1
|
Pemberton JG, Barlow-Busch I, Jenkins ML, Parson MA, Sarnyai F, Bektas SN, Kim YJ, Heuser JE, Burke JE, Balla T. An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate. J Cell Biol 2025; 224:e202408158. [PMID: 40138452 PMCID: PMC11940380 DOI: 10.1083/jcb.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.
Collapse
Affiliation(s)
- Joshua G. Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Western University, London, Canada
- Division of Development and Genetics, Children’s Health Research Institute, London, Canada
| | - Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Meredith L. Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Matthew A.H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Farkas Sarnyai
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Seyma Nur Bektas
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Heuser
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Jin Y, Xue J, Li X, Zhong X. Downregulation of PIP4K2C inhibits the breast cancer cell proliferation, migration and invasion. Transl Oncol 2025; 57:102420. [PMID: 40393249 DOI: 10.1016/j.tranon.2025.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/12/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Phosphoinositide signaling pathway has garnered significant attention in recent years due to its implication in metabolic alterations associated with various human diseases, including breast cancer. Phosphatidylinositol-5-phosphate 4-kinase (PIP4K) catalyzes the phosphorylation of phosphatidylinositol-5-phosphate (PI5P) to produce phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), a lipid that regulates signaling pathways associated with cancer cell growth and metastasis. In breast cancer, PIP4Ks, especially PIP4Kα and PIP4Kβ, have emerged as a significant player, with their dysregulation linked to tumor progression and poor prognosis. However, the role of PIP4Kγ (encoded by PIP4K2C), the other isoform of PIP4K family, remains largely uncharted in breast cancer. Here, we demonstrated that the expression of PIP4K2C is upregulated in breast cancer tissues opposed to the normal tissue utilizing the GTEx and the TCGA public database. The elevation of PIP4K2C expression is further confirmed in the breast cancer cell lines and tissues. Downregulated expression of PIP4K2C by siRNA lowered the subcellular PI(4,5)P2 and suppressed proliferation, migration and invasion of MDA-MB-468, MCF7 breast cancer cell lines. Our research substantiates PIP4K2C as a promising diagnostic and therapeutic biomarker for breast cancer, warranting further investigation into its mechanistic and clinical implications.
Collapse
Affiliation(s)
- Yue Jin
- Department of Medical Research Center, Northern Jiangsu People's Hospital, Jiangsu, Yangzhou, 225001, PR China.
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People's Hospital, Jiangsu, Yangzhou, 211400, PR China.
| | - Xinyue Li
- Department of Molecular Diagnosis, Northern Jiangsu People's Hospital, Jiangsu, Yangzhou, 225001, , PR China.
| | - Xiaoli Zhong
- Medical College, Yangzhou University, Jiangsu, Yangzhou, 225009, PR China.
| |
Collapse
|
3
|
Cheng C, Hu J, Mannan R, He T, Bhattacharyya R, Magnuson B, Wisniewski JP, Peters S, Karim SA, MacLean DJ, Karabürk H, Zhang L, Rossiter NJ, Zheng Y, Xiao L, Li C, Awad D, Mahapatra S, Bao Y, Zhang Y, Cao X, Wang Z, Mehra R, Morlacchi P, Sahai V, Pasca di Magliano M, Shah YM, Weisman LS, Morton JP, Ding K, Qiao Y, Lyssiotis CA, Chinnaiyan AM. Targeting PIKfyve-driven lipid metabolism in pancreatic cancer. Nature 2025:10.1038/s41586-025-08917-z. [PMID: 40269157 DOI: 10.1038/s41586-025-08917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism1,2. For example, PDAC uses, and is dependent on, high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the difficulty in identifying and characterizing favourable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase that is integral to lysosomal functioning7, as a targetable vulnerability in PDAC. Using a genetically engineered mouse model, we established that PIKfyve is essential to PDAC progression. Furthermore, through comprehensive metabolic analyses, we found that PIKfyve inhibition forces PDAC to upregulate a distinct transcriptional and metabolic program favouring de novo lipid synthesis. In PDAC, the KRAS-MAPK signalling pathway is a primary driver of de novo lipid synthesis. Accordingly, simultaneously targeting PIKfyve and KRAS-MAPK resulted in the elimination of the tumour burden in numerous preclinical human and mouse models. Taken together, these studies indicate that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.
Collapse
Affiliation(s)
- Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Jing Hu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rupam Bhattacharyya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine P Wisniewski
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Peters
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hüseyin Karabürk
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chungen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer P Morton
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
5
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025:10.1038/s41568-025-00810-1. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Liu X, Dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signalling regulates alpha cell actin depolymerisation and glucagon secretion. Diabetologia 2025:10.1007/s00125-025-06411-9. [PMID: 40140059 DOI: 10.1007/s00125-025-06411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet alpha cells, although the underlying mechanisms regulating glucagon secretion and alpha cell dysfunction remain unclear. While insulin secretion from pancreatic beta cells has long been known to be controlled partly by intracellular phospholipid signalling, very little is known about the role of phospholipids in glucagon secretion. Using patch-clamp electrophysiology and single-cell RNA sequencing, we previously found that expression of PIP4P2 (encoding TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate [PIP2] to phosphatidylinositol-5-phosphate [PI5P]) correlates with alpha cell function. We hypothesise that TMEM55A is involved in glucagon secretion and aim to validate the role of TMEM55A and its potential signalling molecules in alpha cell function and glucagon secretion. METHODS Correlation analysis was generated from the data in www.humanislets.com . Human islets were isolated at the Alberta Diabetes Institute IsletCore. Electrical recordings were performed on dispersed human or mouse islets with scrambled siRNA or si-PIP4P2 (si-Pip4p2 for mouse) transfection. Glucagon secretion was measured using an islet perfusion system with intact mouse islets. TMEM55A activity was measured using an in vitro on-beads phosphatase assay and live-cell imaging. GTPase activity was measured using an active GTPase pull-down assay. Confocal microscopy was used to quantify F-actin intensity using primary alpha cells and alphaTC1-9 cell lines after chemical treatment. RESULTS TMEM55A regulated alpha cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse alpha cells reduced exocytosis at low glucose levels and this was rescued by the direct reintroduction of PI5P. PI5P, instead of PIP2 increased the glucagon secretion using intact mouse islets. This did not occur through an effect on Ca2+ channel activity but through a remodelling of cortical F-actin dependent on TMEM55A lipid phosphatase activity, which occurred in response to oxidative stress. TMEM55A- and PI5P-induced F-actin remodelling depends on the inactivation of GTPase and RhoA, instead of Ras-related C3 botulinum toxin substrate 1 or CDC42. CONCLUSIONS/INTERPRETATION We reveal a novel pathway by which TMEM55A regulates alpha cell exocytosis by controlling intracellular PI5P and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Picard F, Nonaka T, Belotti E, Osseni A, Errazuriz-Cerda E, Jost-Mousseau C, Bernard E, Conjard-Duplany A, Bohl D, Hasegawa M, Raoul C, Galli T, Schaeffer L, Leblanc P. Enhanced secretion of the amyotrophic lateral sclerosis ALS-associated misfolded TDP-43 mediated by the ER-ubiquitin specific peptidase USP19. Cell Mol Life Sci 2025; 82:76. [PMID: 39948244 PMCID: PMC11825969 DOI: 10.1007/s00018-025-05589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Proteinopathies, such as amyotrophic lateral sclerosis (ALS), are marked by the accumulation of misfolded proteins that disrupt cellular processes. Eukaryotic cells have developed protein quality control systems to eliminate these aberrant proteins, but these systems often fail to differentiate between normal and misfolded proteins. In ALS, pathological inclusions primarily composed of misfolded TDP-43 are a hallmark of the disease. Recently, a novel unconventional secretion process called misfolding-associated protein secretion (MAPS) has been discovered to selectively export misfolded proteins. USP19, an Endoplasmic Reticulum-associated ubiquitin peptidase, plays a crucial role in this process. In this study, we investigated the impact of ER-anchored USP19 on the secretion of misfolded TDP-43. Here we found that USP19 overexpression significantly promotes the secretion of soluble and aggregated misfolded TDP-43, requiring both ER anchoring and ubiquitin peptidase activity. Characterization of the cellular and molecular mechanisms involved in this process highlighted the importance of early autophagosomal and late endosomal/amphisomal compartments, while lysosomes did not play a key role. By using dominant-negative mutants and small interfering RNAs, we identified that USP19-mediated secretion of misfolded TDP-43 is modulated by key factors involved in cellular trafficking and secretion pathways, such as ATG7, the ESCRT-O HGS/HRS, the Rab GTPases RAB11A, RAB8A, and RAB27A, and the v-SNARE VAMP7. We also confirmed the crucial role of the DNAJC5/CSPα cochaperone. Overall, this study provides new insights into how cells manage the secretion of misfolded TDP-43 proteins and potentially opens new avenues for therapeutic interventions in ALS and related disorders.
Collapse
Affiliation(s)
- Flavien Picard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Edwige Belotti
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Alexis Osseni
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | | | - Coline Jost-Mousseau
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Emilien Bernard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677, Bron, France
| | - Agnès Conjard-Duplany
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Cédric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France, 34095, Montpellier, France
- ALS reference center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Laurent Schaeffer
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Pascal Leblanc
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France.
| |
Collapse
|
9
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
10
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
11
|
Liu X, dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signaling regulates α-cell actin depolymerization and glucagon secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628242. [PMID: 39763967 PMCID: PMC11702586 DOI: 10.1101/2024.12.16.628242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse α-cells reduces exocytosis at low glucose, and this is rescued by the direct reintroduction of PI5P. This does not occur through an effect on Ca2+ channel activity, but through a re-modelling of cortical F-actin dependent upon TMEM55A lipid phosphatase activity which occurs in response to oxidative stress. In summary, we reveal a novel pathway by which TMEM55A regulates α-cell exocytosis by manipulating intracellular PI5P level and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
12
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Chen Y, Barylko B, Eichorst J, Mueller J, Albanesi J. Identification of the GABARAP binding determinant in PI4K2A. Biosci Rep 2024; 44:BSR20240200. [PMID: 39344512 PMCID: PMC11499380 DOI: 10.1042/bsr20240200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.
Collapse
Affiliation(s)
- Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - John P. Eichorst
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
14
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
15
|
Qiu Z, Wang H, Li G, Liu Y, Wang X, Yang J, Wang X, He D. Lactobacillus salivarius Ameliorates AFB1-induced hepatotoxicity via PINK1/Parkin-mediated mitophagy in Geese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116574. [PMID: 38875822 DOI: 10.1016/j.ecoenv.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.
Collapse
Affiliation(s)
- Zhi Qiu
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China; Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Guangquan Li
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Xianze Wang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junhua Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China.
| | - Daqian He
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China.
| |
Collapse
|
16
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve controls dendritic cell function and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582543. [PMID: 38464258 PMCID: PMC10925294 DOI: 10.1101/2024.02.28.582543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D. Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nat Commun 2024; 15:5487. [PMID: 38942798 PMCID: PMC11213953 DOI: 10.1038/s41467-024-48931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Gopaldass N, Mayer A. PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 2024; 52:1233-1241. [PMID: 38747700 DOI: 10.1042/bst20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
19
|
Nguyen DPQ, Jallow AW, Lin YF, Lin YF. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer's Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int J Mol Sci 2024; 25:6640. [PMID: 38928345 PMCID: PMC11204139 DOI: 10.3390/ijms25126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM. The analysis incorporated various data types, including blood and tissue samples as well as single-cell datasets, allowing for a detailed assessment of gene expression patterns. From the brain region-specific single-cell analysis, PIP4K2A, which encodes phosphatidylinositol-5-phosphate 4-kinase type 2 alpha, was found to be expressed mainly in oligodendrocytes compared to other cell types. Elevated levels of PIP4K2A in AD and T2DM patients' blood were found to be associated with key cellular processes such as vesicle-mediated transport, negative regulation of autophagosome assembly, and cytosolic transport. The identification of PIP4K2A's potential roles in the cellular processes of AD and T2DM offers valuable insights into the development of biomarkers for diagnosis and therapy, especially in the complication of these two diseases.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City 110, Taiwan
| |
Collapse
|
20
|
Maib H, Adarska P, Hunton R, Vines JH, Strutt D, Bottanelli F, Murray DH. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J Cell Biol 2024; 223:e202310095. [PMID: 38578646 PMCID: PMC10996583 DOI: 10.1083/jcb.202310095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.
Collapse
Affiliation(s)
- Hannes Maib
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Robert Hunton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - James H. Vines
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - David H. Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Guo E, Yuan H, Li R, Yang J, Liu S, Liu A, Jiang X. Calcitriol ameliorates the progression of hepatic fibrosis through autophagy-related gene 16-like 1-mediated autophagy. Am J Med Sci 2024; 367:382-396. [PMID: 38431191 DOI: 10.1016/j.amjms.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor β1 (TGFβ1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.
Collapse
Affiliation(s)
- Enshuang Guo
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixing Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Renlong Li
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiaojing Jiang
- Department of Infectious Diseases, General Hospital of Central Theater Command of PLA, Wuhan 430070, China; Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
23
|
Karim M, Mishra M, Lo CW, Saul S, Cagirici HB, Tran DHN, Agrawal A, Ghita L, Ojha A, East MP, Gammeltoft KA, Sahoo MK, Johnson GL, Das S, Jochmans D, Cohen CA, Gottwein J, Dye J, Neff N, Pinsky BA, Laitinen T, Pantsar T, Poso A, Zanini F, Jonghe SD, Asquith CRM, Einav S. PIP4K2C inhibition reverses autophagic flux impairment induced by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589676. [PMID: 38659941 PMCID: PMC11042293 DOI: 10.1101/2024.04.15.589676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In search for broad-spectrum antivirals, we discovered a small molecule inhibitor, RMC-113, that potently suppresses the replication of multiple RNA viruses including SARS-CoV-2 in human lung organoids. We demonstrated selective dual inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target engagement by its clickable analog. Advanced lipidomics revealed alteration of SARS-CoV-2-induced phosphoinositide signature by RMC-113 and linked its antiviral effect with functional PIP4K2C and PIKfyve inhibition. We discovered PIP4K2C's roles in SARS-CoV-2 entry, RNA replication, and assembly/egress, validating it as a druggable antiviral target. Integrating proteomics, single-cell transcriptomics, and functional assays revealed that PIP4K2C binds SARS-CoV-2 nonstructural protein 6 and regulates virus-induced impairment of autophagic flux. Reversing this autophagic flux impairment is a mechanism of antiviral action of RMC-113. These findings reveal virus-induced autophagy regulation via PIP4K2C, an understudied kinase, and propose dual inhibition of PIP4K2C and PIKfyve as a candidate strategy to combat emerging viruses.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Manjari Mishra
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Halise Busra Cagirici
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Do Hoang Nhu Tran
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Aditi Agrawal
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Luca Ghita
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Amrita Ojha
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen Anbro Gammeltoft
- Department of Infectious Diseases, University of Copenhagen, Denmark. Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen
- University Hospital-Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Soumita Das
- Biomedical & Nutritional Science, Center for Pathogen Research & Training (CPRT), University of Massachusetts-Lowell, USA
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Courtney A Cohen
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Judith Gottwein
- Department of Infectious Diseases, University of Copenhagen, Denmark. Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen
- University Hospital-Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Dye
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Frederick, Maryland, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
- Department of Microbiology and Immunology, Stanford University, CA, USA
| |
Collapse
|
24
|
Muramoto M, Mineoka N, Fukuda K, Kuriyama S, Masatani T, Fujita A. Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184308. [PMID: 38437942 DOI: 10.1016/j.bbamem.2024.184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.
Collapse
Affiliation(s)
- Moe Muramoto
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Nanaru Mineoka
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
25
|
Zhu Q, Combs ME, Bowles DE, Gross RT, Mendiola Pla M, Mack CP, Taylor JM. GRAF1 Acts as a Downstream Mediator of Parkin to Regulate Mitophagy in Cardiomyocytes. Cells 2024; 13:448. [PMID: 38474413 PMCID: PMC10930636 DOI: 10.3390/cells13050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Matthew E. Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Dawn E. Bowles
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Ryan T. Gross
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Christopher P. Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M. Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy 2024; 20:469-488. [PMID: 37768124 PMCID: PMC10936693 DOI: 10.1080/15548627.2023.2259732] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
ABBREVIATIONS ACSL: acyl-CoA synthetase long chain family; DISC: death-inducing signaling complex; DAMPs: danger/damage-associated molecular patterns; Dtgn: dispersed trans-Golgi network; FAR1: fatty acyl-CoA reductase 1; GPX4: glutathione peroxidase 4; LPCAT3: lysophosphatidylcholine acyltransferase 3; LPS: lipopolysaccharide; MUFAs: monounsaturated fatty acids; MOMP: mitochondrial outer membrane permeabilization; MLKL, mixed lineage kinase domain like pseudokinase; oxPAPC: oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; OxPCs: oxidized phosphatidylcholines; PUFAs: polyunsaturated fatty acids; POR: cytochrome p450 oxidoreductase; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; RIPK1: receptor interacting serine/threonine kinase 1; SPHK1: sphingosine kinase 1; SOAT1: sterol O-acyltransferase 1; SCP2: sterol carrier protein 2; SFAs: saturated fatty acids; SLC47A1: solute carrier family 47 member 1; SCD: stearoyl-CoA desaturase; VLCFA: very long chain fatty acids.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Proikas-Cezanne T, Haas ML, Pastor-Maldonado CJ, Schüssele DS. Human WIPI β-propeller function in autophagy and neurodegeneration. FEBS Lett 2024; 598:127-139. [PMID: 38058212 DOI: 10.1002/1873-3468.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The four human WIPI β-propellers, WIPI1 through WIPI4, belong to the ancient PROPPIN family and fulfill scaffold functions in the control of autophagy. In this context, WIPI β-propellers function as PI3P effectors during autophagosome formation and loss of WIPI function negatively impacts autophagy and contributes to neurodegeneration. Of particular interest are mutations in WDR45, the human gene that encodes WIPI4. Sporadic WDR45 mutations are the cause of a rare human neurodegenerative disease called BPAN, hallmarked by high brain iron accumulation. Here, we discuss the current understanding of the functions of human WIPI β-propellers and address unanswered questions with a particular focus on the role of WIPI4 in autophagy and BPAN.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
28
|
Feng Y, Chen Y, Wu X, Chen J, Zhou Q, Liu B, Zhang L, Yi C. Interplay of energy metabolism and autophagy. Autophagy 2024; 20:4-14. [PMID: 37594406 PMCID: PMC10761056 DOI: 10.1080/15548627.2023.2247300] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Macroautophagy/autophagy, is widely recognized for its crucial role in enabling cell survival and maintaining cellular energy homeostasis during starvation or energy stress. Its regulation is intricately linked to cellular energy status. In this review, covering yeast, mammals, and plants, we aim to provide a comprehensive overview of the understanding of the roles and mechanisms of carbon- or glucose-deprivation related autophagy, showing how cells effectively respond to such challenges for survival. Further investigation is needed to determine the specific degraded substrates by autophagy during glucose or energy deprivation and the diverse roles and mechanisms during varying durations of energy starvation.Abbreviations: ADP: adenosine diphosphate; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP: adenosine triphosphate; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD: glucose deprivation; GFP: green fluorescent protein; GTPases: guanosine triphosphatases; HK2: hexokinase 2; K phaffii: Komagataella phaffii; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein1 light chain 3; MAPK: mitogen-activated protein kinase; Mec1: mitosis entry checkpoint 1; MTOR: mechanistic target of rapamycin kinase; NAD (+): nicotinamide adenine dinucleotide; OGD: oxygen and glucose deprivation; PAS: phagophore assembly site; PCD: programmed cell death; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; S. cerevisiae: Saccharomyces cerevisiae; SIRT1: sirtuin 1; Snf1: sucrose non-fermenting 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TORC1: target of rapamycin complex 1; ULK1: unc-51 like kinase 1; Vps27: vacuolar protein sorting 27; Vps4: vacuolar protein sorting 4.
Collapse
Affiliation(s)
- Yuyao Feng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ying Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Wu
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Qingyan Zhou
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Lourdes SR, Gurung R, Giri S, Mitchell CA, McGrath MJ. A new role for phosphoinositides in regulating mitochondrial dynamics. Adv Biol Regul 2024; 91:101001. [PMID: 38057188 DOI: 10.1016/j.jbior.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Phosphoinositides are a minor group of membrane-associated phospholipids that are transiently generated on the cytoplasmic leaflet of many organelle membranes and the plasma membrane. There are seven functionally distinct phosphoinositides, each derived via the reversible phosphorylation of phosphatidylinositol in various combinations on the inositol ring. Their generation and termination is tightly regulated by phosphatidylinositol-kinases and -phosphatases. These enzymes can function together in an integrated and coordinated manner, whereby the phosphoinositide product of one enzyme may subsequently serve as a substrate for another to generate a different phosphoinositide species. This regulatory mechanism not only enables the transient generation of phosphoinositides on membranes, but also more complex sequential or bidirectional conversion pathways, and phosphoinositides can also be transferred between organelles via membrane contacts. It is this capacity to fine-tune phosphoinositide signals that makes them ideal regulators of membrane organization and dynamics, through their recruitment of signalling, membrane altering and lipid transfer proteins. Research spanning several decades has provided extensive evidence that phosphoinositides are major gatekeepers of membrane organization, with roles in endocytosis, exocytosis, autophagy, lysosome dynamics, vesicular transport and secretion, cilia, inter-organelle membrane contact, endosome maturation and nuclear function. By contrast, there has been remarkably little known about the role of phosphoinositides at mitochondria - an enigmatic and major knowledge gap, with challenges in reliably detecting phosphoinositides at this site. Here we review recent significant breakthroughs in understanding the role of phosphoinositides in regulating mitochondrial dynamics and metabolic function.
Collapse
Affiliation(s)
- Sonia Raveena Lourdes
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Saveen Giri
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Nigorikawa K, Fukushima Y, Shimada C, Matsumoto D, Nomura W. CRISPRa Analysis of Phosphoinositide Phosphatases Shows That TMEM55A Is a Positive Regulator of Autophagy. Biol Pharm Bull 2024; 47:1148-1153. [PMID: 38880622 DOI: 10.1248/bpb.b23-00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.
Collapse
Affiliation(s)
- Kiyomi Nigorikawa
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yu Fukushima
- School of Pharmaceutical Sciences, Hiroshima University
| | | | - Daisuke Matsumoto
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Wataru Nomura
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
31
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
32
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
33
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
34
|
Aldred GG, Rooney TPC, Willems HMG, Boffey HK, Green C, Winpenny D, Skidmore J, Clarke JH, Andrews SP. The rational design of ARUK2007145, a dual inhibitor of the α and γ isoforms of the lipid kinase phosphatidylinositol 5-phosphate 4-kinase (PI5P4K). RSC Med Chem 2023; 14:2035-2047. [PMID: 37859710 PMCID: PMC10583824 DOI: 10.1039/d3md00355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are therapeutic targets for diseases such as cancer, neurodegeneration and immunological disorders as they are key components in regulating cell signalling pathways. In an effort to make probe molecules available for further exploring these targets, we have previously reported PI5P4Kα-selective and PI5P4Kγ-selective ligands. Herein we report the rational design of PI5P4Kα/γ dual inhibitors, using knowledge gained during the development of selective inhibitors for these proteins. ARUK2007145 (39) is disclosed as a potent, cell-active probe molecule with ADMET properties amenable to conducting experiments in cells.
Collapse
Affiliation(s)
- Gregory G Aldred
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Timothy P C Rooney
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Henriette M G Willems
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Helen K Boffey
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Christopher Green
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - David Winpenny
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| | - Stephen P Andrews
- The ALBORADA Drug Discovery Institute, University of Cambridge Island Research Building, Cambridge Biomedical Campus, Hills Road Cambridge CB2 0AH UK
| |
Collapse
|
35
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
37
|
Ghosh A, Venugopal A, Shinde D, Sharma S, Krishnan M, Mathre S, Krishnan H, Saha S, Raghu P. PI3P-dependent regulation of cell size and autophagy by phosphatidylinositol 5-phosphate 4-kinase. Life Sci Alliance 2023; 6:e202301920. [PMID: 37316298 PMCID: PMC10267561 DOI: 10.26508/lsa.202301920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) and phosphatidylinositol 5-phosphate (PI5P) are low-abundance phosphoinositides crucial for key cellular events such as endosomal trafficking and autophagy. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) is an enzyme that regulates PI5P in vivo but can act on both PI5P and PI3P in vitro. In this study, we report a role for PIP4K in regulating PI3P levels in Drosophila Loss-of-function mutants of the only Drosophila PIP4K gene show reduced cell size in salivary glands. PI3P levels are elevated in dPIP4K 29 and reverting PI3P levels back towards WT, without changes in PI5P levels, can rescue the reduced cell size. dPIP4K 29 mutants also show up-regulation in autophagy and the reduced cell size can be reverted by depleting Atg8a that is required for autophagy. Lastly, increasing PI3P levels in WT can phenocopy the reduction in cell size and associated autophagy up-regulation seen in dPIP4K 29 Thus, our study reports a role for a PIP4K-regulated PI3P pool in the control of autophagy and cell size.
Collapse
Affiliation(s)
- Avishek Ghosh
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | | | - Dhananjay Shinde
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sanjeev Sharma
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Meera Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Harini Krishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Sankhanil Saha
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bangalore, India
| |
Collapse
|
38
|
Wei L, Xu M, Liu Z, Jiang C, Lin X, Hu Y, Wen X, Zou R, Peng C, Lin H, Wang G, Yang L, Fang L, Yang M, Zhang P. Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study. J Chem Inf Model 2023; 63:5341-5355. [PMID: 37549337 DOI: 10.1021/acs.jcim.3c00543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Computer-aided drug design (CADD), especially artificial intelligence-driven drug design (AIDD), is increasingly used in drug discovery. In this paper, a novel and efficient workflow for hit identification was developed within the ID4Inno drug discovery platform, featuring innovative artificial intelligence, high-accuracy computational chemistry, and high-performance cloud computing. The workflow was validated by discovering a few potent hit compounds (best IC50 is ∼0.80 μM) against PI5P4K-β, a novel anti-cancer target. Furthermore, by applying the tools implemented in ID4Inno, we managed to optimize these hit compounds and finally obtained five hit series with different scaffolds, all of which showed high activity against PI5P4K-β. These results demonstrate the effectiveness of ID4inno in driving hit identification based on artificial intelligence, computational chemistry, and cloud computing.
Collapse
Affiliation(s)
- Lin Wei
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Min Xu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Zhiqiang Liu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Chongguo Jiang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Xiaohua Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Yaogang Hu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Xiaoming Wen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Rongfeng Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Chunwang Peng
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Hongrui Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Guo Wang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Lijun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Lei Fang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Mingjun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Peiyu Zhang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| |
Collapse
|
39
|
Wen T, Thapa N, Cryns VL, Anderson RA. Regulation of Phosphoinositide Signaling by Scaffolds at Cytoplasmic Membranes. Biomolecules 2023; 13:1297. [PMID: 37759697 PMCID: PMC10526805 DOI: 10.3390/biom13091297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Cytoplasmic phosphoinositides (PI) are critical regulators of the membrane-cytosol interface that control a myriad of cellular functions despite their low abundance among phospholipids. The metabolic cycle that generates different PI species is crucial to their regulatory role, controlling membrane dynamics, vesicular trafficking, signal transduction, and other key cellular events. The synthesis of phosphatidylinositol (3,4,5)-triphosphate (PI3,4,5P3) in the cytoplamic PI3K/Akt pathway is central to the life and death of a cell. This review will focus on the emerging evidence that scaffold proteins regulate the PI3K/Akt pathway in distinct membrane structures in response to diverse stimuli, challenging the belief that the plasma membrane is the predominant site for PI3k/Akt signaling. In addition, we will discuss how PIs regulate the recruitment of specific scaffolding complexes to membrane structures to coordinate vesicle formation, fusion, and reformation during autophagy as well as a novel lysosome repair pathway.
Collapse
Affiliation(s)
- Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (N.T.)
| |
Collapse
|
40
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
41
|
Martínez-Chacón G, Paredes-Barquero M, Yakhine-Diop SM, Uribe-Carretero E, Bargiela A, Sabater-Arcis M, Morales-García J, Alarcón-Gil J, Alegre-Cortés E, Canales-Cortés S, Rodríguez-Arribas M, Camello PJ, Pedro JMBS, Perez-Castillo A, Artero R, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M. Neuroprotective properties of queen bee acid by autophagy induction. Cell Biol Toxicol 2023; 39:751-770. [PMID: 34448959 PMCID: PMC10406658 DOI: 10.1007/s10565-021-09625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sokhna M.S Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - María Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - José Morales-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Jesús Alarcón-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Pedro Javier Camello
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Instituto Universitario de Biomarcadores de Patologías Metabólicas, Cáceres, Spain
| | - José Manuel Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Rosa A. Gonzalez-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
42
|
Li L, Shu XS, Geng H, Ying J, Guo L, Luo J, Xiang T, Wu L, Ma BBY, Chan ATC, Zhu X, Ambinder RF, Tao Q. A novel tumor suppressor encoded by a 1p36.3 lncRNA functions as a phosphoinositide-binding protein repressing AKT phosphorylation/activation and promoting autophagy. Cell Death Differ 2023; 30:1166-1183. [PMID: 36813924 PMCID: PMC10154315 DOI: 10.1038/s41418-023-01129-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Peptides/small proteins, encoded by noncanonical open reading frames (ORF) of previously claimed non-coding RNAs, have recently been recognized possessing important biological functions, but largely uncharacterized. 1p36 is an important tumor suppressor gene (TSG) locus frequently deleted in multiple cancers, with critical TSGs like TP73, PRDM16, and CHD5 already validated. Our CpG methylome analysis identified a silenced 1p36.3 gene KIAA0495, previously thought coding long non-coding RNA. We found that the open reading frame 2 of KIAA0495 is actually protein-coding and translating, encoding a small protein SP0495. KIAA0495 transcript is broadly expressed in multiple normal tissues, but frequently silenced by promoter CpG methylation in multiple tumor cell lines and primary tumors including colorectal, esophageal and breast cancers. Its downregulation/methylation is associated with poor survival of cancer patients. SP0495 induces tumor cell apoptosis, cell cycle arrest, senescence and autophagy, and inhibits tumor cell growth in vitro and in vivo. Mechanistically, SP0495 binds to phosphoinositides (PtdIns(3)P, PtdIns(3,5)P2) as a lipid-binding protein, inhibits AKT phosphorylation and its downstream signaling, and further represses oncogenic AKT/mTOR, NF-κB, and Wnt/β-catenin signaling. SP0495 also regulates the stability of autophagy regulators BECN1 and SQSTM1/p62 through modulating phosphoinositides turnover and autophagic/proteasomal degradation. Thus, we discovered and validated a 1p36.3 small protein SP0495, functioning as a novel tumor suppressor regulating AKT signaling activation and autophagy as a phosphoinositide-binding protein, being frequently inactivated by promoter methylation in multiple tumors as a potential biomarker.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Hua Geng
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianming Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Guo
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tingxiu Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Cancer Hospital, Chongqing, China
| | - Longtao Wu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Brigette B Y Ma
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Richard F Ambinder
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Yu Q, Li C, Niu Q, Wang J, Che Z, Lei K, Ren H, Ma B, Ren Y, Luo P, Fan Z, Zhang H, Liu Z, Tipoe GL, Xiao J. Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
44
|
Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, Zumaya EA, Diao RY, Lampert MA, Gustafsson ÅB. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci Signal 2023; 16:eabo4457. [PMID: 36719945 PMCID: PMC10019900 DOI: 10.1126/scisignal.abo4457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
The degradation of macromolecules and organelles by the process of autophagy is critical for cellular homeostasis and is often compromised during aging and disease. Beclin1 and Beclin2 are implicated in autophagy induction, and these homologs share a high degree of amino acid sequence similarity but have divergent N-terminal regions. Here, we investigated the functions of the Beclin homologs in regulating autophagy and mitophagy, a specialized form of autophagy that targets mitochondria. Both Beclin homologs contributed to autophagosome formation, but a mechanism of autophagosome formation independent of either Beclin homolog occurred in response to starvation or mitochondrial damage. Mitophagy was compromised only in Beclin1-deficient HeLa cells and mouse embryonic fibroblasts because of defective autophagosomal engulfment of mitochondria, and the function of Beclin1 in mitophagy required the phosphorylation of the conserved Ser15 residue by the kinase Ulk1. Mitochondria-ER-associated membranes (MAMs) are important sites of autophagosome formation during mitophagy, and Beclin1, but not Beclin2 or a Beclin1 mutant that could not be phosphorylated at Ser15, localized to MAMs during mitophagy. Our findings establish a regulatory role for Beclin1 in selective mitophagy by initiating autophagosome formation adjacent to mitochondria, a function facilitated by Ulk1-mediated phosphorylation of Ser15 in its distinct N-terminal region.
Collapse
Affiliation(s)
- Justin M. Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rita H. Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Eileen Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Monica Jeung
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Sarah M. Burbach
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Erika A. Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rachel Y. Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Mark A. Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Åsa B. Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| |
Collapse
|
45
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
46
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Rooney TC, Aldred GG, Boffey HK, Willems HG, Edwards S, Chawner SJ, Scott DE, Green C, Winpenny D, Skidmore J, Clarke JH, Andrews SP. The Identification of Potent, Selective, and Brain Penetrant PI5P4Kγ Inhibitors as In Vivo-Ready Tool Molecules. J Med Chem 2022; 66:804-821. [PMID: 36516442 PMCID: PMC9841522 DOI: 10.1021/acs.jmedchem.2c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to their central role in regulating cell signaling pathways, the phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are attractive therapeutic targets in diseases such as cancer, neurodegeneration, and immunological disorders. Until now, tool molecules for these kinases have been either limited in potency or isoform selectivity, which has hampered further investigation of biology and drug development. Herein we describe the virtual screening workflow which identified a series of thienylpyrimidines as PI5P4Kγ-selective inhibitors, as well as the medicinal chemistry optimization of this chemotype, to provide potent and selective tool molecules for further use. In vivo pharmacokinetics data are presented for exemplar tool molecules, along with an X-ray structure for ARUK2001607 (15) in complex with PI5P4Kγ, along with its selectivity data against >150 kinases and a Cerep safety panel.
Collapse
|
48
|
Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Res 2022; 32:1086-1104. [PMID: 36280710 PMCID: PMC9715632 DOI: 10.1038/s41422-022-00731-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/16/2022] [Indexed: 01/31/2023] Open
Abstract
STING, an endoplasmic reticulum (ER) transmembrane protein, mediates innate immune activation upon cGAMP stimulation and is degraded through autophagy. Here, we report that activated STING could be transferred between cells to promote antitumor immunity, a process triggered by RAB22A-mediated non-canonical autophagy. Mechanistically, RAB22A engages PI4K2A to generate PI4P that recruits the Atg12-Atg5-Atg16L1 complex, inducing the formation of ER-derived RAB22A-mediated non-canonical autophagosome, in which STING activated by agonists or chemoradiotherapy is packaged. This RAB22A-induced autophagosome fuses with RAB22A-positive early endosome, generating a new organelle that we name Rafeesome (RAB22A-mediated non-canonical autophagosome fused with early endosome). Meanwhile, RAB22A inactivates RAB7 to suppress the fusion of Rafeesome with lysosome, thereby enabling the secretion of the inner vesicle of the autophagosome bearing activated STING as a new type of extracellular vesicle that we define as R-EV (RAB22A-induced extracellular vesicle). Activated STING-containing R-EVs induce IFNβ release from recipient cells to the tumor microenvironment, promoting antitumor immunity. Consistently, RAB22A enhances the antitumor effect of the STING agonist diABZI in mice, and a high RAB22A level predicts good survival in nasopharyngeal cancer patients treated with chemoradiotherapy. Our findings reveal that Rafeesome regulates the intercellular transfer of activated STING to trigger and spread antitumor immunity, and that the inner vesicle of non-canonical autophagosome originated from ER is secreted as R-EV, providing a new perspective for understanding the intercellular communication of organelle membrane proteins.
Collapse
|
49
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J 2022; 12:151. [PMID: 36347832 PMCID: PMC9643393 DOI: 10.1038/s41408-022-00747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The treatment of acute leukemia is challenging because of the genetic heterogeneity between and within patients. Leukemic stem cells (LSCs) are relatively drug-resistant and frequently relapse. Their plasticity and capacity to adapt to extracellular stress, in which mitochondrial metabolism and autophagy play important roles, further complicates treatment. Genetic models of phosphatidylinositol-5-phosphate 4-kinase type 2 protein (PIP4K2s) inhibition have demonstrated the relevance of these enzymes in mitochondrial homeostasis and autophagic flux. Here, we uncovered the cellular and molecular effects of THZ-P1-2, a pan-inhibitor of PIP4K2s, in acute leukemia cells. THZ-P1-2 reduced cell viability and induced DNA damage, apoptosis, loss of mitochondrial membrane potential, and the accumulation of acidic vesicular organelles. Protein expression analysis revealed that THZ-P1-2 impaired autophagic flux. In addition, THZ-P1-2 induced cell differentiation and showed synergistic effects with venetoclax. In primary leukemia cells, LC-MS/MS-based proteome analysis revealed that sensitivity to THZ-P1-2 is associated with mitochondrial metabolism, cell cycle, cell-of-origin (hematopoietic stem cell and myeloid progenitor), and the TP53 pathway. The minimal effects of THZ-P1-2 observed in healthy CD34+ cells suggest a favorable therapeutic window. Our study provides insights into the pharmacological inhibition of PIP4K2s targeting mitochondrial homeostasis and autophagy, shedding light on a new class of drugs for acute leukemia.
Collapse
|