1
|
Hu JK, Tang X, Luo GL, Zhang C, Wu TB, Wang C, Shen H, Zhao XF, Wu XS, Smaill JB, Xu Y, Zhang Y, Xiang QP. Discovery of 5-imidazole-3-methylbenz[d]isoxazole derivatives as potent and selective CBP/p300 bromodomain inhibitors for the treatment of acute myeloid leukemia. Acta Pharmacol Sin 2025; 46:1706-1721. [PMID: 39890943 PMCID: PMC12099000 DOI: 10.1038/s41401-025-01478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Inhibition of the bromodomain of the cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 is an attractive therapeutic approach in oncology, particularly in acute myeloid leukemia (AML). In this study we describe the design, optimization, and evaluation of 5-imidazole-3-methylbenz[d]isoxazoles as novel, potent and selective CBP/p300 bromodomain inhibitors. Two of the representative compounds, 16t (Y16524) and 16u (Y16526), bound to the p300 bromodomain with IC50 values of 0.01 and 0.03 μM, respectively. Furthermore, 16t and 16u potently inhibited the growth of AML cell lines, particularly MV4;11 cells with IC50 values of 0.49 and 0.26 μM, respectively. The potent CBP/p300 bromodomain inhibitors represent a new class of compounds for the development of potential therapeutics against AML.
Collapse
Affiliation(s)
- Jian-Kang Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xin Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou, 510530, China
| | - Guo-Long Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tian-Bang Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chao Wang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hui Shen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiao-Fan Zhao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou, 510530, China
| | - Xi-Shan Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Qiu-Ping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No. 2 Hospital, Ningbo, 315010, China.
| |
Collapse
|
2
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Chaudhary SG, Ballachanda DN, Trichka J, Wisniewski J, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by enabling BRD4-p300-dependent transcription. Nat Commun 2025; 16:4133. [PMID: 40319015 PMCID: PMC12049546 DOI: 10.1038/s41467-025-59504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Addiction to oncogene-rewired transcriptional networks is a therapeutic vulnerability in cancer cells, underscoring a need to better understand mechanisms that relay oncogene signals to the transcriptional machinery. Here, using human and mouse T cell acute lymphoblastic leukemia (T-ALL) models, we identify an essential requirement for the endosomal sorting complex required for transport protein CHMP5 in T-ALL epigenetic and transcriptional programming. CHMP5 is highly expressed in T-ALL cells where it mediates recruitment of the coactivator BRD4 and the histone acetyl transferase p300 to enhancers and super-enhancers that enable transcription of T-ALL genes. Consequently, CHMP5 depletion causes severe downregulation of critical T-ALL genes, mitigates chemoresistance and impairs T-ALL initiation by oncogenic NOTCH1 in vivo. Altogether, our findings uncover a non-oncogene dependency on CHMP5 that enables T-ALL initiation and maintenance.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Sneha Ghosh Chaudhary
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Devaiah N Ballachanda
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Carter MJ, Bogdanov YD, Smith RC, Cox KL, Frampton S, Ferson L, Foxall RB, Hussain K, Strefford JC, Beers SA, Cragg MS. The ETS-family transcription factor PU.1 is a critical regulator of the inhibitory Fcγ receptor IIB expression in humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf109. [PMID: 40420414 DOI: 10.1093/jimmun/vkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
The inhibitory Fc gamma receptor IIB (FcγRIIB) is a critical determinant of humoral immunity. By providing feedback inhibition, through inhibitory signalling or competition for antibody Fc engagement, it counterbalances and contextualises cellular responses to signals emanating from co-ligated activating receptors, such as the B-cell receptor and activating FcγR. These activities collectively suppress the emergence of B- cell-mediated autoimmune disease and immune complex-mediated pathologies. However, FcγRIIB upregulation within the tumour microenvironment limits the efficacy of monoclonal antibody (mAb)-mediated immunotherapy of cancer. While the functional significance of FcγRIIB is well established in mice, its physiological roles and the regulatory mechanisms governing its expression remain incompletely understood in humans. Here we characterise the molecular determinants of FcγRIIB expression in human immune models and primary cells. Our findings reveal that the ETS-family transcription factor PU.1 plays a crucial role in regulating basal and inducible FcγRIIB expression. Moreover, when co-expressed, PU.1 co-operates with the related ETS-family member SPIB to drive FcγRIIB expression. PU.1 binding to the proximal FcγRIIB promoter elicits transcription, at least in part, through recruitment of the CBP/p300 transcriptional co-activators. Interestingly, similar mechanisms are also observed at the proximal promoters of the activating FcγRI and FcγRIIA, suggesting that additional, potentially lineage specific, factors cooperate with PU.1 to drive the distinct expression patterns of these FcγR. These insights pave the way for future investigations aimed at understanding the molecular mechanisms responsible for cell lineage-specific FcγR expression and subsequently manipulating them for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew J Carter
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Yury D Bogdanov
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Rosanna C Smith
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Kerry L Cox
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Sarah Frampton
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Lili Ferson
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Russel B Foxall
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Khiyam Hussain
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Jonathan C Strefford
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Kodikara IK, Pflum MKH. Scaffolding Activities of Pseudodeacetylase HDAC7. ACS Chem Biol 2025; 20:248-258. [PMID: 39908122 PMCID: PMC12051139 DOI: 10.1021/acschembio.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Histone deacetylase (HDAC) enzymes remove acetyl groups from acetyllysine-containing proteins, including nucleosomal histones to control gene expression. Beyond fundamental cell biology, HDAC activity is linked to various cancers, with many HDAC inhibitors developed as anticancer therapeutics. Among the 11 metal-dependent HDAC proteins, the four class IIa isoforms (HDAC4, 5, 7, and 9) are "pseudodeacetylases" without measurable enzymatic activity due to mutation of a catalytic tyrosine. Deacetylase-related activities of class IIa HDAC proteins are attributed to scaffolding functions, where recruitment of an active HDAC isoform leads to bound substrate deacetylation. Scaffolding of class IIa proteins beyond simple recruitment of an active HDAC is only starting to emerge. This review explores the various scaffolding roles of HDAC7, including recently reported acetylation-mediated reversible scaffolding, which is a form of acetyllysine-binding reader function. Studying the functional roles of HDAC7 will provide molecular insight into normal and pathological conditions, which could facilitate drug design.
Collapse
Affiliation(s)
- Ishadi K.M. Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
5
|
Zhou B, Fang F, Zhang Y, Li Z, Hu Y, Li Y, Jiao W, Wu Y, Wan X, Yang Y, Zhang F, Xu L, Ji T, Pan J, Hu S. Core transcriptional regulatory circuitry molecule ZNF217 promotes AML cell proliferation by up-regulating MYB. Int J Biol Sci 2025; 21:1966-1983. [PMID: 40083704 PMCID: PMC11900805 DOI: 10.7150/ijbs.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/02/2025] [Indexed: 03/16/2025] Open
Abstract
Leukemia is characterized by multiple rearrangements of signal transduction genes and overexpression of nonmutated genes, such as transcription factors (TFs) genes. Super-enhancers (SEs) are prevalent in human cancers and are associated with the accumulation of numerous core TFs. SEs drive the expression of core TF genes by delivering robust transcriptional activation signals. Additionally, core TFs sustain the stability and activity of SEs through mutual auto-regulation loops, creating a positive feedback loop known as the Core Transcriptional Regulation Circuit (CRC). Using ChIP-seq data, we identified the involvement of the SE-related gene ZNF217 in acute myeloid leukemia (AML), in which its functional role and underlying mechanism remain unclear. We demonstrated that ZNF217, ELF1, MEF2D, RUNX2, and FOXP1 are likely integral components of the AML CRC through various experimental techniques, including CUT&Tag, short hairpin RNA (shRNA) transduction, and Luciferase reporter assays. Notably, ZNF217 was determined to be indispensable for the proliferation and viability of AML cells both in vitro and in vivo. Subsequent analysis of RNA-seq and CUT&Tag results identified MYB as a key direct target of ZNF217. Overall, our research highlights ZNF217 as a critical oncogene in AML and offers new insights into the transcriptional regulatory mechanisms at play in AML.
Collapse
Affiliation(s)
- Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Dept. of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou, 234000, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
- Pediatric Hematology & Oncology Key Laboratory of Higher Education Institutions in Jiangsu Province, Jiangsu, China
| | - YongPing Zhang
- Dept. of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - ZhiHeng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
- Pediatric Hematology & Oncology Key Laboratory of Higher Education Institutions in Jiangsu Province, Jiangsu, China
| | - YiXin Hu
- Dept. of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yan Li
- Dept. of Pediatric, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - WanYan Jiao
- Dept. of Pediatric, Yancheng Third People' Hospital, YanCheng, 224000, China
| | - YuMeng Wu
- Dept. of Pediatric, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - XiaoMei Wan
- Dept. of Pediatric, The First Affiliated Hospital of Wannan Medical College, Wuhu, 234100, China
| | - Ying Yang
- Clinical Medicine, Guizhou Medical University, Guiyang 550000, China
| | - FenLi Zhang
- Clinical Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Ling Xu
- Dept. of Pediatric, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - TongTing Ji
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215003, China
- Pediatric Hematology & Oncology Key Laboratory of Higher Education Institutions in Jiangsu Province, Jiangsu, China
| | - ShaoYan Hu
- Dept. of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| |
Collapse
|
6
|
Shah V, Giotopoulos G, Osaki H, Meyerhöfer M, Meduri E, Gallego-Crespo A, Behrendt MA, Saura-Pañella M, Tarkar A, Schubert B, Yun H, Horton SJ, Agrawal-Singh S, Haehnel PS, Basheer F, Lugo D, Eleftheriadou I, Barbash O, Dhar A, Kühn MWM, Guezguez B, Theobald M, Kindler T, Gallipoli P, Yeh P, Dawson MA, Prinjha RK, Huntly BJP, Sasca D. Acute resistance to BET inhibitors remodels compensatory transcriptional programs via p300 coactivation. Blood 2025; 145:748-764. [PMID: 39651888 DOI: 10.1182/blood.2022019306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Initial clinical trials with drugs targeting epigenetic modulators, such as bromodomain and extraterminal protein (BET) inhibitors, demonstrate modest results in acute myeloid leukemia (AML). A major reason for this involves an increased transcriptional plasticity within AML, which allows the cells to escape therapeutic pressure. In this study, we investigated the immediate epigenetic and transcriptional responses after BET inhibition and demonstrated that BET inhibitor-mediated release of bromodomain-containing protein 4 from chromatin is accompanied by acute compensatory feedback that attenuates downregulation or even increases the expression of specific transcriptional modules. This adaptation is marked at key AML maintenance genes and is mediated by p300, suggesting a rational therapeutic opportunity to improve outcomes by combining BET and p300 inhibition. p300 activity is required during all steps of resistance adaptation; however, the specific transcriptional programs that p300 regulates to induce resistance to BET inhibition differ, in part, between AML subtypes. As a consequence, in some AMLs, the requirement for p300 is highest during the earlier stages of resistance to BET inhibition, when p300 regulates transitional transcriptional patterns that allow leukemia-homeostatic adjustments. In other AMLs, p300 shapes a linear resistance to BET inhibition and remains critical throughout all stages of the evolution of resistance. Altogether, our study elucidates the mechanisms that underlie an "acute" state of resistance to BET inhibition, achieved through p300 activity, and how these mechanisms remodel to mediate "chronic" resistance. Importantly, our data also suggest that sequential treatment with BET and p300 inhibition may prevent resistance development, thereby improving outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- E1A-Associated p300 Protein/metabolism
- E1A-Associated p300 Protein/genetics
- Transcription, Genetic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Cell Line, Tumor
- Bromodomain Containing Proteins
- Proteins
- Cell Cycle Proteins
Collapse
Affiliation(s)
- Viral Shah
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - George Giotopoulos
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hikari Osaki
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Markus Meyerhöfer
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Eshwar Meduri
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Aaron Gallego-Crespo
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Malte A Behrendt
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Maria Saura-Pañella
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Aarti Tarkar
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Benedict Schubert
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Haiyang Yun
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Sarah J Horton
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shuchi Agrawal-Singh
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Patricia S Haehnel
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
| | - Faisal Basheer
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dave Lugo
- Adaptive Immunity and Immuno-epigenetics Research Unit, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | | | - Olena Barbash
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Arindam Dhar
- GlaxoSmithKline Research and Development, Collegeville, PA
| | - Michael W M Kühn
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Borhane Guezguez
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Thomas Kindler
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Paul Yeh
- Monash Haematology, Monash Health and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Mark A Dawson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rab K Prinjha
- Adaptive Immunity and Immuno-epigenetics Research Unit, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | - Brian J P Huntly
- Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Sasca
- Department of Hematology and Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- University Cancer Center, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, University of Mainz, Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Gómez-Echarte N, José-Enériz ES, Carrasco-León A, Barrena N, Miranda E, Garate L, García-Torre B, Alonso-Moreno S, Gimenez-Camino N, Urizar-Compains E, Olaverri-Mendizabal D, Aguirre-Ruiz P, Ariceta B, Tamariz-Amador LE, Rodriguez-Otero P, Planes FJ, Belver L, Martín-Subero JI, Prosper F, Agirre X. BET inhibitors downregulate the expression of the essential lncRNA SMILO in multiple myeloma through regulation of the transcription factor FLI1. Haematologica 2025; 110:514-519. [PMID: 39323408 PMCID: PMC11788633 DOI: 10.3324/haematol.2024.285966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Nahia Gómez-Echarte
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra
| | - Edurne San José-Enériz
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| | - Arantxa Carrasco-León
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| | - Naroa Barrena
- Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, País Vasco
| | - Estibaliz Miranda
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| | - Leire Garate
- Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra (CUN), Pamplona, Navarra
| | | | - Sandra Alonso-Moreno
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Catalan Institute of Oncology (ICO), Cancer Therapeutic Resistance Program (ProCURE), Badalona, Barcelona
| | - Naroa Gimenez-Camino
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra
| | - Estibaliz Urizar-Compains
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra
| | | | - Paula Aguirre-Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra.
| | - Beñat Ariceta
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra
| | - Luis-Esteban Tamariz-Amador
- Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra (CUN), Pamplona, Navarra
| | - Paula Rodriguez-Otero
- Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra (CUN), Pamplona, Navarra
| | - Francisco J Planes
- Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, País Vasco
| | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Catalan Institute of Oncology (ICO), Cancer Therapeutic Resistance Program (ProCURE), Badalona, Barcelona
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - Felipe Prosper
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Servicio de Hematología y Terapia Celular, Clínica Universidad de Navarra (CUN), Pamplona, Navarra.
| | - Xabier Agirre
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Navarra, Spain; Cancer Centre Clínica Universidad de Navarra (CCUN), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| |
Collapse
|
8
|
Zhang W, Yamamoto K, Chang YH, Yabushita T, Hao Y, Shimura R, Nakahara J, Shikata S, Iida K, Chen Q, Zhang X, Kitamura T, Goyama S. HDAC7 is a potential therapeutic target in acute erythroid leukemia. Leukemia 2024; 38:2614-2627. [PMID: 39277669 PMCID: PMC11588653 DOI: 10.1038/s41375-024-02394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Acute erythroleukemia (AEL) is a rare subtype of acute myeloid leukemia with a poor prognosis. In this study, we established a novel murine AEL model with Trp53 depletion and ERG overexpression. ERG overexpression in Trp53-deficient mouse bone marrow cells, but not in wild-type bone marrow cells, leads to AEL development within two months after transplantation with 100% penetrance. The established mouse AEL cells expressing Cas9 can be cultured in vitro, induce AEL in vivo even in unirradiated recipient mice, and enable efficient gene ablation using the CRISPR/Cas9 system. We also confirmed the cooperation between ERG overexpression and TP53 inactivation in promoting the growth of immature erythroid cells in human cord blood cells. Mechanistically, ERG antagonizes KLF1 and inhibits erythroid maturation, whereas TP53 deficiency promotes proliferation of erythroid progenitors. Furthermore, we identified HDAC7 as a specific susceptibility in AEL by the DepMap-based two-group comparison analysis. HDAC7 promotes the growth of human and mouse AEL cells both in vitro and in vivo through its non-enzymatic functions. Our study provides experimental evidence that TP53 deficiency and ERG overexpression are necessary and sufficient for the development of AEL and highlights HDAC7 as a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yabushita
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yangying Hao
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ruka Shimura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jakushin Nakahara
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Shikata
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Iida
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Qianyi Chen
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Xichen Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Cantilena S, AlAmeri M, Che N, Williams O, de Boer J. Synergistic Strategies for KMT2A-Rearranged Leukemias: Beyond Menin Inhibitor. Cancers (Basel) 2024; 16:4017. [PMID: 39682203 DOI: 10.3390/cancers16234017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge. This review explores combination therapies aimed at overcoming resistance and improving patient outcomes. Potential strategies include inhibiting DOT1L, a histone methyltransferase essential for KMT2A-driven transcription, and BRD4, a regulator of transcriptional super-enhancers. Additionally, targeting MYC, a key oncogene frequently upregulated in KMT2A-rearranged leukemia, offers another approach. Direct inhibition of KMT2A-fusion proteins and c-MYB, a transcription factor critical for leukemic stem cell maintenance, is also explored. By integrating these diverse strategies, we propose a comprehensive therapeutic paradigm that targets multiple points of the leukemic transcriptional and epigenetic network. These combination approaches aim to disrupt key oncogenic pathways, reduce resistance, and enhance treatment efficacy, ultimately providing more durable remissions and improved survival for patients with KMT2A-rearranged leukemias.
Collapse
Affiliation(s)
- Sandra Cantilena
- Hemispherian AS, 0585 Oslo, Norway
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Mohamed AlAmeri
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Department of Health-Abu Dhabi, Abu Dhabi 20224, United Arab Emirates
| | - Noelia Che
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Australian & New Zealand Children's Haematology/Oncology Group, Melbourne, VIC 3052, Australia
- Australia & Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| |
Collapse
|
10
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
11
|
Maytum A, Obier N, Cauchy P, Bonifer C. Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:freae.2024.1465958. [PMID: 39506987 PMCID: PMC7616781 DOI: 10.3389/freae.2024.1465958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The ability of cells to respond to external stimuli is one of the characteristics of life as we know it. Multicellular organisms have developed a huge machinery that interprets the cellular environment and instigates an appropriate cellular response by changing gene expression, metabolism, proliferation state and motility. Decades of research have studied the pathways transmitting the various signals within the cell. However, whilst we know most of the players, we know surprisingly little about the mechanistic details of how extrinsic signals are interpreted and integrated within the genome. In this article we revisit the long-standing debate of whether factors regulating cellular growth (cytokines) act in an instructive or permissive fashion on cell fate decisions. We touch upon this topic by highlighting the paradigm of AP-1 as one of the most important signaling-responsive transcription factor family and summarize our work and that of others to explain what is known about cytokine responsive cis-regulatory elements driving differential gene expression. We propose that cytokines and, by extension, multiple types of external signals are the main drivers of cell differentiation and act via inducible transcription factors that transmit signaling processes to the genome and are essential for changing gene expression to drive transitions between gene regulatory networks. Importantly, inducible transcription factors cooperate with cell type specific factors within a pre-existing chromatin landscape and integrate multiple signaling pathways at specific enhancer elements, to both maintain and alter cellular identities. We also propose that signaling processes and signaling responsive transcription factors are at the heart of tumor development.
Collapse
Affiliation(s)
- Alexander Maytum
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
13
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
14
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
15
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Hu J, Xu H, Wu T, Zhang C, Shen H, Dong R, Hu Q, Xiang Q, Chai S, Luo G, Chen X, Huang Y, Zhao X, Peng C, Wu X, Lin B, Zhang Y, Xu Y. Discovery of Highly Potent and Efficient CBP/p300 Degraders with Strong In Vivo Antitumor Activity. J Med Chem 2024; 67:6952-6986. [PMID: 38649304 DOI: 10.1021/acs.jmedchem.3c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.
Collapse
Affiliation(s)
- Jiankang Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hui Shen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ruibo Dong
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qingqing Hu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qiuping Xiang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315010, China
| | - Shuang Chai
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Guolong Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yumin Huang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaofan Zhao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Peng
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing 210042, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
17
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
18
|
Kim S, Chen J, Ou F, Liu TT, Jo S, Gillanders WE, Murphy TL, Murphy KM. Transcription factor C/EBPα is required for the development of Ly6C hi monocytes but not Ly6C lo monocytes. Proc Natl Acad Sci U S A 2024; 121:e2315659121. [PMID: 38564635 PMCID: PMC11009651 DOI: 10.1073/pnas.2315659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Fu JY, Huang SJ, Wang BL, Yin JH, Chen CY, Xu JB, Chen YL, Xu S, Dong T, Zhou HN, Ma XY, Pu YP, Li H, Yang XJ, Xie LS, Wang ZJ, Luo Q, Shao YX, Ye L, Zong ZR, Wei XD, Xiao WW, Niu ST, Liu YM, Xu HP, Yu CQ, Duan SZ, Zheng LY. Lysine acetyltransferase 6A maintains CD4 + T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity. Cell Metab 2024; 36:557-574.e10. [PMID: 38237601 DOI: 10.1016/j.cmet.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.
Collapse
Affiliation(s)
- Jia-Yao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Bao-Li Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jun-Hao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Chang-Yu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jia-Bao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Lin Chen
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hao-Nan Zhou
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Yi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Xiu-Juan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Li-Song Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zhi-Jun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Qi Luo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Xiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zi-Rui Zong
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Di Wei
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Wan-Wen Xiao
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Shu-Tong Niu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ming Liu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - He-Ping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Science, Westlake University, Hangzhou 310024, China
| | - Chuang-Qi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Ling-Yan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| |
Collapse
|
20
|
Rahn K, Abdallah AT, Gan L, Herbrich S, Sonntag R, Benitez O, Malaney P, Zhang X, Rodriguez AG, Brottem J, Marx G, Brümmendorf TH, Ostareck DH, Ostareck-Lederer A, Crysandt M, Post SM, Naarmann-de Vries IS. Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195004. [PMID: 38008244 DOI: 10.1016/j.bbagrm.2023.195004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Collapse
Affiliation(s)
- Kerstin Rahn
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany; Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lin Gan
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Shelley Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashely G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Brottem
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isabel S Naarmann-de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Song S, Zhang X, Huang Z, Zhao Y, Lu S, Zeng L, Cai F, Wang T, Pei Z, Weng X, Luo W, Lu H, Wei Z, Wu J, Yu P, Shen L, Zhang X, Sun A, Ge J. TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway. Signal Transduct Target Ther 2024; 9:45. [PMID: 38374140 PMCID: PMC10876703 DOI: 10.1038/s41392-023-01732-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuyang Lu
- Department of cardiac surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fengze Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Devaiah BN, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by controlling BRD4-p300-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577409. [PMID: 38352301 PMCID: PMC10862731 DOI: 10.1101/2024.01.29.577409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Oncogene activity rewires cellular transcription, creating new transcription networks to which cancer cells become addicted, by mechanisms that are still poorly understood. Using human and mouse models of T cell acute lymphoblastic leukemia (T-ALL), we identify an essential nuclear role for CHMP5, a cytoplasmic endosomal sorting complex required for transport (ESCRT) protein, in establishing and maintaining the T-ALL transcriptional program. Nuclear CHMP5 promoted the T-ALL gene program by augmenting recruitment of the co-activator BRD4 by the histone acetyl transferase p300 selectively at enhancers and super-enhancers, an interaction that potentiated H3K27 acetylation at these regulatory enhancers. Consequently, loss of CHMP5 diminished BRD4 occupancy at enhancers and super-enhancers and impaired RNA polymerase II pause release, which resulted in downregulation of key T-ALL genes, notably MYC. Reinforcing its importance in T-ALL pathogenesis, CHMP5 deficiency mitigated chemoresistance in human T-ALL cells and abrogated T-ALL induction by oncogenic NOTCH1 in vivo. Thus, the ESCRT protein CHMP5 is an essential positive regulator of the transcriptional machinery promoting T-ALL disease.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
- These authors contributed equally
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University; Chengdu 611130, China
- These authors contributed equally
| | - Ballachanda N. Devaiah
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Lead contact
| |
Collapse
|
23
|
Xu H, Wu D, Xiao M, Lei Y, Lei Y, Yu X, Shi S. PP2A complex disruptor SET prompts widespread hypertranscription of growth-essential genes in the pancreatic cancer cells. SCIENCE ADVANCES 2024; 10:eadk6633. [PMID: 38277454 PMCID: PMC10816699 DOI: 10.1126/sciadv.adk6633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
Hyperactivation of the oncogenic transcription reflects the epigenetic plasticity of the cancer cells. Su(var)3-9, enhancer of zeste, Trithorax (SET) was described as a nuclear factor that stimulated transcription from the chromatin template. However, the mechanisms of SET-dependent transcription are unknown. Here, we found that overexpression of SET and CDK9 induced very similar transcriptome signatures in multiple cancer cell lines. SET localized in the transcription start site (TSS)-proximal regions and supported the RNA transcription. SET specifically bound the PP2A-C subunit and induced PP2A-A subunit repulsion from the C subunit, which indicated the role of SET as a PP2A-A/C complex disruptor in the TSS-proximal regions. Through blocking PP2A activity, SET assisted CDK9 to maintain Pol II CTD phosphorylation and activated mRNA transcription. Our findings position SET as a key factor that modulates chromatin PP2A activity, promoting the oncogenic transcription in the pancreatic cancer.
Collapse
Affiliation(s)
- He Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Di Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yubin Lei
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Neri P, Barwick BG, Jung D, Patton JC, Maity R, Tagoug I, Stein CK, Tilmont R, Leblay N, Ahn S, Lee H, Welsh SJ, Riggs DL, Stong N, Flynt E, Thakurta A, Keats JJ, Lonial S, Bergsagel PL, Boise LH, Bahlis NJ. ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma. Blood Cancer Discov 2024; 5:56-73. [PMID: 37934799 PMCID: PMC10772538 DOI: 10.1158/2643-3230.bcd-23-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David Jung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Jonathan C. Patton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Ines Tagoug
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Caleb K. Stein
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Remi Tilmont
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Seth J. Welsh
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Daniel L. Riggs
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Nicholas Stong
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Erin Flynt
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey
| | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - P. Leif Bergsagel
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
25
|
Clarke ML, Gabrielsen OS, Frampton J. MYB as a Critical Transcription Factor and Potential Therapeutic Target in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:341-358. [PMID: 39017851 DOI: 10.1007/978-3-031-62731-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.
Collapse
Affiliation(s)
- Mary Louise Clarke
- Department of Biomedical Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
26
|
Rose AJ, Fleming MM, Francis JC, Ning J, Patrikeev A, Chauhan R, Harrington KJ, Swain A. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol 2024; 262:37-49. [PMID: 37792636 DOI: 10.1002/path.6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy with limited treatment options. The development of novel therapies is hindered by a lack of preclinical models. We have generated ACC patient-derived xenograft (PDX) lines that retain the physical and genetic properties of the original tumours, including the presence of the common MYB::NFIB or MYBL1::NFIB translocations. We have developed the conditions for the generation of both 2D and 3D tumour organoid patient-derived ACC models that retain MYB expression and can be used for drug studies. Using these models, we show in vitro and in vivo sensitivity of ACC cells to the bromodomain degrader, dBET6. Molecular studies show a decrease in BRD4 and MYB protein levels and target gene expression with treatment. The most prominent effect of dBET6 on tumours in vivo was a change in the relative composition of ACC cell types expressing either myoepithelial or ductal markers. We show that dBET6 inhibits the progenitor function of ACC cells, particularly in the myoepithelial marker-expressing population, revealing a cell-type-specific sensitivity. These studies uncover a novel mechanistic effect of bromodomain inhibitors on tumours and highlight the need to impact both cell-type populations for more effective treatments in ACC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alexandra J Rose
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Jian Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | | | - Ritika Chauhan
- Genomics Facility, Institute of Cancer Research, London, UK
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| |
Collapse
|
27
|
Kulshrestha S, Goel A. Protein therapeutics as an emerging strategy to deal with skin cancer: A short review. Exp Dermatol 2024; 33:e14981. [PMID: 37983960 DOI: 10.1111/exd.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Cancer has turned into a global menace with an exponential increase in the rate of death every year. Amongst all forms of cancers, skin cancer is the one becoming more common day by day because of the increased exposure to ultraviolet rays, chemicals, pollutants, etc. Skin cancer is of three types namely basal cell, squamous cell and melanoma which is one of the most aggressive forms of cancer with a low survival rate and easy relapse. Melanoma is also notorious for being multi-drug resistant which accounts for its low survival rates in it. Many kinds of therapeutics are been practiced in the contemporary world, but among them, protein therapeutics is been emerging as a promising field with multiple molecular pathway targets that have revolutionized the science of oncology. Proteins acts as small-molecule targets for cancer cells by binding to the cell surface receptors. Proteins including bromodomain and extra-terminal domain (BET) and some toxin proteins are been tried on for dealing with melanoma targeting the major pathways including MAPK, NF-κB and PI3K/AKT. The protein therapeutics also targets the tumour microenvironment including myofibrils, lymphatic vessels etc., thus inducing tumour cell death. In the review, several kinds of proteins and their function toward cell death will be highlighted in the context of skin cancer. In addition to this, the review will look into the inhibition of the function of other inflammatory pathways by inflammasomes and cytokines, both of which have a role in preventing cancer.
Collapse
Affiliation(s)
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
28
|
Wang K, Tang J, Fan S, Su H, Yu R, Zhang Y, Wu H, Lv Y, Zhang S, Zou X. ABBV-744 induces autophagy in gastric cancer cells by regulating PI3K/AKT/mTOR/p70S6k and MAPK signaling pathways. Neoplasia 2023; 45:100936. [PMID: 37769529 PMCID: PMC10539879 DOI: 10.1016/j.neo.2023.100936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
The mortality rates of gastric cancer remain high due to limited therapeutic strategies. As a highly selective inhibitor of the BD2 domain of BET family proteins, ABBV-744 has potent chemotherapeutic activity against various human solid tumors. However, whether ABBV-744 has potential anti-tumor effects in gastric cancer remain largely unknown. In this study, we evaluated the effect of ABBV-744 on gastric cancer cells and explored the possible underlying mechanisms. We found that ABBV-744 inhibited the growth of gastric cancer cells and patient-derived tumor organoids in a dose-dependent manner. Cellular experiments revealed that ABBV-744 induced mitochondria damage, reactive oxygen species accumulation, cell cycle arrest and apoptotic cell death in gastric cancer cells. Transcriptomic analysis using RNA-sequencing data identified autophagy as a crucial pathway involved in the cell death caused by ABBV-744. Mechanically, further studies showed that ABBV-744 induced autophagy flux in gastric cancer cells by inactivating PI3K/AKT/mTOR/p70S6k and activating the MAPK signaling pathways. In vivo mouse xenograft studies demonstrated that ABBV-744 significantly suppressed the growth of gastric cancer cells via inducing autophagy. Taken together, our results suggest that ABBV-744 is a novel drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 321 Zhongshan Road, Nanjing 210008 Jiangsu, China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing University Institute of Pancreatology, Nanjing, China
| | - Jiatong Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengxian Fan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School.Nanjing University, Nanjing, China
| | - Haochen Su
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 321 Zhongshan Road, Nanjing 210008 Jiangsu, China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing University Institute of Pancreatology, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 321 Zhongshan Road, Nanjing 210008 Jiangsu, China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing University Institute of Pancreatology, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 321 Zhongshan Road, Nanjing 210008 Jiangsu, China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing University Institute of Pancreatology, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Gastroenterology, Affilated Taikang Xianlin Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Yang H, Sui P, Guo Y, Chen S, Maloof ME, Ge G, Nihozeko F, Delma CR, Zhu G, Zhang P, Ye Z, Medina EA, Ayad NG, Mesa R, Nimer SD, Chiang C, Xu M, Chen Y, Yang F. Loss of BRD4 induces cell senescence in HSC/HPCs by deregulating histone H3 clipping. EMBO Rep 2023; 24:e57032. [PMID: 37650863 PMCID: PMC10561362 DOI: 10.15252/embr.202357032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Pinpin Sui
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ying Guo
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Shi Chen
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Marie E Maloof
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Guo Ge
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Francine Nihozeko
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Caroline R Delma
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ganqian Zhu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Peng Zhang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Zhenqing Ye
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Edward A Medina
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDCUSA
| | - Ruben Mesa
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Cheng‐Ming Chiang
- Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Mingjiang Xu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Yidong Chen
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Feng‐Chun Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| |
Collapse
|
30
|
Bishop TR, Subramanian C, Bilotta EM, Garnar-Wortzel L, Ramos AR, Zhang Y, Asiaban JN, Ott CJ, Rock CO, Erb MA. Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat Chem Biol 2023; 19:1215-1222. [PMID: 37127754 PMCID: PMC10538425 DOI: 10.1038/s41589-023-01320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.
Collapse
Affiliation(s)
- Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric M Bilotta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Anissa R Ramos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Joshua N Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
31
|
Rausch J, Ullrich E, Kühn MW. Epigenetic targeting to enhance acute myeloid leukemia-directed immunotherapy. Front Immunol 2023; 14:1269012. [PMID: 37809078 PMCID: PMC10556528 DOI: 10.3389/fimmu.2023.1269012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory treatment outcome, especially in patients that are ineligible for intensive chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell engaging antibody constructs, and cellular therapies, has dramatically improved the outcome of patients with solid tumors and lymphatic neoplasms. In AML, these approaches have been far less successful. Discussed reasons are the relatively low mutational burden of AML blasts and the difficulty in defining AML-specific antigens not expressed on hematopoietic progenitor cells. On the other hand, epigenetic dysregulation is an essential driver of leukemogenesis, and non-selective hypomethylating agents (HMAs) are the current backbone of non-intensive treatment. The first clinical trials that evaluated whether HMAs may improve immune checkpoint inhibitors' efficacy showed modest efficacy except for the anti-CD47 antibody that was substantially more efficient against AML when combined with azacitidine. Combining bispecific antibodies or cellular treatments with HMAs is subject to ongoing clinical investigation, and efficacy data are awaited shortly. More selective second-generation inhibitors targeting specific chromatin regulators have demonstrated promising preclinical activity against AML and are currently evaluated in clinical trials. These drugs that commonly cause leukemia cell differentiation potentially sensitize AML to immune-based treatments by co-regulating immune checkpoints, providing a pro-inflammatory environment, and inducing (neo)-antigen expression. Combining selective targeted epigenetic drugs with (cellular) immunotherapy is, therefore, a promising approach to avoid unintended effects and augment efficacy. Future studies will provide detailed information on how these compounds influence specific immune functions that may enable translation into clinical assessment.
Collapse
Affiliation(s)
- Johanna Rausch
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Children’s Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt, Germany
| | - Michael W.M. Kühn
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Liu Z, Qin Z, Liu Y, Xia X, He L, Chen N, Hu X, Peng X. Liquid‒liquid phase separation: roles and implications in future cancer treatment. Int J Biol Sci 2023; 19:4139-4156. [PMID: 37705755 PMCID: PMC10496506 DOI: 10.7150/ijbs.81521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/23/2023] [Indexed: 09/15/2023] Open
Abstract
Liquid‒liquid phase separation (LLPS) is a phenomenon driven by weak interactions between biomolecules, such as proteins and nucleic acids, that leads to the formation of distinct liquid-like condensates. Through LLPS, membraneless condensates are formed, selectively concentrating specific proteins while excluding other molecules to maintain normal cellular functions. Emerging evidence shows that cancer-related mutations cause aberrant condensate assembly, resulting in disrupted signal transduction, impaired DNA repair, and abnormal chromatin organization and eventually contributing to tumorigenesis. The objective of this review is to summarize recent advancements in understanding the potential implications of LLPS in the contexts of cancer progression and therapeutic interventions. By interfering with LLPS, it may be possible to restore normal cellular processes and inhibit tumor progression. The underlying mechanisms and potential drug targets associated with LLPS in cancer are discussed, shedding light on promising opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zijian Qin
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingtong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610041, Sichuan, China
| | - Xi Xia
- Shanghai ETERN Biopharma Co., Ltd., Shanghai, China
| | - Ling He
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Na Chen
- School of Pharmacy, Chengdu Medical College, Xindu Avenue No 783, Chengdu, 610500, Sichuan Province, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
33
|
Orsi GA, Tortora MMC, Horard B, Baas D, Kleman JP, Bucevičius J, Lukinavičius G, Jost D, Loppin B. Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis. Nat Commun 2023; 14:4187. [PMID: 37443316 PMCID: PMC10345107 DOI: 10.1038/s41467-023-39908-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38000, Grenoble, France.
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Dominique Baas
- Laboratoire MeLiS, CNRS UMR 52684, Inserm U 1314, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR5075, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
34
|
Yashar WM, Curtiss BM, Coleman DJ, VanCampen J, Kong G, Macaraeg J, Estabrook J, Demir E, Long N, Bottomly D, McWeeney SK, Tyner JW, Druker BJ, Maxson JE, Braun TP. Disruption of the MYC Superenhancer Complex by Dual Targeting of FLT3 and LSD1 in Acute Myeloid Leukemia. Mol Cancer Res 2023; 21:631-647. [PMID: 36976323 PMCID: PMC10330306 DOI: 10.1158/1541-7786.mcr-22-0745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood superenhancer, suppressing superenhancer accessibility as well as MYC expression and activity. The drug combination simultaneously results in the accumulation of repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these findings in 72 primary AML samples with the nearly every sample demonstrating synergistic responses to the drug combination. Collectively, these studies reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD (internal tandem duplication) AML. IMPLICATIONS This work establishes the synergistic efficacy of combined FLT3 and LSD1 inhibition in FLT3-ITD AML by disrupting STAT5 and GFI1 binding at the MYC blood-specific superenhancer complex.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University; Portland, OR, 97239, USA
- These authors contributed equally to this work
| | - Brittany M. Curtiss
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- These authors contributed equally to this work
| | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jake VanCampen
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Joseph Estabrook
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Emek Demir
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd; Portland, OR 97239, USA
- Pacific Northwest National Laboratories; Richland, WA 99354, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jeffrey W. Tyner
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| |
Collapse
|
35
|
Yang X, Gao Y, Cao F, Wang S. Molecular Dynamics Simulations Combined with Markov Model to Explore the Effect of Allosteric Inhibitor Binding on Bromodomain-Containing Protein 4. Int J Mol Sci 2023; 24:10831. [PMID: 37446009 DOI: 10.3390/ijms241310831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Bromodomain-Containing Protein 4 (BRD4) can play an important role in gene transcriptional regulation of tumor development and survival by participating in histone modification epigenetic mechanism. Although it has been reported that novel allosteric inhibitors such as ZL0590 have a high affinity with target protein BRD4 and good efficacy, their inhibitory mechanism has not been studied further. The aim of this study was to reveal the inhibition mechanism of allosteric inhibitor ZL0590 on Free-BRD4 and BRD4 binding MS436 (orthosteric inhibitor) by molecular dynamics simulation combined with a Markov model. Our results showed that BRD4-ZL0590 led to α-helices formation of 100-105 compared with Free-BRD4; the combination of MS436 caused residues 30-40 and 95-105 to form α-helices, while the combination of allosteric inhibitors untangled the α-helices formed by the MS436. The results of Markov flux analysis showed that the binding process of inhibitors mainly involved changes in the degree of α-helices at ZA loop. The binding of ZL0590 reduced the distance between ZA loop and BC loop, blocked the conformation at the active site, and inhibited the binding of MS436. After the allosteric inhibitor binding, the MS436 that could normally penetrate into the interior of the pocket was floating on the edge of the active pocket and did not continue to penetrate into the active pocket as expected. In summary, we provide a theoretical basis for the inhibition mechanism of ZL0590 against BRD4, which can be used as a reference for improving the development of drug targets for cancer therapy.
Collapse
Affiliation(s)
- Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Song Wang
- The Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130012, China
| |
Collapse
|
36
|
Islam R, Jenkins CE, Cao Q, Wong J, Bilenky M, Carles A, Moksa M, Weng AP, Hirst M. RUNX1 colludes with NOTCH1 to reprogram chromatin in T cell acute lymphoblastic leukemia. iScience 2023; 26:106795. [PMID: 37213235 PMCID: PMC10199266 DOI: 10.1016/j.isci.2023.106795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is oncogenic in diverse types of leukemia and epithelial cancers where its expression is associated with poor prognosis. Current models suggest that RUNX1 cooperates with other oncogenic factors (e.g., NOTCH1, TAL1) to drive the expression of proto-oncogenes in T cell acute lymphoblastic leukemia (T-ALL) but the molecular mechanisms controlled by RUNX1 and its cooperation with other factors remain unclear. Integrative chromatin and transcriptional analysis following inhibition of RUNX1 and NOTCH1 revealed a surprisingly widespread role of RUNX1 in the establishment of global H3K27ac levels and that RUNX1 is required by NOTCH1 for cooperative transcription activation of key NOTCH1 target genes including MYC, DTX1, HES4, IL7R, and NOTCH3. Super-enhancers were preferentially sensitive to RUNX1 knockdown and RUNX1-dependent super-enhancers were disrupted following the treatment of a pan-BET inhibitor, I-BET151.
Collapse
Affiliation(s)
- Rashedul Islam
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | | | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jasper Wong
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Misha Bilenky
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin Hirst
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Corresponding author
| |
Collapse
|
37
|
Jeong S, Kim HR, Shin JH, Son MH, Lee IH, Roe JS. Streamlined DNA-encoded small molecule library screening and validation for the discovery of novel chemotypes targeting BET proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:637-649. [PMID: 37207130 PMCID: PMC10189352 DOI: 10.1016/j.omtn.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.
Collapse
Affiliation(s)
- Seoyeon Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Corresponding author: Jae-Seok Roe, PhD, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
38
|
Gao Y, Zhang J, Li J, Song S, Zhang S, Liu Q, Wang X, Zhao J, Xia C, Xiao Y, Liu T. Establishment of environment-sensitive probes targeting BRD3/BRD4 for imaging and therapy of tumor. Eur J Med Chem 2023; 257:115478. [PMID: 37269669 DOI: 10.1016/j.ejmech.2023.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The BET (bromo and extra-terminal) family proteins are epigenetic readers and master transcription coactivators, which have attracted great interests as cancer therapeutic targets. However, there are few developed labeling toolkits that can be applied for the dynamic studies of BET family proteins in living cells and tissue slices. In order to label and study the distribution of the BET family proteins in tumor cells and tumor tissues, a novel series of environment-sensitive fluorescent probes (6a-6c) were designed and evaluated for their labeling properties. Interestingly, 6a is capable of identifying tumor tissue slices and making a distinction between the tumor and normal tissues. Moreover, it can localize to the nuclear bodies in tumor slices just like BRD3 antibody. In addition, it also played an anti-tumor role through the induction of apoptosis. All these features render 6a may compatible for immunofluorescent studies and future cancer diagnosis, and guide for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Yuqi Gao
- College of Radiology, Shandong First Medical University, University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China; Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - JianJun Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Qiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xu Wang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinbo Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
39
|
Harada T, Perez MW, Kalfon J, Braes FD, Batley R, Eagle K, Nabet B, Leifer B, Kruell J, Paralkar VR, Stegmaier K, Koehler AN, Orkin SH, Pimkin M. Rapid-kinetics degron benchmarking reveals off-target activities and mixed agonism-antagonism of MYB inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536032. [PMID: 37066194 PMCID: PMC10104119 DOI: 10.1101/2023.04.07.536032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay. The inhibitors demonstrated partial specificity for MYB target genes but displayed significant off-target activity. Unexpectedly, the inhibitors displayed bimodal on-target effects, acting as mixed agonists-antagonists. Our data uncover unforeseen agonist effects of small molecules originally developed as TF inhibitors and argue that rapid-kinetics benchmarking against degron models should be used for functional characterization of transcriptional modulators.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Flora Dievenich Braes
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Rashad Batley
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Ken Eagle Consulting, Houston, TX, 77494, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Becky Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jasmin Kruell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Angela N. Koehler
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Boston, MA, 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| |
Collapse
|
40
|
Harada T, Kalfon J, Perez MW, Eagle K, Braes FD, Batley R, Heshmati Y, Ferrucio JX, Ewers J, Mehta S, Kossenkov A, Ellegast JM, Bowker A, Wickramasinghe J, Nabet B, Paralkar VR, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. Leukemia core transcriptional circuitry is a sparsely interconnected hierarchy stabilized by incoherent feed-forward loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532438. [PMID: 36993171 PMCID: PMC10054969 DOI: 10.1101/2023.03.13.532438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lineage-defining transcription factors form densely interconnected circuits in chromatin occupancy assays, but the functional significance of these networks remains underexplored. We reconstructed the functional topology of a leukemia cell transcription network from the direct gene-regulatory programs of eight core transcriptional regulators established in pre-steady state assays coupling targeted protein degradation with nascent transcriptomics. The core regulators displayed narrow, largely non-overlapping direct transcriptional programs, forming a sparsely interconnected functional hierarchy stabilized by incoherent feed-forward loops. BET bromodomain and CDK7 inhibitors disrupted the core regulators' direct programs, acting as mixed agonists/antagonists. The network is predictive of dynamic gene expression behaviors in time-resolved assays and clinically relevant pathway activity in patient populations.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Ken Eagle Consulting, Houston, TX, 77494, USA
| | - Flora Dievenich Braes
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Rashad Batley
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Juliana Xavier Ferrucio
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Stuti Mehta
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Jana M. Ellegast
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Allyson Bowker
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neekesh V. Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| |
Collapse
|
41
|
Klempnauer KH. C/EBPβ cooperates with MYB to maintain the oncogenic program of AML cells. Oncotarget 2023; 14:174-177. [PMID: 36913305 PMCID: PMC10010626 DOI: 10.18632/oncotarget.28377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
Studies on the role of transcription factor MYB in acute myeloid leukemia (AML) have identified MYB as a key regulator of a transcriptional program for self-renewal of AML cells. Recent work summarized here has now highlighted the CCAAT-box/enhancer binding protein beta (C/EBPβ) as an essential factor and potential therapeutic target that cooperates with MYB and coactivator p300 in the maintenance of the leukemic cells.
Collapse
Affiliation(s)
- Karl-Heinz Klempnauer
- Correspondence to:Karl-Heinz Klempnauer, Institute for Biochemistry, Westfälische-Wilhelms-Universität, Muenster D-48149, Germany email
| |
Collapse
|
42
|
Cre recombinase expression cooperates with homozygous FLT3 internal tandem duplication knockin mouse model to induce acute myeloid leukemia. Leukemia 2023; 37:741-750. [PMID: 36739348 PMCID: PMC10079527 DOI: 10.1038/s41375-023-01832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/06/2023]
Abstract
Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer.
Collapse
|
43
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
44
|
Shchuka VM, Khader N, Dorogin A, Shynlova O, Mitchell JA. MYB and ELF3 differentially modulate labor-inducing gene expression in myometrial cells. PLoS One 2023; 18:e0271081. [PMID: 36595497 PMCID: PMC9810189 DOI: 10.1371/journal.pone.0271081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
Spontaneous uterine contractions are initiated when smooth muscle cells (SMCs) within the uterine muscle, or myometrium, transition from a functionally dormant to an actively contractile phenotype at the end of the pregnancy period. We know that this process is accompanied by gestational time point-specific differences in the SMC transcriptome, which can be modulated by the activator protein 1 (AP-1), nuclear factor kappa beta (NF-κβ), estrogen receptor (ER), and progesterone receptor (PR) transcription factors. Less is known, however, about the additional proteins that might assist these factors in conferring the transcriptional changes observed at labor onset. Here, we present functional evidence for the roles of two proteins previously understudied in the SMC context-MYB and ELF3-which can contribute to the regulation of labor-driving gene transcription. We show that the MYB and ELF3 genes exhibit elevated transcript expression levels in mouse and human myometrial tissues during spontaneous term labor. The expression of both genes was also significantly increased in mouse myometrium during preterm labor induced by the progesterone antagonist mifepristone (RU486), but not during infection-simulating preterm labor induced by intrauterine infusion of lipopolysaccharide (LPS). Furthermore, both MYB and ELF3 proteins affect labor-driving gene promoter activity, although in surprisingly opposing ways: Gja1 and Fos promoter activation increases in the presence of MYB and decreases in the presence of ELF3. Collectively, our study adds to the current understanding of the transcription factor network that defines the transcriptomes of SMCs during late gestation and implicates two new players in the control of labor timing.
Collapse
Affiliation(s)
- Virlana M. Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (VMS); (JAM); (OS)
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada
- * E-mail: (VMS); (JAM); (OS)
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (VMS); (JAM); (OS)
| |
Collapse
|
45
|
Eischer N, Arnold M, Mayer A. Emerging roles of BET proteins in transcription and co-transcriptional RNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1734. [PMID: 35491403 DOI: 10.1002/wrna.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Nicole Eischer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
46
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
47
|
Yang WQ, Liang R, Gao MQ, Liu YZ, Qi B, Zhao BS. Inhibition of bromodomain-containing protein 4 enhances the migration of esophageal squamous cell carcinoma cells by inducing cell autophagy. World J Gastrointest Oncol 2022; 14:2340-2352. [PMID: 36568944 PMCID: PMC9782615 DOI: 10.4251/wjgo.v14.i12.2340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), the predominant type of esophageal cancer, has a 5-year survival rate less than 20%. Although the cause of poor prognosis is the high incidence and mortality of ESCC, the high rate of metastasis after esophageal cancer surgery is the main cause of death after the surgery. Bromodomain-containing protein 4 (BRD4), an epigenetic reader of chromatin-acetylated histones in tumorigenesis and development, plays an essential role in regulating oncogene expression. BRD4 inhibition and BRD4 inhibition-based treatment can potentially suppress ESCC growth. However, the effects and mechanisms of action of BRD4 on ESCC cell migration remain unclear.
AIM To explore the effect of BRD4 on cell migration of ESCC in vitro and its possible molecular mechanism.
METHODS Human ESCC cell lines KYSE-450 and KYSE-150 were used. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was performed to examine cell proliferation, and the transwell migration assay was conducted to test ESCC cell migration. JQ1, a BRD4 inhibitor, was applied to cells, and BRD4 siRNA was transfected into ESCC cells to knockdown endogenous BRD4. GFP-RFP-LC3 adenovirus was infected into ESCC cells to evaluate the effect of JQ1 on autophagy. Western blotting was performed to determine the protein levels of BRD4, E-cadherin, vimentin, AMP-activated protein kinase (AMPK), and p-AMPK.
RESULTS BRD4 was either downregulated by small interfering RNA or pretreated with JQ1 in ESCC cells, leading to increased tumor migration in ESCC cells in a dose- and time-dependent manner. Inhibition of BRD4 not only significantly suppressed cell proliferation but also strongly increased cell migration by inducing epithelial-mesenchymal transition (EMT). The protein expression of vimentin was increased and E-cadherin decreased in a dose-dependent manner, subsequently promoting autophagy in KYSE-450 and KYSE-150 cells. Pretreatment with JQ1, a BRD4 inhibitor, inhibited BRD4-induced LC3-II activation and upregulated AMPK phosphorylation in a dose-dependent manner. Additionally, an increased number of autophagosomes and autolysosomes were observed in JQ1-treated ESCC cells. The autophagy inhibitor 3-methyladenine (3-MA) reversed the effects of BRD4 knockdown on ESCC cell migration and blocked JQ1-induced cell migration. 3-MA also downregulated the expression of vimentin and upregulation E-cadherin.
CONCLUSION BRD4 inhibition enhances cell migration by inducing EMT and autophagy in ESCC cells via the AMPK-modified pathway. Thus, the facilitating role on ESCC cell migration should be considered for BRD4 inhibitor clinical application to ESCC patients.
Collapse
Affiliation(s)
- Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Rui Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Man-Qi Gao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Esophageal Cancer Institute, Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
48
|
Cao Z, Shu Y, Wang J, Wang C, Feng T, Yang L, Shao J, Zou L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis 2022; 9:1466-1477. [PMID: 36157504 PMCID: PMC9485276 DOI: 10.1016/j.gendis.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with disordered oncogenes/tumor suppressor genes and limited treatments. The potent anti-cancer effects of bromodomain and extra-terminal domain (BET) inhibitors, targeting the key component of super enhancers, in early clinical trials on AML patients, implies the critical role of super enhancers in AML. Here, we review the concept and characteristic of super enhancer, and then summarize the current researches about super enhancers in AML pathogenesis, diagnosis and classification, followed by illustrate the potential super enhancer-related targets and drugs, and propose the future directions of super enhancers in AML. This information provides integrated insight into the roles of super enhancers in this disease.
Collapse
Affiliation(s)
- Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Chunxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
49
|
Zhong X, Chen Z, Wang Y, Mao M, Deng Y, Shi M, Xu Y, Chen L, Cao W. JQ1 attenuates neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway in SAE. Brain Res Bull 2022; 189:174-183. [PMID: 36100190 DOI: 10.1016/j.brainresbull.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically in hyperneuroinflammation. Pyroptosis, which can induce an inflammatory cascade response, has been considered to be a causative factor of SAE. Evidence has shown that the bromo- and extraterminal (BET) proteins (including BRD2, BRD3, BRD4 and BRDT) inhibitor JQ1 can inhibit inflammation and suppress pyroptosis in various diseases. Therefore, we examined the effect of JQ1 on inflammasome-induced pyroptosis in the hippocampus in a mouse model of sepsis induced by lipopolysaccharide (LPS) injection. The results showed that JQ1 treatment alleviated sepsis-related symptoms, protected the blood-brain barrier (BBB), as indicated by upregulated expression of the tight junction proteins occludin and ZO-1, and remarkably rescued neuronal damage in SAE mice. Mechanistically, we demonstrated that JQ1 intervention inhibited the expression of BRD proteins and decreased the expression of inflammasomes by blocking phospho-nuclear factor kappa B (p-NF-κB) signalling, attenuating the canonical pyroptosis (mediated by cleaved-Caspase1/11) pathway and the release of proinflammatory factors in the hippocampus of septic mice. Interestingly, we also found that JQ1 selectively suppressed the activation of hippocampal microglia in SAE mice. Thus, JQ1 protected the hippocampal BBB and neuronal damage through the attenuation of neuroinflammation by inhibiting the inflammasome-dependent canonical pyroptosis pathway induced by LPS injection in mice, and JQ1 may be a promising target for the prevention of SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yajuan Wang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Mingli Mao
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
50
|
Kuang C, Tong J, Ermine K, Cai M, Dai F, Hao S, Giles F, Huang Y, Yu J, Zhang L. Dual inhibition of BET and HAT/p300 suppresses colorectal cancer via DR5- and p53/PUMA-mediated cell death. Front Oncol 2022; 12:1018775. [PMID: 36313707 PMCID: PMC9599411 DOI: 10.3389/fonc.2022.1018775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 01/30/2023] Open
Abstract
Background Colorectal cancer (CRC) frequently has a dysregulated epigenome causing aberrant up-regulation of oncogenes such as c-MYC. Bromodomain and extra-terminal domain (BET) proteins and histone acetyltransferases (HAT) are epigenetic regulatory proteins that create and maintain epigenetic states supporting oncogenesis. BET inhibitors and HAT inhibitors are currently being investigated as cancer therapeutics due to their ability to suppress cancer-promoting epigenetic modifiers. Due to the extensive molecular crosstalk between BET proteins and HAT proteins, we hypothesized that dual inhibition of BET and HAT could more potently inhibit CRC cells than inhibition of each individual protein. Methods We investigated the activity and mechanisms of a dual BET and HAT inhibitor, NEO2734, in CRC cell lines and mouse xenografts. MTS, flow cytometry, and microscopy were used to assess cell viability. qPCR, Western blotting, and immunofluorescent staining were used to assess mechanisms of action. Results We found that NEO2734 more potently suppresses CRC cell growth than first generation BET inhibitors, regardless of the status of common CRC driver mutations. We previously showed that BET inhibitors upregulate DR5 to induce extrinsic apoptosis. In the current study, we show that NEO2734 treatment induces CRC cell apoptosis via both the intrinsic and extrinsic apoptosis pathways. NEO2734 increases p53 expression and subsequently increased expression of the p53-upregulated mediator of apoptosis (PUMA), which is a critical mechanism for activating intrinsic apoptosis. We demonstrate that inhibition of either the intrinsic or extrinsic branches of apoptosis partially rescues CRC cells from NEO2734 treatment, while the dual inhibition of both branches of apoptosis more strongly rescues CRC cells from NEO2734 treatment. Finally, we show that NEO2734 monotherapy is able to suppress tumor growth in CRC xenografts by inducing apoptosis. Conclusions Our study demonstrates NEO2734 potently suppresses CRC cells in vitro and in vivo by simultaneously upregulating PUMA and DR5 to induce cell death. Further studies of NEO2734 for treating CRC are warranted.
Collapse
Affiliation(s)
- Chaoyuan Kuang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jingshan Tong
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaylee Ermine
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Manbo Cai
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fujun Dai
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Suisui Hao
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Francis Giles
- Developmental Therapeutics Consortium, Chicago, IL, United States
| | - Yi Huang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jian Yu
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Zhang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|