1
|
Patel R, Loverde SM. Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling. J Chem Theory Comput 2025; 21:4921-4938. [PMID: 40289377 PMCID: PMC12080106 DOI: 10.1021/acs.jctc.5c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Biomolecules predominantly exert their function by altering conformational dynamics. The nucleosome core particle (NCP) is the fundamental unit of chromatin. DNA with ∼146 base pairs wraps around the histone octamer to form a nucleosome. The histone octamer is composed of two copies of each histone protein (H3, H4, H2A, and H2B) with a globular core and disordered N-terminal tails. Epigenetic modifications of the histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. Here, we report all-atom molecular dynamics (MD) simulations of the nucleosome at microsecond time scales to construct Markov state models (MSMs) to elucidate distinct conformations of the histone tails. We employ time-lagged independent component analysis (tICA) to capture their essential slow dynamics, with k-means clustering used to discretize the conformational space. MSMs unveil distinct states and transition probabilities to characterize the dynamics and kinetics of the tails. Next, we focus on the H2B tail, which is one of the least studied tails. We show that acetylation increases secondary structure formation with increased transition rates. These findings will aid in understanding the functional implications of tail conformations for nucleosome stability and gene regulation.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Bolik-Coulon N, Rößler P, Kay LE. NMR-Based Measurements of Site-Specific Electrostatic Potentials of Histone Tails in Nucleosome Core Particles. J Am Chem Soc 2025; 147:14519-14529. [PMID: 40237318 DOI: 10.1021/jacs.5c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Electrostatics play a dominant role in guiding many biological processes. This is especially the case in the context of chromatin, where charge interactions modulate diverse activities such as DNA repair, transcription, replication, condensation, and phase separation. Using NMR experiments quantifying solvent paramagnetic relaxation enhancements of backbone amide and side chain methyl protons in the presence of paramagnetic cosolutes and focusing on the nucleosome core particle (NCP), we report near surface electrostatic potentials of tail residues of each of the four histone components of the NCP. These are all negative, despite sequences comprising a high density of positively charged amino acids, emphasizing the strong contribution of the negatively charged DNA with which the tails interact. Changes in electrostatic potentials of as much as 60 mV between isolated histone tails and tails in the context of the NCP are calculated. Notably, the tail potentials can vary significantly from each other, with enrichment in glycine residues correlating with less negative values, highlighting differences in the interactions with DNA.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Philip Rößler
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
3
|
Patel R, Loverde SM. Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633411. [PMID: 39896498 PMCID: PMC11785091 DOI: 10.1101/2025.01.16.633411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Biomolecules predominantly exert their function through altering conformational dynamics. The nucleosome core particle (NCP) is the fundamental unit of chromatin. DNA with ~146 base pairs wrap around the histone octamer to form a nucleosome. The histone octamer is comprised of two copies of each histone protein (H3, H4, H2A, and H2B) with a globular core and disordered N-terminal tails. Epigenetic modifications of the histone N-terminal tails play a critical role in the regulation of chromatin structure and biological processes such as transcription and DNA repair. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome at microsecond timescales to construct Markov state models (MSMs) to elucidate distinct conformations of the histone tails. We employ the time-lagged independent component analysis (tICA) to capture their essential slow dynamics, with k-means clustering used to discretize the conformational space. MSMs unveil distinct states and transition probabilities to characterize the dynamics and kinetics of the tails. Next, we focus on the H2B tail, one of the least studied tails. We show that acetylation increases secondary structure formation, with an increase in transition rates. These findings will aid in understanding the functional implications of tail conformations in nucleosome stability and gene regulation.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
| | - Sharon M. Loverde
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016
| |
Collapse
|
4
|
Whedon S, Lee K, Wang ZA, Zahn E, Lu C, Yapa Abeywardana M, Fairall L, Nam E, DuBois-Coyne S, De Ioannes P, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. Circular Engineered Sortase for Interrogating Histone H3 in Chromatin. J Am Chem Soc 2024; 146:33914-33927. [PMID: 39585806 PMCID: PMC11638967 DOI: 10.1021/jacs.4c12585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating the chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here, we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle-down proteomics with tandem mass tags. This cut-and-paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetic discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel
D. Whedon
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A. Wang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Congcong Lu
- Epigenetics
Institute, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maheeshi Yapa Abeywardana
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Eunju Nam
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah DuBois-Coyne
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Xinlei Sheng
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adelina Andrei
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingming Zhao
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - John W. R. Schwabe
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Mingxuan Wu
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 PMCID: PMC11602356 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
6
|
Whedon SD, Lee K, Wang ZA, Zahn E, Lu C, Yapa-Abeywardana M, Fairall L, Nam E, Dubois-Coyne S, Ioannes PD, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. A circular engineered sortase for interrogating histone H3 in chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612318. [PMID: 39372790 PMCID: PMC11451751 DOI: 10.1101/2024.09.10.612318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle down proteomics with tandem mass tags. This cut-and- paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetics discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Congcong Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Maheeshi Yapa-Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah Dubois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Xinlei Sheng
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - Adelina Andrei
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Emmons-Bell M, Forsyth G, Sundquist A, Oldeman S, Gardikioti A, de Souza R, Coene J, Kamel MH, Ayyapan S, Fuchs HA, Verhelst S, Smeeton J, Musselman CA, Schvartzman JM. Polyamines regulate cell fate by altering the activity of histone-modifying enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.600738. [PMID: 39005392 PMCID: PMC11244958 DOI: 10.1101/2024.07.02.600738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Polyamines are polycationic alkyl-amines abundant in proliferating stem and cancer cells. How these metabolites influence numerous cellular functions remains unclear. Here we show that polyamine levels decrease during differentiation and that inhibiting polyamine synthesis leads to a differentiated-like cell state. Polyamines concentrate in the nucleus and are further enriched in the nucleoli of cells in culture and in vivo . Loss of polyamines drives changes in chromatin accessibility that correlate with altered histone post-translational modifications. Polyamines interact electrostatically with DNA on the nucleosome core, stabilizing histone tails in conformations accessible to modifying enzymes. These data reveal a mechanism by which an abundant metabolite influences chromatin structure and function in a non-sequence specific manner, facilitating chromatin remodeling during reprogramming and limiting it during fate commitment.
Collapse
|
9
|
Patel R, Onyema A, Tang PK, Loverde SM. Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4709-4726. [PMID: 38865599 PMCID: PMC11200259 DOI: 10.1021/acs.jcim.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Augustine Onyema
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Phu K. Tang
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
10
|
van Emmerik CL, Lobbia V, Neefjes J, Nelissen FHT, van Ingen H. Monitoring Anthracycline Cancer Drug-Nucleosome Interaction by NMR Using a Specific Isotope Labeling Approach for Nucleosomal DNA. Chembiochem 2024; 25:e202400111. [PMID: 38476018 DOI: 10.1002/cbic.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.
Collapse
Affiliation(s)
- Clara L van Emmerik
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Vincenzo Lobbia
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jacques Neefjes
- Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Frank H T Nelissen
- Biophysical Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
11
|
Smirnova E, Bignon E, Schultz P, Papai G, Ben Shem A. Binding to nucleosome poises human SIRT6 for histone H3 deacetylation. eLife 2024; 12:RP87989. [PMID: 38415718 PMCID: PMC10942634 DOI: 10.7554/elife.87989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | | | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | - Gabor Papai
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| | - Adam Ben Shem
- Department of Integrated Structural Biology, IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258IllkirchFrance
- CNRS, UMR 7104IllkirchFrance
- Inserm, UMR-S 1258IllkirchFrance
| |
Collapse
|
12
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
13
|
Marunde MR, Fuchs HA, Burg JM, Popova IK, Vaidya A, Hall NW, Weinzapfel EN, Meiners MJ, Watson R, Gillespie ZB, Taylor HF, Mukhsinova L, Onuoha UC, Howard SA, Novitzky K, McAnarney ET, Krajewski K, Cowles MW, Cheek MA, Sun ZW, Venters BJ, Keogh MC, Musselman CA. Nucleosome conformation dictates the histone code. eLife 2024; 13:e78866. [PMID: 38319148 PMCID: PMC10876215 DOI: 10.7554/elife.78866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.
Collapse
Affiliation(s)
| | - Harrison A Fuchs
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| | | | | | | | | | | | - Catherine A Musselman
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
14
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
15
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
16
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
17
|
Zhang X, Fawwal DV, Spangle JM, Corbett AH, Jones CY. Exploring the Molecular Underpinnings of Cancer-Causing Oncohistone Mutants Using Yeast as a Model. J Fungi (Basel) 2023; 9:1187. [PMID: 38132788 PMCID: PMC10744705 DOI: 10.3390/jof9121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the molecular basis of cancer initiation and progression is critical in developing effective treatment strategies. Recently, mutations in genes encoding histone proteins that drive oncogenesis have been identified, converting these essential proteins into "oncohistones". Understanding how oncohistone mutants, which are commonly single missense mutations, subvert the normal function of histones to drive oncogenesis requires defining the functional consequences of such changes. Histones genes are present in multiple copies in the human genome with 15 genes encoding histone H3 isoforms, the histone for which the majority of oncohistone variants have been analyzed thus far. With so many wildtype histone proteins being expressed simultaneously within the oncohistone, it can be difficult to decipher the precise mechanistic consequences of the mutant protein. In contrast to humans, budding and fission yeast contain only two or three histone H3 genes, respectively. Furthermore, yeast histones share ~90% sequence identity with human H3 protein. Its genetic simplicity and evolutionary conservation make yeast an excellent model for characterizing oncohistones. The power of genetic approaches can also be exploited in yeast models to define cellular signaling pathways that could serve as actionable therapeutic targets. In this review, we focus on the value of yeast models to serve as a discovery tool that can provide mechanistic insights and inform subsequent translational studies in humans.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
| | - Dorelle V. Fawwal
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Celina Y. Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Sun W, Lebedenko OO, Salguero NG, Shannon MD, Zandian M, Poirier MG, Skrynnikov NR, Jaroniec CP. Conformational and Interaction Landscape of Histone H4 Tails in Nucleosomes Probed by Paramagnetic NMR Spectroscopy. J Am Chem Soc 2023; 145:25478-25485. [PMID: 37943892 PMCID: PMC10719895 DOI: 10.1021/jacs.3c10340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette 47907, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Elathram N, Ackermann BE, Clark ET, Dunn SR, Debelouchina GT. Phosphorylated HP1α-Nucleosome Interactions in Phase Separated Environments. J Am Chem Soc 2023; 145:23994-24004. [PMID: 37870432 PMCID: PMC10636758 DOI: 10.1021/jacs.3c06481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
In the nucleus, transcriptionally silent genes are sequestered into heterochromatin compartments comprising nucleosomes decorated with histone H3 Lys9 trimethylation and a protein called HP1α. This protein can form liquid-liquid droplets in vitro and potentially organize heterochromatin through a phase separation mechanism that is promoted by phosphorylation. Elucidating the molecular interactions that drive HP1α phase separation and its consequences on nucleosome structure and dynamics has been challenging due to the viscous and heterogeneous nature of such assemblies. Here, we tackle this problem by a combination of solution and solid-state NMR spectroscopy, which allows us to dissect the interactions of phosphorylated HP1α with nucleosomes in the context of phase separation. Our experiments indicate that phosphorylated human HP1α does not cause any major rearrangements to the nucleosome core, in contrast to the yeast homologue Swi6. Instead, HP1α interacts specifically with the methylated H3 tails and slows the dynamics of the H4 tails. Our results shed light on how phosphorylated HP1α proteins may regulate the heterochromatin landscape, while our approach provides an atomic resolution view of a heterogeneous and dynamic biological system regulated by a complex network of interactions and post-translational modifications.
Collapse
Affiliation(s)
- Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Evan T. Clark
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby R. Dunn
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Oishi T, Hatazawa S, Kujirai T, Kato J, Kobayashi Y, Ogasawara M, Akatsu M, Ehara H, Sekine SI, Hayashi G, Takizawa Y, Kurumizaka H. Contributions of histone tail clipping and acetylation in nucleosome transcription by RNA polymerase II. Nucleic Acids Res 2023; 51:10364-10374. [PMID: 37718728 PMCID: PMC10602921 DOI: 10.1093/nar/gkad754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.
Collapse
Affiliation(s)
- Takumi Oishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Munetaka Akatsu
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
21
|
Sawade K, Marx A, Peter C, Kukharenko O. Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes. PLoS Comput Biol 2023; 19:e1010531. [PMID: 37527265 PMCID: PMC10442151 DOI: 10.1371/journal.pcbi.1010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
The chromatin in eukaryotic cells plays a fundamental role in all processes during a cell's life cycle. This nucleoprotein is normally tightly packed but needs to be unpacked for expression and division. The linker histones are critical for such packaging processes and while most experimental and simulation works recognize their crucial importance, the focus is nearly always set on the nucleosome as the basic chromatin building block. Linker histones can undergo several modifications, but only few studies on their ubiquitylation have been conducted. Mono-ubiquitylated linker histones (HUb), while poorly understood, are expected to influence DNA compaction. The size of ubiquitin and the globular domain of the linker histone are comparable and one would expect an increased disorder upon ubiquitylation of the linker histone. However, the formation of higher order chromatin is not hindered and ubiquitylation of the linker histone may even promote gene expression. Structural data on chromatosomes is rare and HUb has never been modeled in a chromatosome so far. Descriptions of the chromatin complex with HUb would greatly benefit from computational structural data. In this study we generate molecular dynamics simulation data for six differently linked HUb variants with the help of a sampling scheme tailored to drive the exploration of phase space. We identify conformational sub-states of the six HUb variants using the sketch-map algorithm for dimensionality reduction and iterative HDBSCAN for clustering on the excessively sampled, shallow free energy landscapes. We present a highly efficient geometric scoring method to identify sub-states of HUb that fit into the nucleosome. We predict HUb conformations inside a nucleosome using on-dyad and off-dyad chromatosome structures as reference and show that unbiased simulations of HUb produce significantly more fitting than non-fitting HUb conformations. A tetranucleosome array is used to show that ubiquitylation can even occur in chromatin without too much steric clashes.
Collapse
Affiliation(s)
- Kevin Sawade
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Oleksandra Kukharenko
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Theory Department, Max-Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
22
|
Haws SA, Miller LJ, La Luz DR, Kuznetsov VI, Trievel RC, Craciun G, Denu JM. Intrinsic catalytic properties of histone H3 lysine-9 methyltransferases preserve monomethylation levels under low S-adenosylmethionine. J Biol Chem 2023; 299:104938. [PMID: 37331600 PMCID: PMC10404681 DOI: 10.1016/j.jbc.2023.104938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023] Open
Abstract
S-adenosylmethionine (SAM) is the methyl donor for site-specific methylation reactions on histone proteins, imparting key epigenetic information. During SAM-depleted conditions that can arise from dietary methionine restriction, lysine di- and tri-methylation are reduced while sites such as Histone-3 lysine-9 (H3K9) are actively maintained, allowing cells to restore higher-state methylation upon metabolic recovery. Here, we investigated if the intrinsic catalytic properties of H3K9 histone methyltransferases (HMTs) contribute to this epigenetic persistence. We employed systematic kinetic analyses and substrate binding assays using four recombinant H3K9 HMTs (i.e., EHMT1, EHMT2, SUV39H1, and SUV39H2). At both high and low (i.e., sub-saturating) SAM, all HMTs displayed the highest catalytic efficiency (kcat/KM) for monomethylation compared to di- and trimethylation on H3 peptide substrates. The favored monomethylation reaction was also reflected in kcat values, apart from SUV39H2 which displayed a similar kcat regardless of substrate methylation state. Using differentially methylated nucleosomes as substrates, kinetic analyses of EHMT1 and EHMT2 revealed similar catalytic preferences. Orthogonal binding assays revealed only small differences in substrate affinity across methylation states, suggesting that catalytic steps dictate the monomethylation preferences of EHMT1, EHMT2, and SUV39H1. To link in vitro catalytic rates with nuclear methylation dynamics, we built a mathematical model incorporating measured kinetic parameters and a time course of mass spectrometry-based H3K9 methylation measurements following cellular SAM depletion. The model revealed that the intrinsic kinetic constants of the catalytic domains could recapitulate in vivo observations. Together, these results suggest catalytic discrimination by H3K9 HMTs maintains nuclear H3K9me1, ensuring epigenetic persistence after metabolic stress.
Collapse
Affiliation(s)
- Spencer A Haws
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lillian J Miller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Rojas La Luz
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vyacheslav I Kuznetsov
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gheorghe Craciun
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John M Denu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
23
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
24
|
Jain K, Marunde MR, Burg JM, Gloor SL, Joseph FM, Poncha KF, Gillespie ZB, Rodriguez KL, Popova IK, Hall NW, Vaidya A, Howard SA, Taylor HF, Mukhsinova L, Onuoha UC, Patteson EF, Cooke SW, Taylor BC, Weinzapfel EN, Cheek MA, Meiners MJ, Fox GC, Namitz KEW, Cowles MW, Krajewski K, Sun ZW, Cosgrove MS, Young NL, Keogh MC, Strahl BD. An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability. eLife 2023; 12:e82596. [PMID: 37204295 PMCID: PMC10229121 DOI: 10.7554/elife.82596] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | | | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | | | | | | | | | | | | | | | - Spencer W Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | - Bethany C Taylor
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | | | | | - Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
| | | | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, Upstate Medical UniversitySyracuseUnited States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | | | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill of MedicineChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, School of MedicineChapel HillUnited States
| |
Collapse
|
25
|
Jennings CE, Zoss CJ, Morrison EA. Arginine anchor points govern H3 tail dynamics. Front Mol Biosci 2023; 10:1150400. [PMID: 37261328 PMCID: PMC10228543 DOI: 10.3389/fmolb.2023.1150400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Chromatin is dynamically reorganized spatially and temporally, and the post-translational modification of histones is a key component of this regulation. The basic subunit of chromatin is the nucleosome core particle, consisting of two copies each of the histones H2A, H2B, H3, and H4 around which ∼147 base pairs of DNA wrap. The intrinsically disordered histone termini, or tails, protrude from the core and are heavily post-translationally modified. Previous studies have shown that the histone tails exist in dynamic ensembles of DNA-bound states within the nucleosome. Histone tail interactions with DNA are involved in nucleosome conformation and chromatin organization. Charge-modulating histone post-translational modifications (PTMs) are poised to perturb the dynamic interactions between histone tails and DNA. Arginine side chains form favorable interactions with DNA and are sites of charge-modulating PTMs such as citrullination. Our current focus is on the H3 tail, the longest histone tail. Four arginine residues are relatively evenly spaced along the H3 tail sequence, suggesting multivalent interactions with DNA poised for regulation by PTMs. In this study, we use NMR nuclear spin relaxation experiments to investigate the contribution of arginine residues to H3 tail dynamics within the nucleosome core particle. By neutralizing arginine via mutation to glutamine, we begin to work towards a comprehensive understanding of the contribution of individual residues to H3 tail dynamics. We find that neutralization of arginine residues results in increased regional mobility of the H3 tails, with implications for understanding the direct effects of arginine citrullination. Altogether, these studies support a role for dynamics within the histone language and emphasize the importance of charge-modulating histone PTMs in regulating chromatin dynamics, starting at the level of the basic subunit of chromatin.
Collapse
Affiliation(s)
- Christine E. Jennings
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Casey J. Zoss
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Emma A. Morrison
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
26
|
Kim T, Nosella M, Bolik-Coulon N, Harkness R, Huang S, Kay L. Correlating histone acetylation with nucleosome core particle dynamics and function. Proc Natl Acad Sci U S A 2023; 120:e2301063120. [PMID: 37011222 PMCID: PMC10104578 DOI: 10.1073/pnas.2301063120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Epigenetic modifications of chromatin play a critical role in regulating the fidelity of the genetic code and in controlling the translation of genetic information into the protein components of the cell. One key posttranslational modification is acetylation of histone lysine residues. Molecular dynamics simulations, and to a smaller extent experiment, have established that lysine acetylation increases the dynamics of histone tails. However, a systematic, atomic resolution experimental investigation of how this epigenetic mark, focusing on one histone at a time, influences the structural dynamics of the nucleosome beyond the tails, and how this translates into accessibility of protein factors such as ligases and nucleases, has yet to be performed. Herein, using NMR spectroscopy of nucleosome core particles (NCPs), we evaluate the effects of acetylation of each histone on tail and core dynamics. We show that for histones H2B, H3, and H4, the histone core particle dynamics are little changed, even though the tails have increased amplitude motions. In contrast, significant increases to H2A dynamics are observed upon acetylation of this histone, with the docking domain and L1 loop particularly affected, correlating with increased susceptibility of NCPs to nuclease digestion and more robust ligation of nicked DNA. Dynamic light scattering experiments establish that acetylation decreases inter-NCP interactions in a histone-dependent manner and facilitates the development of a thermodynamic model for NCP stacking. Our data show that different acetylation patterns result in nuanced changes to NCP dynamics, modulating interactions with other protein factors, and ultimately controlling biological output.
Collapse
Affiliation(s)
- Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| |
Collapse
|
27
|
Shi D, Huang Y, Bai C. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers (Basel) 2023; 15:polym15071763. [PMID: 37050377 PMCID: PMC10096840 DOI: 10.3390/polym15071763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein–DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome’s dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
28
|
H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation. J Mol Biol 2023; 435:167936. [PMID: 36610636 DOI: 10.1016/j.jmb.2022.167936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.
Collapse
|
29
|
Ugur FS, Kelly MJS, Fujimori DG. Chromatin Sensing by the Auxiliary Domains of KDM5C Regulates Its Demethylase Activity and Is Disrupted by X-linked Intellectual Disability Mutations. J Mol Biol 2023; 435:167913. [PMID: 36495919 PMCID: PMC10247153 DOI: 10.1016/j.jmb.2022.167913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. Through in vitro binding and kinetic studies using nucleosomes, we find that while the ARID domain is required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, the unstructured linker region between the ARID and PHD1 domains interacts with PHD1 and is necessary for nucleosome binding. Our data suggests a model in which the PHD1 domain inhibits DNA recognition by KDM5C. This inhibitory effect is relieved by the H3 tail, enabling recognition of flanking DNA on the nucleosome. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains break this regulation by enhancing DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering demethylase activity lower in the presence of flanking DNA. Our findings suggest a model by which specific XLID mutations could alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.
Collapse
Affiliation(s)
- Fatima S Ugur
- Chemistry and Chemical Biology Graduate Program, 600 16th St., San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, 600 16th St., San Francisco, CA 94158, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, 600 16th St., San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Pharmaceutical Chemistry, 600 16th St., San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, 600 16th St., San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, 600 16th St., San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
31
|
Okuda M, Tsunaka Y, Nishimura Y. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophys Rev 2022; 14:1449-1472. [PMID: 36659983 PMCID: PMC9842849 DOI: 10.1007/s12551-022-01014-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| |
Collapse
|
32
|
Sato S, Dacher M, Kurumizaka H. Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. EPIGENOMES 2022; 6:22. [PMID: 35997368 PMCID: PMC9396995 DOI: 10.3390/epigenomes6030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes, genomic DNA is bound with histone proteins and packaged into chromatin. The nucleosome, a fundamental unit of chromatin, regulates the accessibility of DNA to enzymes involved in gene regulation. During the past few years, structural analyses of chromatin architectures have been limited to evolutionarily related organisms. The amino acid sequences of histone proteins are highly conserved from humans to yeasts, but are divergent in the deeply branching protozoan groups, including human parasites that are directly related to human health. Certain large DNA viruses, as well as archaeal organisms, contain distant homologs of eukaryotic histone proteins. The divergent sequences give rise to unique and distinct nucleosome architectures, although the fundamental principles of histone folding and DNA contact are highly conserved. In this article, we review the structures and biophysical properties of nucleosomes containing histones from the human parasites Giardia lamblia and Leishmania major, and histone-like proteins from the Marseilleviridae amoeba virus family. The presented data confirm the sharing of the overall DNA compaction system among evolutionally distant species and clarify the deviations from the species-specific nature of the nucleosome.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; (S.S.); (M.D.)
| |
Collapse
|
33
|
Li S, Peng Y, Panchenko AR. DNA methylation: Precise modulation of chromatin structure and dynamics. Curr Opin Struct Biol 2022; 75:102430. [PMID: 35914496 DOI: 10.1016/j.sbi.2022.102430] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
DNA methylation plays a vital role in epigenetic regulation in both plants and animals, and typically occurs at the 5-carbon position of the cytosine pyrimidine ring within the CpG dinucleotide steps. Cytosine methylation can alter DNA's geometry, mechanical and physico-chemical properties - thus influencing the molecular signaling events vital for transcription, replication and chromatin remodeling. Despite the profound effect cytosine methylation can have on DNA, the underlying atomistic mechanisms remain enigmatic. Many studies so far have produced controversial findings on how cytosine methylation dictates DNA flexibility and accessibility, nucleosome stability and dynamics. Here, we review the most recent experimental and computational studies that provide precise characterization of structure and function of cytosine methylation and its versatile roles in modulating DNA mechanics, nucleosome and chromatin structure, stability and dynamics. Moreover, the review briefly discusses the relationship between DNA methylation and nucleosome positioning, and the crosstalk between DNA methylation and histone tail modifications.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada.
| |
Collapse
|
34
|
Tsunaka Y, Furukawa A, Nishimura Y. Histone tail network and modulation in a nucleosome. Curr Opin Struct Biol 2022; 75:102436. [PMID: 35863166 DOI: 10.1016/j.sbi.2022.102436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
35
|
Cartwright TN, Harris RJ, Meyer SK, Mon AM, Watson NA, Tan C, Marcelot A, Wang F, Zinn-Justin S, Traktman P, Higgins JMG. Dissecting the roles of Haspin and VRK1 in histone H3 phosphorylation during mitosis. Sci Rep 2022; 12:11210. [PMID: 35778595 PMCID: PMC9249732 DOI: 10.1038/s41598-022-15339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.
Collapse
Affiliation(s)
- Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephanie K Meyer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Aye M Mon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nikolaus A Watson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Cheryl Tan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Fangwei Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
36
|
Trush VV, Feller C, Li ASM, Allali-Hassani A, Szewczyk MM, Chau I, Eram MS, Jiang B, Luu R, Zhang F, Barsyte-Lovejoy D, Aebersold R, Arrowsmith CH, Vedadi M. Enzymatic nucleosome acetylation selectively affects activity of histone methyltransferases in vitro. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194845. [PMID: 35907431 DOI: 10.1016/j.bbagrm.2022.194845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Posttranslational modification of histones plays a critical role in regulation of gene expression. These modifications include methylation and acetylation that work in combination to establish transcriptionally active or repressive chromatin states. Histone methyltransferases (HMTs) often have variable levels of activity in vitro depending on the form of substrate used. For example, certain HMTs prefer nucleosomes extracted from human or chicken cells as substrate compared to recombinant nucleosomes reconstituted from bacterially produced histones. We considered that pre-existing histone modifications in the extracted nucleosomes can affect the efficiency of catalysis by HMTs, suggesting functional cross-talk between histone-modifying enzymes within a complex network of interdependent activities. Here we systematically investigated the effect of nucleosome acetylation by EP300, GCN5L2 (KAT2A) and MYST1 (MOF) on histone 3 lysine 4 (H3K4), H3K9 and H4K20 methylation of nucleosomes by nine HMTs (MLL1, MLL3, SET1B, G9a, SETDB1, SUV39H1, SUV39H2, SUV420H1 and SUV420H2) in vitro. Our full kinetic characterization data indicate that site-specific acetylation of nucleosomal histones by specific acetyltransferases can create nucleosomes that are better substrates for specific HMTs. This includes significant increases in catalytic efficiencies of SETDB1, G9a and SUV420H2 after nucleosome acetylation in vitro.
Collapse
Affiliation(s)
- Viacheslav V Trush
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christian Feller
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPM H 25, Otto Stern Weg 2, 8093 Zurich, Switzerland
| | - Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Boya Jiang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Raymond Luu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fangfei Zhang
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPM H 25, Otto Stern Weg 2, 8093 Zurich, Switzerland
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Nature Research Center, Vilnius, Akademijos 2, Lithuania
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPM H 25, Otto Stern Weg 2, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
37
|
Musselman CA, Kutateladze TG. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem Biol 2022; 17:495-502. [PMID: 35196453 DOI: 10.1021/acschembio.1c00954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of chromatin not only compacts the eukaryotic genome into the nucleus but also provides a mechanism for the regulation of all DNA templated processes. Spatial and temporal modulation of the chromatin structure is critical in such regulation and involves fine-tuned functioning of the basic subunit of chromatin, the nucleosome. It has become apparent that the nucleosome is an inherently dynamic system, but characterization of these dynamics at the atomic level has remained challenging. NMR spectroscopy is a powerful tool for investigating the conformational ensemble and dynamics of proteins and protein complexes, and recent advances have made the study of large systems possible. Here, we review recent studies which utilize NMR spectroscopy to uncover the atomic level conformation and dynamics of the nucleosome and provide a better understanding of the importance of these dynamics in key regulatory events.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
38
|
Furukawa A, Wakamori M, Arimura Y, Ohtomo H, Tsunaka Y, Kurumizaka H, Umehara T, Nishimura Y. Characteristic H3 N-tail dynamics in the nucleosome core particle, nucleosome, and chromatosome. iScience 2022; 25:103937. [PMID: 35265811 PMCID: PMC8898912 DOI: 10.1016/j.isci.2022.103937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 10/28/2022] Open
Abstract
The nucleosome core particle (NCP) comprises a histone octamer, wrapped around by ∼146-bp DNA, while the nucleosome additionally contains linker DNA. We previously showed that, in the nucleosome, H4 N-tail acetylation enhances H3 N-tail acetylation by altering their mutual dynamics. Here, we have evaluated the roles of linker DNA and/or linker histone on H3 N-tail dynamics and acetylation by using the NCP and the chromatosome (i.e., linker histone H1.4-bound nucleosome). In contrast to the nucleosome, H3 N-tail acetylation and dynamics are greatly suppressed in the NCP regardless of H4 N-tail acetylation because the H3 N-tail is strongly bound between two DNA gyres. In the chromatosome, the asymmetric H3 N-tail adopts two conformations: one contacts two DNA gyres, as in the NCP; and one contacts linker DNA, as in the nucleosome. However, the rate of H3 N-tail acetylation is similar in the chromatosome and nucleosome. Thus, linker DNA and linker histone both regulate H3-tail dynamics and acetylation.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan
| |
Collapse
|
39
|
Shukla S, Agarwal P, Kumar A. Disordered regions tune order in chromatin organization and function. Biophys Chem 2022; 281:106716. [PMID: 34844028 DOI: 10.1016/j.bpc.2021.106716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins or hybrid proteins with ordered domains and disordered regions (both collectively designated as IDP(R)s) defy the well-established structure-function paradigm due to their ability to perform multiple biological functions even in the absence of a well-defined 3D structure. IDP(R)s have a unique ability to exist as a functional heterogeneous ensemble, where they adopt multiple thermodynamically stable conformations with low energy barriers between states. The resultant structural plasticity or conformational adaptability provides them with a high functional diversity and ease of regulation. Hence, IDP(R)s are highly efficient biological machinery to mediate intricate cellular functions such as signaling, gene expression, and assembly of complex structures. One such structure is the nucleoprotein complex known as Chromatin. Interestingly, the proteins involved in shaping up the structure and function of chromatin are abundant in disordered regions, which serve more than just as mere flexible linkers. The disordered regions are involved in crucial processes such as gene expression regulation, chromatin architecture maintenance, and liquid-liquid phase separation initiation. This review is an attempt to explore the advantages and the functional and regulatory roles of intrinsic disorder in several Chromatin Associated Proteins from a mechanistic standpoint.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
40
|
Idigo NJ, Voigt P. Detection and Quantification of Histone Methyltransferase Activity In Vitro. Methods Mol Biol 2022; 2529:43-61. [PMID: 35733009 DOI: 10.1007/978-1-0716-2481-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues in histone as well as nonhistone substrates. In vitro histone methyltransferase assays have been instrumental in identifying HMTs, and they continue to be invaluable tools for the study of these important enzymes, revealing novel substrates and modes of regulation.Here we describe a universal protocol to examine HMT activity in vitro that can be adapted to a range of HMTs, substrates, and experimental objectives. We provide protocols for the detection of activity based on incorporation of 3H-labeled methyl groups from S-adenosylmethionine (SAM), methylation-specific antibodies, and quantification of the reaction product S-adenosylhomocysteine (SAH).
Collapse
Affiliation(s)
- Nwamaka J Idigo
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
41
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
42
|
Soshnev AA, Allis CD, Cesarman E, Melnick AM. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Res 2021; 81:6061-6070. [PMID: 34580064 PMCID: PMC8678342 DOI: 10.1158/0008-5472.can-21-2619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology & Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
43
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
Peng Y, Li S, Onufriev A, Landsman D, Panchenko AR. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nat Commun 2021; 12:5280. [PMID: 34489435 PMCID: PMC8421395 DOI: 10.1038/s41467-021-25568-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Little is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility. The intrinsic disorder of histone tails poses challenges in their characterization. Here the authors apply extensive molecular dynamics simulations of the full nucleosome to show reversible binding to DNA with specific binding modes of different types of histone tails, where charge-altering modifications suppress tail-DNA interactions and may boost interactions between nucleosomes and nucleosome-binding proteins.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alexey Onufriev
- Physics Department, Virginia Tech, VA, USA.,Computer Science Department, Virginia Tech, VA, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, VA, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
45
|
Shen CH, Allan J. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes. Cells 2021; 10:cells10092239. [PMID: 34571888 PMCID: PMC8469290 DOI: 10.3390/cells10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The compact nucleosomal structure limits DNA accessibility and regulates DNA-dependent cellular activities. Linker histones bind to nucleosomes and compact nucleosomal arrays into a higher-order chromatin structure. Recent developments in high throughput technologies and structural computational studies provide nucleosome positioning at a high resolution and contribute to the information of linker histone location within a chromatosome. However, the precise linker histone location within the chromatin fibre remains unclear. Using monomer extension, we mapped core particle and chromatosomal positions over a core histone-reconstituted, 1.5 kb stretch of DNA from the chicken adult β-globin gene, after titration with linker histones and linker histone globular domains. Our results show that, although linker histone globular domains and linker histones display a wide variation in their binding affinity for different positioned nucleosomes, they do not alter nucleosome positions or generate new nucleosome positions. Furthermore, the extra ~20 bp of DNA protected in a chromatosome is usually symmetrically distributed at each end of the core particle, suggesting linker histones or linker histone globular domains are located close to the nucleosomal dyad axis.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Biology Department, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
- Biochemistry and Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-718-982-3998; Fax: +1-718-982-3852
| | - James Allan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK;
| |
Collapse
|
46
|
Zandian M, Salguero NG, Shannon MD, Purusottam RN, Theint T, Poirier MG, Jaroniec CP. Conformational Dynamics of Histone H3 Tails in Chromatin. J Phys Chem Lett 2021; 12:6174-6181. [PMID: 34184895 PMCID: PMC8788308 DOI: 10.1021/acs.jpclett.1c01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromatin is a supramolecular DNA-protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide 15N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant 13C,15N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats. These measurements were compared to analogous data available for mononucleosomes devoid of linker DNA or containing two 20 bp DNA overhangs. The H3 tail dynamics in nucleosome arrays were found to be considerably attenuated compared with nucleosomes with or without linker DNA due to transient electrostatic interactions with the linker DNA segments and the structured chromatin environment. Remarkably, however, the H3 tail dynamics were not modulated by the specific linker DNA length within the 15-60 bp range investigated here.
Collapse
Affiliation(s)
- Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | |
Collapse
|
47
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
48
|
Hsu CL, Chong SY, Lin CY, Kao CF. Histone dynamics during DNA replication stress. J Biomed Sci 2021; 28:48. [PMID: 34144707 PMCID: PMC8214274 DOI: 10.1186/s12929-021-00743-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
49
|
Ohtomo H, Kurita JI, Sakuraba S, Li Z, Arimura Y, Wakamori M, Tsunaka Y, Umehara T, Kurumizaka H, Kono H, Nishimura Y. The N-terminal Tails of Histones H2A and H2B Adopt Two Distinct Conformations in the Nucleosome with Contact and Reduced Contact to DNA. J Mol Biol 2021; 433:167110. [PMID: 34153285 DOI: 10.1016/j.jmb.2021.167110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.
Collapse
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Zhenhai Li
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan.
| |
Collapse
|
50
|
Morrison EA, Baweja L, Poirier MG, Wereszczynski J, Musselman CA. Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Res 2021; 49:4750-4767. [PMID: 33856458 PMCID: PMC8096233 DOI: 10.1093/nar/gkab246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 01/30/2023] Open
Abstract
Hexasomes and tetrasomes are intermediates in nucleosome assembly and disassembly. Their formation is promoted by histone chaperones, ATP-dependent remodelers, and RNA polymerase II. In addition, hexasomes are maintained in transcribed genes and could be an important regulatory factor. While nucleosome composition has been shown to affect the structure and accessibility of DNA, its influence on histone tails is largely unknown. Here, we investigate the conformational dynamics of the H3 tail in the hexasome and tetrasome. Using a combination of NMR spectroscopy, MD simulations, and trypsin proteolysis, we find that the conformational ensemble of the H3 tail is regulated by nucleosome composition. As has been found for the nucleosome, the H3 tails bind robustly to DNA within the hexasome and tetrasome, but upon loss of the H2A/H2B dimer, we determined that the adjacent H3 tail has an altered conformational ensemble, increase in dynamics, and increase in accessibility. Similar to observations of DNA dynamics, this is seen to be asymmetric in the hexasome. Our results indicate that nucleosome composition has the potential to regulate chromatin signaling and ultimately help shape the chromatin landscape.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lokesh Baweja
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Michael G Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|