1
|
Pan Z, Zhang J, Zuo H, Li C, Song H, Yang H, Wu K, Zhao M, Zhang Z, Lai Y, Luo J, Wu J, Zhao L, Huang Z. Identification of Nitric Oxide Donating Dasatinib Derivatives with Intraocular Pressure Lowering and Senolytic Activities. J Med Chem 2025; 68:8600-8617. [PMID: 40228166 DOI: 10.1021/acs.jmedchem.5c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Based on two major risk factors of glaucoma, elevated intraocular pressure (IOP) and senescence, two new series of nitric oxide (NO) donating dasatinib derivatives 1a-f, 2a-f were designed, synthesized, and biologically evaluated. The results demonstrated that the most active compound 2e effectively released NO and increased the concentration of 3',5'-cyclic guanosine monophosphate in human trabecular meshwork cells, as well as maintained senolytic activity. Topical administration of 2e in chronic ocular hypertension (COHT) glaucoma mice not only significantly eliminated senescent cells in retina but also exhibited potent retinal ganglion cells (RGCs) surviving, IOP lowering, and visual function protection activities, which were superior to those of dasatinib. Compared with younger adult mice, aged COHT mice resulted in more severe RGCs loss, while 2e demonstrated a greater capacity to improve RGCs survival. Our findings show that dual IOP lowering and senolytic functions could be a promising therapeutic strategy for glaucoma, particularly in older patients.
Collapse
Affiliation(s)
- Zhongshu Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Jiaming Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Haoyu Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Cunrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Huiying Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Haohan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Zirong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
- School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi 830054, P. R. China
| |
Collapse
|
2
|
Singh N, Kizhatil K, Duraikannu D, Choquet H, Saidas Nair K. Structural framework to address variant-gene relationship in primary open-angle glaucoma. Vision Res 2025; 226:108505. [PMID: 39520803 PMCID: PMC11999875 DOI: 10.1016/j.visres.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Primary open-angle glaucoma (POAG) is a complex, multifactorial disease leading to progressive optic neuropathy and irreversible vision loss. Genome-Wide Association Studies (GWAS) have significantly advanced our understanding of the genetic loci associated with POAG. Expanding on these findings, Exome-Wide Association Studies (ExWAS) refine the genetic landscape by identifying rare coding variants with potential functional relevance. Post-GWAS in silico analyses, including fine-mapping, gene-based association testing, and pathway analysis, offer insights into target genes and biological mechanisms underlying POAG. This review aims to provide a comprehensive roadmap for the post-GWAS characterization of POAG genes. We integrate current knowledge from GWAS, ExWAS, and post-GWAS analyses, highlighting key genetic variants and pathways implicated in POAG. Recent advancements in genomics, such as ATAC-seq, CUT&RUN, and Hi-C, are crucial for identifying disease-relevant gene regulatory elements by profiling chromatin accessibility, histone modifications, and three-dimensional chromatin architecture. These approaches help pinpoint regulatory elements that influence gene expression in POAG. Expression Quantitative Trait Loci (eQTL) analysis and Transcriptome-Wide Association Studies (TWAS) elucidate the impact of these elements on gene expression and disease risk, while functional validations like enhancer reporter assays confirm their relevance. The integration of high-resolution genomics with functional assays and the characterization of genes in vivo using animal models provides a robust framework for unraveling the complex genetic architecture of POAG. This roadmap is essential for advancing our understanding and identification of genes and regulatory networks involved in POAG pathogenesis.
Collapse
Affiliation(s)
- Nivedita Singh
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | - Durairaj Duraikannu
- Departments of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hélène Choquet
- Kaiser Permanente, Division of Research, Pleasanton, CA 94588, USA; Department of Health Systems Science Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA.
| | - K Saidas Nair
- Departments of Ophthalmology and Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
4
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
5
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024; 47:971-984. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
6
|
Antonetti DA, Lin CM, Shanmugam S, Hager H, Cao M, Liu X, Dreffs A, Habash A, Abcouwer SF. Diabetes Renders Photoreceptors Susceptible to Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 39570639 PMCID: PMC11585066 DOI: 10.1167/iovs.65.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Studies have suggested that photoreceptors (PR) are altered by diabetes, contributing to diabetic retinopathy (DR) pathology. Here, we explored the effect of diabetes on retinal ischemic injury. Methods Retinal ischemia-reperfusion (IR) injury was caused by elevation of intraocular pressure in 10-week-old BKS db/db type 2 diabetes mellitus (T2DM) mice or C57BL/6J mice at 4 or 12 weeks after streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), and respective nondiabetic controls. Retinal neurodegeneration was evaluated by retinal layer thinning, TUNEL staining, and neuron loss. Vascular permeability was evaluated as retinal accumulation of circulating fluorescent albumin. The effects of pretreatment with a sodium-glucose co-transporter (SGLT1/2) inhibitor, phlorizin, were examined. Results Nondiabetic control mice exhibited no significant outer retinal layer thinning or PR loss after IR injury. In contrast, db/db mice exhibited significant outer retina thinning (49%, P < 0.0001), loss of PR nuclei (45%, P < 0.05) and inner segment (IS) length decline (45%, P < 0.0001). STZ-induced diabetic mice at 4 weeks showed progressive thinning of the outer retina (55%, by 14 days, P < 0.0001) and 4.3-fold greater number of TUNEL+ cells in the outer nuclear layer (ONL) than injured retinas of control mice (P < 0.0001). After 12 weeks of diabetes, the retinas exhibited similar outer layer thinning and PR loss after IR. Diabetes also delayed restoration of the blood-retinal barrier after IR injury. Phlorizin reduced outer retinal layer thinning from 49% to 3% (P < 0.0001). Conclusions Diabetes caused PR to become highly susceptible to IR injury. The ability of phlorizin pretreatment to block outer retinal thinning after IR suggests that the effects of diabetes on PR are readily reversible.
Collapse
Affiliation(s)
- David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Manjing Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Adam Habash
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
8
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
9
|
Li C, Zhu M, Liu S, Zhang J, Ye H, Zhang C, Ji D, Tang H, Zhang Y, Wu J, Huang Z. Development of Nitric Oxide-Donating Netarsudil Derivatives as a Synergistic Therapy for Glaucoma with Reduced Ocular Irritation. J Med Chem 2024; 67:16311-16327. [PMID: 39163586 DOI: 10.1021/acs.jmedchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Based on the synergistic therapeutic effect of nitric oxide (NO) and Rho-associated protein kinase (ROCK) inhibitors on glaucoma, a series of NO-donating Netarsudil derivatives were designed, synthesized, and their activities in vitro and in vivo were evaluated. Among them, (S)-10e released an appropriate amount of NO in aqueous humor in vitro and displayed potent ROCK inhibition. Topical administration of (S)-10e significantly lowered intraocular pressure in an acute ocular hypertension rabbit model and protected retinal ganglion cells in a magnetic microbead occlusion mouse model. A metabolism investigation revealed that (S)-10e released 7a, a metabolite after NO releasing, and 13, an active metabolite of (S)-Netarsudil, in rabbit eyes. Notably, introducing an NO donor moiety attenuated ROCK inhibition-induced ocular irritation in an sGC-independent manner, suggesting that the attenuated conjunctival hyperemia effect of (S)-10e is related to the NO-induced protein S-nitrosation of phosphodiesterase 3A (PDE3A). Overall, (S)-10e is a promising candidate for glaucoma treatment.
Collapse
Affiliation(s)
- Cunrui Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Songqi Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaming Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyang Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
- School of Pharmacy, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
10
|
Chen J, Yuan XL, Zhou X, Xu J, Zhang X, Duan X. Mendelian randomization implicates causal association between epigenetic age acceleration and age-related eye diseases or glaucoma endophenotypes. Clin Epigenetics 2024; 16:106. [PMID: 39143611 PMCID: PMC11325616 DOI: 10.1186/s13148-024-01723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Age-related eye diseases (AREDs) have become increasingly prevalent with the aging population, serving as the leading causes of visual impairment worldwide. Epigenetic clocks are generated based on DNA methylation (DNAm) levels and are considered one of the most promising predictors of biological age. This study aimed to investigate the bidirectional causal association between epigenetic clocks and common AREDs or glaucoma endophenotypes. METHODS Instrumental variables for epigenetic clocks, AREDs, and glaucoma endophenotypes were obtained from corresponding genome-wide association study data of European descent. Bidirectional two-sample Mendelian randomization (MR) was employed to explore the causal relationship between epigenetic clocks and AREDs or glaucoma endophenotypes. Multivariable MR (MVMR) was used to determine whether glaucoma endophenotypes mediated the association of epigenetic clocks with glaucoma. Multiple sensitivity analyses were conducted to confirm the robustness of MR estimates. RESULTS The results showed that an increased intrinsic epigenetic age acceleration (HorvathAge) was significantly associated with an increased risk of primary open-angle glaucoma (OR = 1.04, 95% CI 1.02 to 1.06, P = 6.1E-04). The epigenetic age acceleration (EEA) of HannumAge was related to a decreased risk of primary angle-closure glaucoma (OR = 0.92, 95% CI 0.86 to 0.99, P = 0.035). Reverse MR analysis showed that age-related cataract was linked to decreased HannumAge (β = -0.190 year, 95% CI -0.374 to -0.008, P = 0.041). The EEA of HannumAge (β = -0.85 μm, 95% CI -1.57 to -0.14, P = 0.019) and HorvathAge (β = -0.63 μm, 95% CI -1.18 to -0.08, P = 0.024) were associated with decreased central corneal thickness (CCT). PhenoAge was related to an increased retinal nerve fiber layer thickness (β = 0.06 μm, 95% CI 0.01 to 0.11, P = 0.027). MVMR analysis found no mediation effect of CCT in the association of HannumAge and HorvathAge with glaucoma. DNAm-based granulocyte proportions were significantly associated with presbyopia, rhegmatogenous retinal detachment, and intraocular pressure (P < 0.05). DNAm-based plasminogen activator inhibitor-1 levels were significantly related to age-related macular degeneration and intraocular pressure (P < 0.05). CONCLUSION The present study revealed a causal association between epigenetic clocks and AREDs. More research is warranted to clarify the potential mechanisms of the biological aging process in AREDs.
Collapse
Affiliation(s)
- Jiawei Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xiang-Ling Yuan
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Eye Institute, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xiaoyu Zhou
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Jiahao Xu
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xinyue Zhang
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xuanchu Duan
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China.
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China.
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
12
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
13
|
Xia F, Shi S, Palacios E, Liu W, Buscho SE, Li J, Huang S, Vizzeri G, Dong XC, Motamedi M, Zhang W, Liu H. Sirt6 protects retinal ganglion cells and optic nerve from degeneration during aging and glaucoma. Mol Ther 2024; 32:1760-1778. [PMID: 38659223 PMCID: PMC11184404 DOI: 10.1016/j.ymthe.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.
Collapse
Affiliation(s)
- Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erick Palacios
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Seth E Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joseph Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Department of Education, Innovation and Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianmarco Vizzeri
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Liu Y, Liu X, Chen X, Yang Z, Chen J, Zhu W, Li Y, Wen Y, Deng C, Gu C, Lv J, Ju R, Zhuo Y, Su W. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc Natl Acad Sci U S A 2024; 121:e2311028121. [PMID: 38657052 PMCID: PMC11067450 DOI: 10.1073/pnas.2311028121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Collapse
Affiliation(s)
- Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Weining Zhu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, People’s Republic of China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
15
|
Pan L, Wu J, Wang N. Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:491. [PMID: 38674425 PMCID: PMC11050218 DOI: 10.3390/genes15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. METHODS We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. RESULTS Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of OPA1; rs10451941 of OPA1; rs735860 of ELOVL5; rs678350 of HK2; c.603T>A/Met98Lys of OPTN; c.412G>A/Thr34Thr of OPTN; rs10759930 of TLR4; rs1927914 of TLR4; rs1927911 of TLR4; c.*70C>G of EDNRA; rs1042522/-Arg72Pro of P53; rs10483727 of SIX1-SIX6; rs33912345 of SIX1-SIX6; rs2033008 of NCK2; rs3213787 of SRBD1 and c.231G>A of EDNRA) with increased or decreased risk of NTG. CONCLUSIONS In this study, we confirmed 16 genetic polymorphisms in 10 genes (OPA1, ELOVL5, HK2, OPTN, TLR4, EDNRA, P53, NCK2, SRBD1 and SIX1-SIX6) were associated with NTG.
Collapse
Affiliation(s)
- Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| | - Jian Wu
- School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
16
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
17
|
Tomioka Y, Kitazawa K, Numa K, Hughes JWB, Yokoi N, Sotozono C. The existence of senescent cells in conjunctival epithelium from elderly individuals. Jpn J Ophthalmol 2024; 68:157-165. [PMID: 38311689 DOI: 10.1007/s10384-023-01047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024]
Abstract
PURPOSE The ocular surface microenvironment changes with aging. However, it remains unclear if cellular senescence influences the ocular surface. We investigated the presence of p16INK4a-expressing senescent cells in healthy human conjunctiva. STUDY DESIGN Clinical and experimental. METHODS Healthy conjunctival tissue samples were obtained from middle-aged and elderly subjects. RT-qPCR was performed to assess the expression of senescence markers CDKN2A (p16INK4a) and CDKN1A (p21CIP1/WAF1) and immunostaining was performed to examine the expression of the senescence marker p16INK4a, stem cell markers Ki67 and p63, tight-junction marker ZO-1. RESULTS Our study involved 19 conjunctival tissue samples (10 elderly and 9 middle-aged), mean age [elderly: 75.8 ± 3.7 years (72-81), middle-aged: 52.7 ± 7 years (38-59)], sex (elderly: 3 men, 7 women; middle-aged: 3 men, 6 women). The expression of p16INK4a was significantly increased at the RNA level in the elderly compared to middle-aged (p < 0.05). Positivity rate of p16INK4a was significantly elevated in the elderly (15.0 ± 7.8%) compared to middle-aged (0.2 ± 0.6%) (p < 0.05). Positivity rate of Ki67and p63 was significantly reduced in the elderly (1.7 ± 1.7% and 16.5 ± 9.5%) compared to middle-aged (3.9 ± 1.8% and 24.7 ± 5.7%) (p < 0.05). ZO-1 expression was reduced in tissue samples showing p16INK4a-positivity but retained in tissue samples in which p16INK4a was undetectable. CONCLUSIONS Senescent cells accumulate with age in the conjunctival epithelium, accompanied by a decrease in Ki67, p63 and ZO-1 expressing cells.
Collapse
Affiliation(s)
- Yasufumi Tomioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Kohsaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| |
Collapse
|
18
|
Lo Faro V, Bhattacharya A, Zhou W, Zhou D, Wang Y, Läll K, Kanai M, Lopera-Maya E, Straub P, Pawar P, Tao R, Zhong X, Namba S, Sanna S, Nolte IM, Okada Y, Ingold N, MacGregor S, Snieder H, Surakka I, Shortt J, Gignoux C, Rafaels N, Crooks K, Verma A, Verma SS, Guare L, Rader DJ, Willer C, Martin AR, Brantley MA, Gamazon ER, Jansonius NM, Joos K, Cox NJ, Hirbo J. Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation. Cell Rep Med 2024; 5:101430. [PMID: 38382466 PMCID: PMC10897632 DOI: 10.1016/j.xcrm.2024.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Esteban Lopera-Maya
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands
| | - Peter Straub
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Serena Sanna
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands; Institute for Genetics and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shefali S Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristen Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nomdo M Jansonius
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands
| | - Karen Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Liao J, Lai Z, Huang G, Lin J, Huang W, Qin Y, Chen Q, Hu Y, Cheng Q, Jiang L, Cui L, Zhong H, Li M, Wei Y, Xu F. Setanaxib mitigates oxidative damage following retinal ischemia-reperfusion via NOX1 and NOX4 inhibition in retinal ganglion cells. Biomed Pharmacother 2024; 170:116042. [PMID: 38118351 DOI: 10.1016/j.biopha.2023.116042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Glaucoma, a prevalent cause of permanent visual impairment worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). NADPH oxidase (NOX) 1 and NOX4 are pivotal nodes in various retinal diseases. Setanaxib, a potent and highly selective inhibitor of NOX1 and NOX4, can impede the progression of various diseases. This study investigated the efficacy of setanaxib in ameliorating retinal ischemia-reperfusion (I/R) injury and elucidated its underlying mechanisms. The model of retinal I/R induced by acute intraocular hypertension and the oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary RGCs were established. By suppressing NOX1 and NOX4 expression in RGCs, setanaxib mitigated I/R-induced retinal neuronal loss, structural disruption, and dysfunction. Setanaxib reduced TUNEL-positive cells, upregulated Bcl-2, and inhibited Bax, Bad, and cleaved-caspase-3 overexpression after I/R injury in vitro and in vivo. Moreover, setanaxib also significantly reduced cellular senescence, as demonstrated by downregulating SA-β-gal-positive and p16-INK4a expression. Furthermore, setanaxib significantly suppressed ROS production, Hif-1α and FOXO1 upregulation, and NRF2 downregulation in damaged RGCs. These findings highlight that the setanaxib effectively inhibited NOX1 and NOX4, thereby regulating ROS production and redox signal activation. This inhibition further prevents the activation of apoptosis and senescence related factors in RGCs, ultimately protecting them against retinal I/R injury. Consequently, setanaxib exhibits promising potential as a therapeutic intervention for glaucoma.
Collapse
Affiliation(s)
- Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Zhaoguang Lai
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Guangyi Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Jiali Lin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Yuanjun Qin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Qi Chen
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Li Jiang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Ling Cui
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Haibin Zhong
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Min Li
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China.
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou 510060, China.
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China.
| |
Collapse
|
20
|
Sato K, Saigusa D, Kokubun T, Fujioka A, Feng Q, Saito R, Uruno A, Matsukawa N, Ohno-Oishi M, Kunikata H, Yokoyama Y, Yasuda M, Himori N, Omodaka K, Tsuda S, Maekawa S, Yamamoto M, Nakazawa T. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ AGING 2023; 9:28. [PMID: 37990002 PMCID: PMC10663551 DOI: 10.1038/s41514-023-00124-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/22/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of blindness worldwide in older people. Profiling the aqueous humor, including the metabolites it contains, is useful to understand physiological and pathological conditions in the eye. In the current study, we used mass spectrometry (MS) to characterize the aqueous humor metabolomic profile and biological features of patients with glaucoma. Aqueous humor samples were collected during trabeculectomy surgery or cataract surgery and analyzed with global metabolomics. We included 40 patients with glaucoma (32 with POAG, 8 with NTG) and 37 control subjects in a discovery study. VIP analysis revealed five metabolites that were elevated and three metabolites that were reduced in the glaucoma patients. The identified metabolomic profile had an area under the receiver operating characteristic curve of 0.953. Among eight selected metabolites, the glutathione level was significantly decreased in association with visual field defects. Moreover, in a validation study to confirm the reproducibility of our findings, the glutathione level was reduced in NTG and POAG patients compared with a cataract control group. Our findings demonstrate that aqueous humor profiling can help to diagnose glaucoma and that various aqueous humor metabolites are correlated with clinical parameters in glaucoma patients. In addition, glutathione is clearly reduced in the aqueous humor of glaucoma patients with both IOP-dependent and IOP-independent disease subtypes. These findings indicate that antioxidant agents in the aqueous humor reflect glaucomatous optic nerve damage and that excessive oxidative stress may be involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
21
|
Soleimani M, Cheraqpour K, Koganti R, Djalilian AR. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3067-3082. [PMID: 37079093 DOI: 10.1007/s00417-023-06070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases. METHODS The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English. RESULTS Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents. CONCLUSIONS Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Zhu Y, Tazearslan C, Rosenfeld MG, Fiser A, Suh Y. Identification and functional validation of an enhancer variant in the 9p21.3 locus associated with glaucoma risk and elevated expression of p16 INK4a. Aging Cell 2023; 22:e13908. [PMID: 37345431 PMCID: PMC10497822 DOI: 10.1111/acel.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Obstetrics and GynecologyColumbia UniversityNew YorkNew YorkUSA
| | - Cagdas Tazearslan
- Department of GeneticsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Michael G. Rosenfeld
- Department of MedicineSchool of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Andras Fiser
- Department of Systems & Computational BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
- Department of BiochemistryAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Yousin Suh
- Department of Obstetrics and GynecologyColumbia UniversityNew YorkNew YorkUSA
- Department of Genetics and DevelopmentColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
23
|
Zhu Y, Tazearslan C, Rosenfeld MG, Fiser A, Suh Y. Identification and functional validation of an enhancer variant in the 9p21.3 locus associated with glaucoma risk and elevated expression of p16 INK4a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541339. [PMID: 37292862 PMCID: PMC10245730 DOI: 10.1101/2023.05.18.541339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032, USA
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Michael G. Rosenfeld
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Andras Fiser
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY10032, USA
- Department of Genetics and Development, Columbia University, New York, NY10032, USA
| |
Collapse
|
24
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
25
|
Shinozaki Y, Kashiwagi K, Koizumi S. Astrocyte Immune Functions and Glaucoma. Int J Mol Sci 2023; 24:2747. [PMID: 36769067 PMCID: PMC9916878 DOI: 10.3390/ijms24032747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Astrocytes, a non-neuronal glial cell type in the nervous system, are essential for regulating physiological functions of the central nervous system. In various injuries and diseases of the central nervous system, astrocytes often change their phenotypes into neurotoxic ones that participate in pro-inflammatory responses (hereafter referred to as "immune functions"). Such astrocytic immune functions are not only limited to brain diseases but are also found in ocular neurodegenerative diseases such as glaucoma, a retinal neurodegenerative disease that is the leading cause of blindness worldwide. The eye has two astrocyte-lineage cells: astrocytes and Müller cells. They maintain the physiological environment of the retina and optic nerve, thereby controlling visual function. Dysfunction of astrocyte-lineage cells may be involved in the onset and progression of glaucoma. These cells become reactive in glaucoma patients, and animal studies have suggested that their immune responses may be linked to glaucoma-related events: tissue remodeling, neuronal death, and infiltration of peripheral immune cells. In this review, we discuss the role of the immune functions of astrocyte-lineage cells in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
26
|
Mei T, Wu J, Wu K, Zhao M, Luo J, Liu X, Shang B, Xu W, Yang Z, Lai Y, Liu C, Gong H, Gao X, Zhuo Y, Lin M, Zhao L. Lipocalin 2 induces visual impairment by promoting ferroptosis in retinal ischemia-reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:3. [PMID: 36760251 PMCID: PMC9906199 DOI: 10.21037/atm-22-3298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Background Retinal ischemia-reperfusion (RIR) is a common pathological condition that can lead to retinal ganglion cell (RGC) death and visual impairment. However, the pathogenesis of RGC loss and visual impairment caused by retinal ischemia remains unclear. Methods A mouse model of elevated intraocular pressure (IOP)-induced RIR injury was used. Flash visual evoked potentials (FVEPs) and electroretinography (ERG) recordings were performed to assess visual function. The structural integrity of the retina and the number of RGC were assessed using hematoxylin and eosin (HE) staining and retinal flat mounts. Ferroptosis was evaluated by testing the levels of glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPX4), and ferritin light chains (FTL) in the retina of wild-type (WT) and lipocalin-2 transgenic (LCN2-TG) mice after RIR injury. Results We found that LCN2 was mainly expressed in the RGC layer in the retina of wild-type mice and remarkably upregulated after RIR injury. Compared with wild-type mice, aggravated RGC death and visual impairment were exhibited in LCN2-TG mice with RIR injury. Moreover, LCN2 overexpression activated glial cells and upregulated proinflammatory factors. More importantly, we found that LCN2 strongly promoted ferroptosis signaling in RGC death and visual impairment. Liproxstatin-1, an inhibitor of ferroptosis, could significantly ameliorate RGC death and visual impairment. Furthermore, we found significantly alleviated RGC death and retinal damage in LCN2 heterozygous knockout mice. Conclusions Our study provides important insights linking upregulated LCN2-mediated promotion of ferroptosis to RGC death and visual function impairment in the pathogenesis of ischemic retinopathy.
Collapse
Affiliation(s)
- Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China;,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zeqiu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chujun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haijun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China;,Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
27
|
Xu Q, Rydz C, Nguyen Huu VA, Rocha L, Palomino La Torre C, Lee I, Cho W, Jabari M, Donello J, Lyon DC, Brooke RT, Horvath S, Weinreb RN, Ju W, Foik A, Skowronska‐Krawczyk D. Stress induced aging in mouse eye. Aging Cell 2022; 21:e13737. [PMID: 36397653 PMCID: PMC9741506 DOI: 10.1111/acel.13737] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level. We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
Collapse
Affiliation(s)
- Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cezary Rydz
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Viet Anh Nguyen Huu
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Lorena Rocha
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Claudia Palomino La Torre
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Irene Lee
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - William Cho
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Mary Jabari
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - John Donello
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - David C. Lyon
- Department of Anatomy and Neurobiology, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | | | - Steve Horvath
- Epigenetic Clock Development FoundationTorranceCaliforniaUSA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Won‐Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Andrzej Foik
- Department of Anatomy and Neurobiology, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
- International Centre for Translational Eye Research, Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
| | - Dorota Skowronska‐Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineCaliforniaUSA
| |
Collapse
|
28
|
Malek G, Campisi J, Kitazawa K, Webster C, Lakkaraju A, Skowronska-Krawczyk D. Does senescence play a role in age-related macular degeneration? Exp Eye Res 2022; 225:109254. [PMID: 36150544 PMCID: PMC10032649 DOI: 10.1016/j.exer.2022.109254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.
Collapse
Affiliation(s)
- Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, USA; Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Corey Webster
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
29
|
Terao R, Ahmed T, Suzumura A, Terasaki H. Oxidative Stress-Induced Cellular Senescence in Aging Retina and Age-Related Macular Degeneration. Antioxidants (Basel) 2022; 11:2189. [PMID: 36358561 PMCID: PMC9686487 DOI: 10.3390/antiox11112189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Aging leads to a gradual decline of function in multiple organs. Cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) are age-related ocular diseases. Because their pathogenesis is unclear, it is challenging to combat age-related diseases. Cellular senescence is a cellular response characterized by cell cycle arrest. Cellular senescence is an important contributor to aging and age-related diseases through the alteration of cellular function and the secretion of senescence-associated secretory phenotypes. As a driver of stress-induced premature senescence, oxidative stress triggers cellular senescence and age-related diseases by inducing senescence markers via reactive oxygen species and mitochondrial dysfunction. In this review, we focused on the mechanism of oxidative stress-induced senescence in retinal cells and its role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroko Terasaki
- Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
30
|
Rossi SL, Subramanian P, Bu G, Di Polo A, Golde TE, Bovenkamp DE. Common features of neurodegenerative disease: exploring the brain-eye connection and beyond (Part 1): the 2021 pre-symposium of the 15th international conference on Alzheimer's and Parkinson's diseases. Mol Neurodegener 2022; 17:68. [PMID: 36310167 PMCID: PMC9620636 DOI: 10.1186/s13024-022-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sharyn L. Rossi
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| | - Preeti Subramanian
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| | - Guojun Bu
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Departments of Neuroscience and Ophthalmology, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), University of Montreal, Montreal, QC Canada
| | - Todd E. Golde
- grid.189967.80000 0001 0941 6502Departments of Pharmacology & Chemical Biology, and Neurology, Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA USA
| | - Diane E. Bovenkamp
- grid.453152.40000 0000 8621 6363BrightFocus Foundation, 22512 Gateway Center Dr, 20871 Clarksburg, MD USA
| |
Collapse
|
31
|
Kitazawa K, Inotmata T, Shih K, Hughes JWB, Bozza N, Tomioka Y, Numa K, Yokoi N, Campisi J, Dana R, Sotozono C. Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis. Ocul Surf 2022; 25:108-118. [PMID: 35753664 DOI: 10.1016/j.jtos.2022.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Dry eye disease (DED) is a common age-related ocular surface disease. However, it is unknown how aging influences the ocular surface microenvironment. This systematic review aims to investigate how the aging process changes the ocular surface microenvironment and impacts the development of DED. METHODS An article search was performed in PubMed, EMBASE, and Web of Science. 44 studies reporting on age-related ocular changes and 14 large epidemiological studies involving the prevalence of DED were identified. 8 out of 14 epidemiological studies were further analyzed with meta-analysis. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines were followed. Study-specific estimates (impact of aging on the prevalence of DED) were combined using one-group meta-analysis in a random-effects model. RESULTS Meta-analysis revealed the prevalence of DED in the elderly aged 60 years old or older was 5519 of 60107 (9.2%) and the odds ratio of aging compared to younger age was 1.313 (95% confidence interval [CI]; 1.107, 1.557). With increasing age, the integrity of the ocular surface and tear film stability decreased. Various inflammatory cells, including senescent-associated T-cells, infiltrated the ocular surface epithelium, lacrimal gland, and meibomian gland, accompanied by senescence-related changes, including accumulation of 8-OHdG and lipofuscin-like inclusions, increased expression of p53 and apoptosis-related genes, and decreased Ki67 positive cells. CONCLUSIONS The aging process greatly impacts the ocular surface microenvironment, consequently leading to DED.
Collapse
Affiliation(s)
- Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan.
| | - Takenori Inotmata
- Juntendo University Graduate School of Medicine, Department of Ophthalmology, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Digital Medicine, Tokyo, Japan
| | - Kendric Shih
- Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKUMed), Department of Ophthalmology, Hong Kong, China
| | | | - Niha Bozza
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Yasufumi Tomioka
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Norihiko Yokoi
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| |
Collapse
|
32
|
Luo J, Lian Q, Zhu D, Zhao M, Mei T, Shang B, Yang Z, Liu C, Xu W, Zhou L, Wu K, Liu X, Lai Y, Mao F, Li W, Zuo C, Zhang K, Lin M, Zhuo Y, Liu Y, Lu L, Zhao L. PLSCR1 Promotes Apoptosis and Clearance of Retinal Ganglion Cells in Glaucoma Pathogenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
33
|
Panagiotou ES, Fernandez-Fuentes N, Farraj LA, McKibbin M, Elçioglu NH, Jafri H, Cerman E, Parry DA, Logan CV, Johnson CA, Inglehearn CF, Toomes C, Ali M. Novel SIX6 mutations cause recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia. Mol Vis 2022; 28:57-69. [PMID: 35693420 PMCID: PMC9122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the molecular basis of recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia in two consanguineous families. Methods Conventional autozygosity mapping was performed using single nucleotide polymorphism (SNP) microarrays. Whole-exome sequencing was completed on genomic DNA from one affected member of each family. Exome sequence data were also used for homozygosity mapping and copy number variation analysis. PCR and Sanger sequencing were used to confirm the identification of mutations and to screen further patients. Evolutionary conservation of protein sequences was assessed using CLUSTALW, and protein structures were modeled using PyMol. Results In family MEP68, a novel homozygous nucleotide substitution in SIX6 was found, c.547G>C, that converts the evolutionarily conserved aspartic acid residue at the 183rd amino acid in the protein to a histidine, p.(Asp183His). This residue mapped to the third helix of the DNA-binding homeobox domain in SIX6, which interacts with the major groove of double-stranded DNA. This interaction is likely to be disrupted by the mutation. In family F1332, a novel homozygous 1034 bp deletion that encompasses the first exon of SIX6 was identified, chr14:g.60975890_60976923del. Both mutations segregated with the disease phenotype as expected for a recessive condition and were absent from publicly available variant databases. Conclusions Our findings expand the mutation spectrum in this form of inherited eye disease and confirm that homozygous human SIX6 mutations cause a developmental spectrum of ocular phenotypes that includes not only the previously described features of microphthalmia, coloboma, and congenital cataract but also corneal abnormalities.
Collapse
Affiliation(s)
- Evangelia S. Panagiotou
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | | | - Layal Abi Farraj
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom,Eye Clinic, St. James's University Hospital, Leeds, United Kingdom
| | - Nursel H. Elçioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey,Eastern Mediterrean University of Medical School, Cyprus, Turkey
| | | | - Eren Cerman
- Department of Ophthalmology, Marmara University Medical School, Istanbul, Turkey
| | - David A. Parry
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Clare V. Logan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Colin A. Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, United Kingdom
| |
Collapse
|
34
|
Reciprocal Regulation between lncRNA ANRIL and p15 in Steroid-Induced Glaucoma. Cells 2022; 11:cells11091468. [PMID: 35563774 PMCID: PMC9101924 DOI: 10.3390/cells11091468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Steroid-induced glaucoma (SIG) is the most common adverse steroid-related effect on the eyes. SIG patients can suffer from trabecular meshwork (TM) dysfunction, intraocular pressure (IOP) elevation, and irreversible vision loss. Previous studies have mainly focused on the role of extracellular matrix turnover in TM dysfunction; however, whether the cellular effects of TM cells are involved in the pathogenesis of SIG remains unclear. Here, we found that the induction of cellular senescence was associated with TM dysfunction, causing SIG in cultured cells and mouse models. Especially, we established the transcriptome landscape in the TM tissue of SIG mice via microarray screening and identified ANRIL as the most differentially expressed long non-coding RNA, with a 5.4-fold change. The expression level of ANRIL was closely related to ocular manifestations (IOP elevation, cup/disc ratio, and retinal nerve fiber layer thickness). Furthermore, p15, the molecular target of ANRIL, was significantly upregulated in SIG and was correlated with ocular manifestations in an opposite direction to ANRIL. The reciprocal regulation between ANRIL and p15 was validated using luciferase reporter assay. Through depletion in cultured cells and a mouse model, ANRIL/p15 signaling was confirmed in cellular senescence via cyclin-dependent kinase activity and, subsequently, by phosphorylation of the retinoblastoma protein. ANRIL depletion imitated the SIG phenotype, most importantly IOP elevation. ANRIL depletion-induced IOP elevation in mice can be effectively suppressed by p15 depletion. Analyses of the single-cell atlas and transcriptome dynamics of human TM tissue showed that ANRIL/p15 expression is spatially enriched in human TM cells and is correlated with TM dysfunction. Moreover, ANRIL is colocalized with a GWAS risk variant (rs944800) of glaucoma, suggesting its potential role underlying genetic susceptibility of glaucoma. Together, our findings suggested that steroid treatment promoted cellular senescence, which caused TM dysfunction, IOP elevation, and irreversible vision loss. Molecular therapy targeting the ANRIL/p15 signal exerted a protective effect against steroid treatment and shed new light on glaucoma management.
Collapse
|
35
|
Dai M, Hu Z, Kang Z, Zheng Z. Based on multiple machine learning to identify the ENO2 as diagnosis biomarkers of glaucoma. BMC Ophthalmol 2022; 22:155. [PMID: 35366826 PMCID: PMC8976990 DOI: 10.1186/s12886-022-02350-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Glaucoma is a generic term of a highly different disease group of optic neuropathies, which the leading cause of irreversible vision in the world. There are few biomarkers available for clinical prediction and diagnosis, and the diagnosis of patients is mostly delayed. Methods Differential gene expression of transcriptome sequencing data (GSE9944 and GSE2378) for normal samples and glaucoma samples from the GEO database were analyzed. Furthermore, based on different algorithms (Logistic Regression (LR), Random Forest (RF), lasso regression (LASSO)) two diagnostic models are constructed and diagnostic markers are screened. GO and KEGG analyses revealed the possible mechanism of differential genes in the pathogenesis of glaucoma. ROC curve confirmed the effectiveness. Results LR-RF model included 3 key genes (NAMPT, ADH1C, ENO2), and the LASSO model outputted 5 genes (IFI16, RFTN1, NAMPT, ADH1C, and ENO2), both algorithms have excellent diagnostic efficiency. ROC curve confirmed that the three biomarkers ADH1C, ENO2, and NAMPT were effective in the diagnosis of glaucoma. Next, the expression analysis of the three diagnostic biomarkers in glaucoma and control samples confirmed that NAMPT and ADH1C were up-regulated in glaucoma samples, and ENO2 was down-regulated. Correlation analysis showed that ENO2 was significantly negatively correlated with ADH1C (cor = -0.865714202) and NAMPT (cor = -0.730541227). Finally, three compounds for the treatment of glaucoma were obtained in the TCMs database: acetylsalicylic acid, 7-o-methylisomucitol and scutellarin which were applied to molecular docking with the diagnostic biomarker ENO2. Conclusions In conclusion, our research shows that ENO2, NAMPT, and ADH1C can be used as diagnostic markers for glaucoma, and ENO2 can be used as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02350-w.
Collapse
|
36
|
Sreekumar PG, Reddy ST, Hinton DR, Kannan R. Mechanisms of RPE senescence and potential role of αB crystallin peptide as a senolytic agent in experimental AMD. Exp Eye Res 2022; 215:108918. [PMID: 34986369 PMCID: PMC8923947 DOI: 10.1016/j.exer.2021.108918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 02/03/2023]
Abstract
Oxidative stress in the retinal pigment epithelium (RPE) can cause mitochondrial dysfunction and is likely a causative factor in the pathogenesis of age-related macular degeneration (AMD). Under oxidative stress conditions, some of the RPE cells become senescent and a contributory role for RPE senescence in AMD pathology has been proposed. The purpose of this study is to 1) characterize senescence in human RPE; 2) investigate the effect of an αB Crystallin chaperone peptide (mini Cry) in controlling senescence, in particular by regulating mitochondrial function and senescence-associated secretory phenotype (SASP) production and 3) develop mouse models for studying the role of RPE senescence in dry and nAMD. Senescence was induced in human RPE cells in two ways. First, subconfluent cells were treated with 0.2 μg/ml doxorubicin (DOX); second, subconfluent cells were treated with 500 μM H2O2. Senescence biomarkers (senescence-associated beta-galactosidase (SA-βgal), p21, p16) and mitochondrial proteins (Fis1, DRP1, MFN2, PGC1-α, mtTFA) were analyzed in control and experimental groups. The effect of mini Cry on mitochondrial bioenergetics, glycolysis and SASP was determined. In vivo, retinal degeneration was induced by intravenous injection of NaIO3 (20 mg/kg) and subretinal fibrosis by laser-induced choroidal neovascularization. Increased SA-βgal staining and p16 and p21 expression was observed after DOX- or H2O2-induced senescence and mini Cry significantly decreased senescence-positive cells. The expression of mitochondrial biogenesis proteins PGC-1 and mTFA increased with senescence, and mini Cry reduced expression significantly. Senescent RPE cells were metabolically active, as evidenced by significantly enhanced oxidative phosphorylation and anaerobic glycolysis, mini Cry markedly reduced rates of respiration and glycolysis. Senescent RPE cells maintain a proinflammatory phenotype characterized by significantly increased production of cytokines (IFN-ˠ, TNF-α, IL1-α IL1-β, IL-6, IL-8, IL-10), and VEGF-A; mini Cry significantly inhibited their secretion. We identified and localized senescent RPE cells for the first time in NaIO3-induced retinal degeneration and laser-induced subretinal fibrosis mouse models. We conclude that mini Cry significantly impairs stress-induced senescence by modulating mitochondrial biogenesis and fission proteins in RPE cells. Characterization of senescence could provide further understanding of the metabolic changes that accompany the senescent phenotype in ocular disease. Future studies in vivo may better define the role of senescence in AMD and the therapeutic potential of mini Cry as a senotherapeutic.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA.
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - David R Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Lu SY, Zhang XJ, Wang YM, Yuan N, Kam KW, Chan PP, Tam PO, Yip WW, Young AL, Tham CC, Pang CP, Yam JC, Chen LJ. Association of SIX1-SIX6 polymorphisms with peripapillary retinal nerve fibre layer thickness in children. Br J Ophthalmol 2022:bjophthalmol-2021-319756. [PMID: 35017159 DOI: 10.1136/bjophthalmol-2021-319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE Association of SIX1-SIX6 variants with peripapillary retinal nerve fibre layer (p-RNFL) thickness had been reported in adults. This study aimed to investigate these associations in children, with further explorations by spatial, age and sex stratifications. METHODS 2878 school children aged between 6 and 9 years were enrolled from the Hong Kong Children Eye Study. Three single-nucleotide polymorphisms (SNPs) at the SIX1-SIX6 locus were genotyped. The association of each SNP with p-RNFL thickness (including global and sectoral thickness) were evaluated using multiple linear regression. RESULTS SNPs rs33912345 (p=7.7×10-4) and rs10483727 (p=0.0013) showed significant associations with temporal-inferior p-RNFL thickness. The C allele of rs33912345 was associated with a thinner temporal-inferior p-RNFL by an average of 2.44 µm, while rs10483727-T was associated with a thinner temporal-inferior p-RNFL by 2.32 µm. The association with temporal-inferior p-RNFL was the strongest in the 8-9 year-old group for rs33912345 (p=5.2×10-4) and rs10483727 (p=3.3×10-4). Both SNPs were significantly associated with temporal-inferior p-RNFL thickness in boys (p<0.0017), but not in girls (p>0.05). In contrast, rs12436579-C (β=1.66; p=0.0059), but not rs33912345-C (β=1.31; p=0.052) or rs10483727-T (β=1.19; p=0.078), was nominally associated with a thicker nasal-inferior p-RNFL. CONCLUSIONS Both rs33912345 and rs10483727 at SIX1-SIX6 were associated with p-RNFL thickness in children, especially at the temporal-inferior sector, with age-dependent and sex-specific effects. SNP rs12436579 was associated with nasal-inferior p-RNFL thickness. Our findings suggested a role of SIX1-SIX6 in RNFL variation during neural retina development in childhood.
Collapse
Affiliation(s)
- Shi Yao Lu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nan Yuan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Poemen P Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China
| | - Pancy Os Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wilson Wk Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Hong Kong Eye Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Ye D, Xu Y, Shi Y, Ji J, Lu X, Chen H, Huang R, Lu P, Li Y, Cheng L, Li Y, Cui K, Tang X, Luo L, Huang J. Occurrence of Oxidative Stress and Premature Senescence in the Anterior Segment of Acute Primary Angle-Closure Eyes. Invest Ophthalmol Vis Sci 2022; 63:34. [PMID: 35077549 PMCID: PMC8802011 DOI: 10.1167/iovs.63.1.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To explore whether oxidative stress and premature senescence occur in the anterior segment of acute primary angle-closure (APAC) eyes after increased intraocular pressure. Methods The eye samples of 21 APAC patients, 22 age-related cataract patients, and 10 healthy donors were included. Aqueous humor (AqH), iris, and anterior lens capsule samples were collected. The levels of oxidative stress markers and senescence-associated secretory phenotype (SASP)–related cytokines in AqH were estimated using relevant reagent kits and multiplex bead immunoassay technique. The intensity of relevant markers in anterior segment tissues was examined by immunofluorescence- and senescence-associated β-galactosidase (SA-β-gal) staining. Results Oxidative stress marker levels elevated significantly in the AqH of APAC eyes. Reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine levels were positively correlated with preoperative peak intraocular pressure and age, whereas reduced glutathione/oxidized glutathione (GSH/GSSH) ratio was negatively correlated with both parameters. The levels of several SASP-related cytokines were markedly increased. ROS and malondialdehyde levels were positively correlated with the levels of some SASP-related cytokines, whereas superoxide dismutase level and GSH/GSSH ratio showed an opposite trend. The number of cells positive for oxidative mitochondrial DNA damage and apoptosis-related markers increased in the iris and anterior lens capsule of the APAC group. Senescence-associated markers (p16, p21, and p53) and SA-β-gal activity were increased in the iris of the APAC group. Conclusions Oxidative stress and premature senescence occurred in the anterior segment of APAC patients, suggesting that they may be involved in the development of pathological changes in the anterior segment of APAC eyes.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.,Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yunxuan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lu Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yangyunhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
39
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
40
|
Tuttle CS, Luesken SW, Waaijer ME, Maier AB. Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Res Rev 2021; 68:101334. [PMID: 33819674 DOI: 10.1016/j.arr.2021.101334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Higher numbers of senescent cells have been implicated in age-related disease pathologies. However, whether different diseases have different senescent phenotypes is unknown. Here we provide a systematic overview of the current available evidence of senescent cells in age-related diseases pathologies in humans and the markers currently used to detect senescence levels in humans. METHODS PubMed, Web of Science and EMBASE were systematically searched from inception to the 29th of September 2019, using keywords related to 'senescence', 'age-related diseases' and 'biopsies'. RESULTS In total 12,590 articles were retrieved of which 103 articles were included in this review. The role of senescence in age-related disease has been assessed in 9 different human organ system and 27 different age-related diseases of which heart (27/103) and the respiratory systems (18/103) are the most investigated. Overall, 27 different markers of senescence have been used to determine cellular senescence and the cell cycle regulator p16ink4a is most often used (23/27 age-related pathologies). CONCLUSION This review demonstrates that a higher expression of senescence markers are observed within disease pathologies. However, not all markers to detect senescence have been assessed in all tissue types.
Collapse
|
41
|
Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 2021; 33:818-832.e7. [PMID: 33548171 DOI: 10.1016/j.cmet.2021.01.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence. Senescent (p16INK4A-expressing) cells accumulate in retinas of patients with diabetic retinopathy and during peak destructive neovascularization in a mouse model of retinopathy. Using either genetic approaches that clear p16INK4A-expressing cells or small molecule inhibitors of the anti-apoptotic protein BCL-xL, we show that senolysis suppresses pathological angiogenesis. Single-cell analysis revealed that subsets of endothelial cells with senescence signatures and expressing Col1a1 are no longer detected in BCL-xL-inhibitor-treated retinas, yielding a retina conducive to physiological vascular repair. These findings provide mechanistic evidence supporting the development of BCL-xL inhibitors as potential treatments for neovascular retinal disease.
Collapse
|
42
|
El-Nimri NW, Moore SM, Zangwill LM, Proudfoot JA, Weinreb RN, Skowronska-Krawczyk D, Baxter SL. Evaluating the neuroprotective impact of senolytic drugs on human vision. Sci Rep 2020; 10:21752. [PMID: 33303874 PMCID: PMC7730173 DOI: 10.1038/s41598-020-78802-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Glaucoma, a chronic neurodegenerative disease of retinal ganglion cells (RGCs), is a leading cause of irreversible blindness worldwide. Its management currently focuses on lowering intraocular pressure to slow disease progression. However, disease-modifying, neuroprotective treatments for glaucoma remain a major unmet need. Recently, senescent cells have been observed in glaucomatous eyes, exposing a potential pathway for alternative glaucoma therapies. Prior studies demonstrated that targeting senescent RGCs for removal (i.e., a senolytic approach) protected healthy RGCs and preserved visual function in a mouse ocular hypertension model. However, the effects of senolytic drugs on vision in human patients are unknown. Here, we used existing clinical data to conduct a retrospective cohort study in 28 human glaucoma patients who had been exposed to senolytics. Senolytic exposure was not associated with decreased visual acuity, elevated intraocular pressure, or documentation of senolytic-related adverse ocular effects by treating ophthalmologists. Additionally, patients exposed to senolytics (n = 9) did not exhibit faster progression of glaucomatous visual field damage compared to matched glaucoma patients (n = 26) without senolytic exposure. These results suggest that senolytic drugs do not carry significant ocular toxicity and provide further support for additional evaluation of the potential neuroprotective effects of senolytics on glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nevin W El-Nimri
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA
| | - Spencer M Moore
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA
| | - Linda M Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA
| | - James A Proudfoot
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA
| | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA.
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, University of California Irvine, 837 Health Sciences Rd, Irvine, CA, 92617, USA.
| | - Sally L Baxter
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, and Hamilton Glaucoma Center, University of California San Diego, 9415 Campus Point Drive, MC 0946, La Jolla, CA, 92093, USA.
- Health Department of Biomedical Informatics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Abstract
Bien que la sénescence cellulaire joue un rôle essentiel dans le développent embryonnaire, la cicatrisation ou l’hémostase, il est maintenant également démontré qu’elle est à l’origine de nombreux processus dégénératifs qui caractérisent le vieillissement. Cette sénescence est induite en réponse à divers stress ou stimulus inappropriés, conduisant à un arrêt de la prolifération et des adaptations géniques, épigénétiques, métaboliques, structurelles et fonctionnelles. Ces cellules sénescentes, lorsqu’elles ne sont pas éliminées, favorisent la propagation de leur phénotype de proche en proche dans le tissu environnant, par l’établissement d’un profil sécrétoire spécifique. Éliminer ou bloquer l’action de ces cellules par des agents dits sénothérapeutiques pourrait prévenir la dégénérescence tissulaire et améliorer la longévité en bonne santé. Nous nous proposons dans cette revue de présenter les dernières avancées et applications développées en sénothérapie et discuterons les résultats très prometteurs des premiers essais cliniques chez l’homme.
Collapse
|
44
|
Liu W, Ha Y, Xia F, Zhu S, Li Y, Shi S, Mei FC, Merkley K, Vizzeri G, Motamedi M, Cheng X, Liu H, Zhang W. Neuronal Epac1 mediates retinal neurodegeneration in mouse models of ocular hypertension. J Exp Med 2020; 217:133574. [PMID: 31918438 PMCID: PMC7144517 DOI: 10.1084/jem.20190930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Progressive loss of retinal ganglion cells (RGCs) leads to irreversible visual deficits in glaucoma. Here, we found that the level of cyclic AMP and the activity and expression of its mediator Epac1 were increased in retinas of two mouse models of ocular hypertension. Genetic depletion of Epac1 significantly attenuated ocular hypertension–induced detrimental effects in the retina, including vascular inflammation, neuronal apoptosis and necroptosis, thinning of ganglion cell complex layer, RGC loss, and retinal neuronal dysfunction. With bone marrow transplantation and various Epac1 conditional knockout mice, we further demonstrated that Epac1 in retinal neuronal cells (especially RGCs) was responsible for their death. Consistently, pharmacologic inhibition of Epac activity prevented RGC loss. Moreover, in vitro study on primary RGCs showed that Epac1 activation was sufficient to induce RGC death, which was mechanistically mediated by CaMKII activation. Taken together, these findings indicate that neuronal Epac1 plays a critical role in retinal neurodegeneration and suggest that Epac1 could be considered a target for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonju Ha
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Shuang Zhu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Yi Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX
| | - Kevin Merkley
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Gianmarco Vizzeri
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX.,Departments of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
45
|
Kumar A, Bano D, Ehninger D. Cellular senescence in vivo: From cells to tissues to pathologies. Mech Ageing Dev 2020; 190:111308. [PMID: 32622996 DOI: 10.1016/j.mad.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
Senescent cells accumulate during aging in a variety of tissues. Although scarce, they could influence tissue function non-cell-autonomously via secretion of a range of factors in their neighborhood. Recent studies support a role of senescent cells in age-related morbidity, including neurodegenerative diseases, cardiovascular pathologies, cancers, aging-associated nephrological alterations, chronic pulmonary disease and osteoarthritis, indicating that senescent cells could represent an interesting target for therapeutic exploitation across a range of pathophysiological contexts. In this article, we review data available to indicate which cell types can undergo senescence within various mammalian tissue environments and how these processes may contribute to tissue-specific pathologies associated with old age. We also consider markers used to identify senescent cells in vitro and in vivo. The data discussed may serve as an important starting point for an extended definition of molecular and functional characteristics of senescent cells in different organs and may hence promote the development and refinement of targeting strategies aimed at removing senescent cells from aging tissues.
Collapse
Affiliation(s)
- Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
46
|
Teotia P, Niu M, Ahmad I. Mapping developmental trajectories and subtype diversity of normal and glaucomatous human retinal ganglion cells by single-cell transcriptome analysis. Stem Cells 2020; 38:1279-1291. [PMID: 32557945 PMCID: PMC7586941 DOI: 10.1002/stem.3238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Glaucoma is characterized by a progressive degeneration of retinal ganglion cells (RGCs), leading to irreversible vision loss. Currently, there is no effective treatment for RGC degeneration. We used a disease-in-a-dish stem cell model to examine the developmental susceptibility of RGCs to glaucomatous degeneration, which may inform on the formulation of therapeutic approaches. Here, we used single-cell transcriptome analysis of SIX6 risk allele (SIX6risk allele ) primary open angle glaucoma patient-specific and control hRGCs to compare developmental trajectories in terms of lineage- and stage-specific transcriptional signature to identify dysregulated stages/genes, and subtype composition to estimate the relative vulnerability of RGCs to degeneration because their ability to regenerate axons are subtype-specific. The developmental trajectories, beginning from neural stem cells to RGCs, were similar between SIX6risk allele and control RGCs. However, the differentiation of SIX6risk allele RGCs was relatively stalled at the retinal progenitor cell stage, compromising the acquisition of mature phenotype and subtype composition, compared with controls, which was likely due to dysregulated mTOR and Notch signaling pathways. Furthermore, SIX6risk allele RGCs, as compared with controls, expressed fewer genes corresponding to RGC subtypes that are preferentially resistant to degeneration. The immature phenotype of SIX6risk allele RGCs with underrepresented degeneration-resistant subtypes may make them vulnerable to glaucomatous degeneration.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
47
|
Trivli A, Zervou MI, Goulielmos GN, Spandidos DA, Detorakis ET. Primary open angle glaucoma genetics: The common variants and their clinical associations (Review). Mol Med Rep 2020; 22:1103-1110. [PMID: 32626970 PMCID: PMC7339808 DOI: 10.3892/mmr.2020.11215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that have in common characteristic optic nerve head changes, loss of retinal ganglion cells and visual field defects. Among the large family of glaucomas, primary open‑angle glaucoma (POAG) is the most common type, a complex and heterogeneous disorder with environmental and genetic factors contributing to its pathogenesis. Approximately 5% of POAG is currently attributed to single‑gene or Mendelian forms of glaucoma. Genetic linkage analysis and genome‑wide association studies have identified various genomic loci, paving the path to understanding the pathogenesis of this enigmatic, blinding disease. In this review we summarize the most common variants reported thus far and their possible clinical correlations.
Collapse
Affiliation(s)
- Alexandra Trivli
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
48
|
The Emerging Role of Senescence in Ocular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2583601. [PMID: 32215170 PMCID: PMC7085400 DOI: 10.1155/2020/2583601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest in response to an array of cellular stresses. An important role for senescence has been shown for a number of pathophysiological conditions that include cardiovascular disease, pulmonary fibrosis, and diseases of the skin. However, whether senescence contributes to the progression of age-related macular degeneration (AMD) has not been studied in detail so far and the present review describes the recent research on this topic. We present an overview of the types of senescence, pathways of senescence, senescence-associated secretory phenotype (SASP), the role of mitochondria, and their functional implications along with antisenescent therapies. As a central mechanism, senescent cells can impact the surrounding tissue microenvironment via the secretion of a pool of bioactive molecules, termed the SASP. An updated summary of a number of new members of the ever-growing SASP family is presented. Further, we introduce the significance of mechanisms by which mitochondria may participate in the development of cellular senescence. Emerging evidence shows that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Based on recent studies, there is reasonable evidence that senescence could be a modifiable factor, and hence, it may be possible to delay age-related diseases by modulating basic aging mechanisms using SASP inhibitors/senolytic drugs. Thus, antisenescent therapies in aging and age-related diseases appear to have a promising potential.
Collapse
|
49
|
Rocha LR, Nguyen Huu VA, Palomino La Torre C, Xu Q, Jabari M, Krawczyk M, Weinreb RN, Skowronska‐Krawczyk D. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 2020; 19:e13089. [PMID: 31867890 PMCID: PMC6996954 DOI: 10.1111/acel.13089] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
Experimental ocular hypertension induces senescence of retinal ganglion cells (RGCs) that mimics events occurring in human glaucoma. Senescence-related chromatin remodeling leads to profound transcriptional changes including the upregulation of a subset of genes that encode multiple proteins collectively referred to as the senescence-associated secretory phenotype (SASP). Emerging evidence suggests that the presence of these proinflammatory and matrix-degrading molecules has deleterious effects in a variety of tissues. In the current study, we demonstrated in a transgenic mouse model that early removal of senescent cells induced upon elevated intraocular pressure (IOP) protects unaffected RGCs from senescence and apoptosis. Visual evoked potential (VEP) analysis demonstrated that remaining RGCs are functional and that the treatment protected visual functions. Finally, removal of endogenous senescent retinal cells after IOP elevation by a treatment with senolytic drug dasatinib prevented loss of retinal functions and cellular structure. Senolytic drugs may have the potential to mitigate the deleterious impact of elevated IOP on RGC survival in glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Lorena Raquel Rocha
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Viet Anh Nguyen Huu
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Claudia Palomino La Torre
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Qianlan Xu
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Mary Jabari
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Michal Krawczyk
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Robert N. Weinreb
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
| | - Dorota Skowronska‐Krawczyk
- Shiley Eye Institute Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology University of California, San Diego CA USA
- Richard C. Atkinson Lab for Regenerative Ophthalmology University of California, San Diego CA USA
| |
Collapse
|
50
|
Tuttle CSL, Waaijer MEC, Slee‐Valentijn MS, Stijnen T, Westendorp R, Maier AB. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell 2020; 19:e13083. [PMID: 31808308 PMCID: PMC6996941 DOI: 10.1111/acel.13083] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
Senescent cells in tissues and organs are considered to be pivotal to not only the aging process but also the onset of chronic disease. Accumulating evidence from animal experiments indicates that the magnitude of senescence can vary within and between aged tissue samples from the same animal. However, whether this variation in senescence translates across to human tissue samples is unknown. To address this fundamental question, we have conducted a systematic review and meta‐analysis of all available literature investigating the magnitude of senescence and its association with chronological age in human tissue samples. While senescence is higher in aged tissue samples, the magnitude of senescence varies considerably depending upon tissue type, tissue section, and marker used to detect senescence. These findings echo animal experiments demonstrating that senescence levels may vary between organs within the same animal.
Collapse
Affiliation(s)
- Camilla S. L. Tuttle
- Department of Medicine and Aged Care Royal Melbourne Hospital University of Melbourne Melbourne Vic. Australia
| | - Mariette E. C. Waaijer
- Department of Gerontology and Geriatrics Leiden University Medical Center Leiden The Netherlands
| | | | - Theo Stijnen
- Department of Biomedical Data Sciences Leiden University Medical Center Leiden The Netherlands
| | - Rudi Westendorp
- Department of Public Health and Centre for Healthy Ageing University of Copenhagen Copenhagen Denmark
| | - Andrea B. Maier
- Department of Medicine and Aged Care Royal Melbourne Hospital University of Melbourne Melbourne Vic. Australia
- Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam The Netherlands
| |
Collapse
|