling that contributes to ensuring the maintenance of quality control of mitochondria, allowing functional integrity of the mitochondrial proteome. When misfolded proteins or unassembled complexes accumulate beyond the folding capacity, it leads to alteration of proteostasis, damages, and organelle/cell dysfunction. Extensively studied for the ER, it was recently reported that this kind of signaling for mitochondrion would also be able to communicate with the nucleus in response to impaired proteostasis. The mitochondrial unfolded protein response (UPRmt) is activated in response to different types and levels of stress, especially in conditions where unfolded or misfolded mitochondrial proteins accumulate and aggregate. A specific UPRmt could thus be initiated to boost folding and degradation capacity in response to unfolded and aggregated protein accumulation. Although first described in mammals, the UPRmt was mainly studied in Caenorhabditis elegans, and accumulating evidence suggests that mechanisms triggered in response to a UPRmt might be different in C. elegans and mammals. In this review, we discuss and integrate recent data from the literature to address whether the UPRmt is relevant to mitochondrial homeostasis in mammals and to analyze the putative role of integrated stress response (ISR) activation in response to the inhibition of mtDNA expression and/or accumulation of mitochondrial mis/unfolded proteins.
Collapse
Affiliation(s)
- Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
42
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
43
|
Lee JH, You S, Hyeon DY, Kang B, Kim H, Park KM, Han B, Hwang D, Kim S. Comprehensive data resources and analytical tools for pathological association of aminoacyl tRNA synthetases with cancer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav022. [PMID: 25824651 PMCID: PMC4377328 DOI: 10.1093/database/bav022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have cytoplasmic and mitochondrial aminoacyl-tRNA synthetases (ARSs) that catalyze aminoacylation of tRNAs during protein synthesis. Despite their housekeeping functions in protein synthesis, recently, ARSs and ARS-interacting multifunctional proteins (AIMPs) have been shown to play important roles in disease pathogenesis through their interactions with disease-related molecules. However, there are lacks of data resources and analytical tools that can be used to examine disease associations of ARS/AIMPs. Here, we developed an Integrated Database for ARSs (IDA), a resource database including cancer genomic/proteomic and interaction data of ARS/AIMPs. IDA includes mRNA expression, somatic mutation, copy number variation and phosphorylation data of ARS/AIMPs and their interacting proteins in various cancers. IDA further includes an array of analytical tools for exploration of disease association of ARS/AIMPs, identification of disease-associated ARS/AIMP interactors and reconstruction of ARS-dependent disease-perturbed network models. Therefore, IDA provides both comprehensive data resources and analytical tools for understanding potential roles of ARS/AIMPs in cancers. Database URL:http://ida.biocon.re.kr/, http://ars.biocon.re.kr/
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungyong You
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Young Hyeon
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byeongsoo Kang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyerim Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyoung Mii Park
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byungwoo Han
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Daehee Hwang
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea Medicinal Bioconvergence Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 790-784, Republic of Korea, Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, Republic of Korea and Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
44
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|