1
|
Sun R, Li Y, Feng Y, Shao X, Li R, Li H, Sun S, Wang J. PFN1 Knockdown Aggravates Mitophagy to Retard Lung Adenocarcinoma Initiation and M2 Macrophage Polarization. Mol Biotechnol 2025; 67:2673-2684. [PMID: 39120820 DOI: 10.1007/s12033-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAM) are considered as crucial influencing factors of lung adenocarcinoma (LUAD) carcinogenesis and metastasis. Profilin 1 (PFN1) has been proposed as a potent driver of migration and drug resistance in LUAD. The focus of this work was to figure out the functional mechanism of PFN1 in macrophage polarization in LUAD. PFN1 expression and its significance in patients' survival were detected by ENCORI and Kaplan-Meier Plotter. RT-qPCR and western blotting examined PFN1 expression in LUAD cells. CCK-8 assay and colony formation assay detected cell proliferation. Flow cytometry detected cell apoptosis. Relevant assay kit tested caspase3 concentration. Western blotting analyzed the expression of proliferation- and apoptosis-related proteins. RT-qPCR and immunofluorescence staining measured M1 and M2 macrophages markers. Mitophagy was assessed by MitoTracker Red staining, immunofluorescence staining, and western blotting. PFN1 expression was increased in LUAD tissues and cells and correlated with the poor survival rate of LUAD patients. Deficiency of PFN1 hindered the proliferation, whereas facilitated the apoptosis of LUAD cells. Additionally, PFN1 interference impaired M2 macrophage polarization. Moreover, PFN1 knockdown exacerbated the mitophagy in LUAD cells and mitophagy inhibitor mitochondrial division inhibitor 1 (Mdivi-1) notably reversed the effects of PFN1 down-regulation on the proliferation, apoptosis as well as macrophage polarization in LUAD cells. To sum up, activation of mitophagy initiated by PFN1 depletion might obstruct the occurrence and M2 macrophage polarization in LUAD.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| | - Yang Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Yu Feng
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Xiaoyan Shao
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Rantian Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Hao Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Sanyuan Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Jiangbo Wang
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| |
Collapse
|
2
|
Gao Y, Peng Y, Zhou Y, Zhu J, Fu S, Chen Y, Cai C, Han Y, Shen H, Zeng S, Mao L, Xiao Z. Mitochondrial gene SLC25A24 regulated anti-tumor immunity and inhibited the proliferation and metastasis of colorectal cancer by PKG1-dependent cGMP/PKG1 pathway. Int Immunopharmacol 2025; 157:114664. [PMID: 40334626 DOI: 10.1016/j.intimp.2025.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality globally, with metastasis playing a key role in its unfavorable prognosis. Emerging research has emphasized the pivotal role of mitochondria in tumor immune regulation. Nevertheless, the clinical relevance and functional role of SLC25A24, a mitochondrial solute carrier, in CRC remain largely unexplored. Through bioinformatics analyses and validation in clinical cohorts, this study identifies SLC25A24 as an independent prognostic marker in CRC, significantly linked to immune infiltration in CRC tissues. Our findings demonstrated that SLC25A24 expression is markedly reduced in CRC cell lines and tissues. Kaplan-Meier survival analysis revealed that lower SLC25A24 expression is associated with worse overall survival and progression-free survival in CRC patients. Interestingly, SLC25A24 expression was higher in microsatellite instability (MSI) CRC, which shows greater responsiveness to immune checkpoint inhibitors (ICIs). Functional experiments indicated that SLC25A24 overexpression suppresses CRC cell proliferation, migration, and invasion. Mechanistic studies revealed that SLC25A24 positively regulates the cGMP/PKG1 signaling pathway in CRC, influencing mitochondrial potential, apoptosis, and proliferation-related markers. This research highlights the SLC25A24-PKG1 axis as a potential therapeutic target to bolster anti-tumor immunity and curb CRC progression.
Collapse
Affiliation(s)
- Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Jiang Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shenao Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lei Mao
- Department of Oncology, Yueyang People's Hospital, Yueyang Hospital Afliated to Hunan Normal University, Yueyang 414000, Hunan, China.
| | - Zemin Xiao
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University 818 Renmin Rd, Wuling District, Changde, Hunan 415000, China.
| |
Collapse
|
3
|
Hua F, Cai Y. PAX2 induces endometrial cancer by inhibiting mitochondrial function via the CD133-AKT1 pathway. Mol Cell Biochem 2025; 480:3765-3781. [PMID: 39891863 PMCID: PMC12095341 DOI: 10.1007/s11010-025-05216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Endometrial cancer (EC) is a malignancy of the endometrial epithelium. The prevalence and mortality rates associated with the disease are on the rise globally. A total of 20 cases of type I EC tissues were collected for transcriptomic sequencing, our findings indicate that PAX2 is highly expressed in EC tissues and is closely related to the pathogenesis of EC. PAX2 is a member of the paired homeobox domain family and has been linked to the development of a number of different tumours. In normal endometrial tissue, PAX2 is methylated; however, in EC, it is demethylated. Nevertheless, few studies have focused on its role in EC. A protein-protein interaction (PPI) analysis revealed a regulatory relationship between PAX2 and CD133, which in turn affects the activity of AKT1. CD133 is a well-known marker of tumor stem cells and is involved in tumor initiation, metastasis, recurrence, and drug resistance; AKT1 promotes cell survival by inhibiting apoptosis and is considered a major promoter of many types of cancer. Nevertheless, further investigation is required to ascertain whether PAX2 affects the progression of EC by regulating the CD133-AKT1 pathway. The present study demonstrated that PAX2 promoted cell proliferation, migration, invasion and adhesion, and inhibited apoptosis. Its mechanism of action was found to be the inhibition of mitochondrial oxidative phosphorylation, promotion of glycolysis, increase in mitochondrial copy number, and increase in the levels of reactive oxygen species (ROS) and hexokinase, as well as the concentration of mitochondrial calcium ions. This was achieved through the promotion of CD133 expression and the phosphorylation of AKT1. In conjunction with the aforementioned regulatory pathways, the progression of EC is facilitated.
Collapse
Affiliation(s)
- Fu Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
- Department of Gynecology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - YunLang Cai
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
4
|
Huang L, Li H, Han Y. Exploring the mechanism of Epimedium in treating diabetic nephropathy based on network pharmacology and experimental validation study. Cytotechnology 2025; 77:82. [PMID: 40151768 PMCID: PMC11937453 DOI: 10.1007/s10616-025-00748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as Epimedium, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of Epimedium in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of Epimedium were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of Epimedium through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with AKT1, TNF, HSP90AA1, and SRC serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between Epimedium components and hub targets. Experimental validation showed that Epimedium restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. Epimedium exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00748-0.
Collapse
Affiliation(s)
- Leyu Huang
- Department of Pharmacy, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong China
- Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong China
| | - Hui Li
- Department of Pharmacy, Huazhong University of Science and Technology Union Shenzhen Hospital (Former Nanshan District People’s Hospital), Shenzhen, Guangdong China
| | - Ying Han
- Department of Pharmacy, Huazhou Hospital of Traditional Chinese Medicine, Maoming, Guangdong China
| |
Collapse
|
5
|
Tokisawa S, Kondo R, Nakayama M, Ogasawara S, Murotani K, Mitsuoka M, Hoshino T, Yano H, Akiba J. Clinicopathological significance of sulfite oxidase expression in surgically resected lung adenocarcinoma. Med Mol Morphol 2025; 58:106-113. [PMID: 39652223 DOI: 10.1007/s00795-024-00413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/24/2024] [Indexed: 05/25/2025]
Abstract
AIM The coenzyme sulfite oxidase (SUOX), located in mitochondria, plays a role in redox and metabolism. Its expression has been associated with cancer progression and prognosis. Lung cancer has a high incidence rate and poor prognosis. We aim to clarify its expression in lung adenocarcinomas and investigated the utility of SUOX expression as a recurrence factor in operable lung adenocarcinoma. METHODS We used 60 formalin-fixed paraffin-embedded samples of operable primary lung adenocarcinoma between 2017 and 2018 to immunohistochemically assess SUOX expression levels. Patients were classified into a high or low SUOX expression group, and the associations of SUOX expression with clinicopathological findings and recurrence were analyzed. RESULTS We revealed that high SUOX expression was significantly (p < 0.05) associated with sex, low Brinkman index, histological type, histological grade and positive for epidermal growth factor receptor (EGFR) mutation. High SUOX expression (HR = 10.218, 95% CI 1.758‒59.376, p = 0.0096) and pathological Stage (HR = 7.538, 95% CI 1.95‒29.14, p = 0.0034) were independently associated with relapse free survival. CONCLUSION High SUOX expression may be a new indicator of recurrence risk in surgically resected lung adenocarcinomas.
Collapse
Affiliation(s)
- Saeko Tokisawa
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Kenta Murotani
- School of Medical Technology, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
- Biostatistics Center, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Masahiro Mitsuoka
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hirohisa Yano
- Clinical Laboratory, Saiseikai Futsukaichi Hospital, 3-13-1, Yu-Machi, Chikushino, Fukuoka, 818-8516, Japan
- Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
6
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
7
|
Yuan SSF, Vadhan A, Nguyen HDH, Chen PY, Tseng CH, Wu CH, Chen YC, Wu YC, Hu SCS, Lo S, Hou MF, Wang YY. Oncogenic role of fumarate hydratase in breast cancer: metabolic reprogramming and mechanistic insights. Cancer Metab 2025; 13:26. [PMID: 40437625 PMCID: PMC12121060 DOI: 10.1186/s40170-025-00397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/24/2025] [Indexed: 06/01/2025] Open
Abstract
Breast cancer remains the most prevalent malignancy among women globally, with its complexity linked to genetic variations and metabolic alterations within tumor cells. This study investigates the role of fumarate hydratase (FH), a key enzyme in the tricarboxylic acid (TCA) cycle, in breast cancer progression. Our findings reveal that FH mRNA and protein levels are significantly upregulated in breast cancer tissues and correlate with poor patient prognosis and aggressive tumor characteristics. Using in vitro and in vivo models, we demonstrate that FH overexpression enhances breast cancer cell proliferation, migration, and invasion through metabolic reprogramming and by increasing reactive oxygen species (ROS) production. Furthermore, we identify matrix metalloproteinase 1 (MMP1) as a downstream effector of FH, linked to p21 downregulation, elucidating a novel regulatory pathway influencing tumor behavior. Interestingly, unlike its tumor-suppressing role in other cancer types, this study highlights FH's oncogenic potential in breast cancer. Our results suggest that FH enhances cancer cell viability and aggressiveness via both catalytic and non-catalytic mechanisms. This work not only underscores the metabolic adaptations of breast cancer cells but also proposes FH as a potential biomarker and therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan.
| | - Anupama Vadhan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, No. 8, Xuefu W. RdYunlin County 632, Huwei Township, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Pang-Yu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Huang Tseng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ching-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Yu-Chieh Chen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Yi-Chia Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Steven Lo
- Canniesburn Regional Plastic Surgery and Burns Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G4 0SFG12 8QQ, UK
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
8
|
Wang Z, He K, Liu M, Lv W, Cheng B, Zhang G, Wang X, Zeng M, Jiao L, Han S, Zheng Y, Feng Z. Enhanced mitochondrial biogenesis facilitates the development of cutaneous squamous cell carcinoma. Cancer Lett 2025; 618:217623. [PMID: 40074070 DOI: 10.1016/j.canlet.2025.217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Mitochondrial malfunction is traditionally viewed as a major factor in tumor growth and malignancy, while recent studies have introduced conflicting views suggesting the necessity of functional mitochondria for tumor growth. Despite these differing perspectives, the specific role of mitochondria in cutaneous squamous cell carcinoma (cSCC) remains poorly understood. In this study, we observed increased mitochondrial abundance and function during the development of cSCC. We also identified retinoic acid receptor response 1 (RARRES1), which is dramatically decreased in human cSCC samples, as a key regulator of mitochondrial homeostasis. Mechanistically, RARRES1 can translocate into mitochondria and facilitate the degradation of TFAM by binding to LONP1, thereby regulating mitochondrial biogenesis. While RARRES1 suppression unleashed TFAM to promote mitochondrial biogenesis, leading to the progression of cSCC. Targeting RARRES1-LONP1/TFAM axis shows significant potential for inhibiting cSCC development. This study reveals a unique network for regulating mitochondrial homeostasis and emphasizes the crucial role of mitochondria in cSCC development, positioning the RARRES1-LONP1/TFAM axis as promising therapeutic target for future clinical applications.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke He
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baochen Cheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shujun Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhihui Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Mattos R, Fioretto MN, Dos Santos SAA, Ribeiro IT, Emílio-Silva MT, Portela LMF, Lima CAH, Seiva FRF, Justulin LA. Maternal malnutrition induces inflammatory pathways and oxidative stress in the dorsolateral prostate of male offspring rats. Biogerontology 2025; 26:109. [PMID: 40381043 DOI: 10.1007/s10522-025-10251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Maternal conditions during pregnancy can influence the long-term health of offspring. In particular, maternal malnutrition (MM), such as protein restriction, affects the development of several organs, including the male reproductive system. This study examined how a low-protein maternal diet impacts the structure and function of the dorsolateral prostate (DLP) in aging male rats. Male offspring were divided into two groups: A control group (CTR), whose mothers received a normal protein diet (17%) during pregnancy and lactation, and a low-protein group (GLLP), whose mothers received a low-protein diet (6%) during the same period. At 540 days of age, the offspring were euthanized, and the DLPs were collected for analysis. The GLLP group showed significant structural changes in the DLP, including increased epithelial and reduced stromal compartments. These rats also had lower levels of probasin (a prostate-specific protein), along with a higher number of mast cells, CD68 + macrophages, and IL-10 protein expression, indicating inflammation. Antioxidant balance was disrupted: Glutathione (GSH) levels increased, while catalase (CAT) and superoxide dismutase (SOD) decreased. The expression of SIRT1, a protein linked to aging and oxidative stress control, was reduced. In silico analysis using human prostate cancer data (PRAD-TCGA) revealed that biological pathways related to oxidative stress, immune response, and tissue remodeling were disrupted in both the rat model and human prostate cancer. In summary, maternal protein restriction leads to long-term changes in the dorsolateral prostate of aging male offspring, including inflammation, oxidative stress, and tissue remodeling. The reduced expression of SIRT1 may play a key role in these effects.
Collapse
Affiliation(s)
- Renato Mattos
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil
| | | | - Luis A Justulin
- Department of Structural and Functional Biology (UNESP), Institute of Biosciences, Botucatu, SP, 18618-68, Brazil.
| |
Collapse
|
10
|
Chen XY, Chen X, Liang XH, Lu D, Pan RR, Xiong QY, Liu XX, Lin JY, Zhang LJ, Chen HZ, Jin JM, Zhang WD, Luan X. Yuanhuacine suppresses head and neck cancer growth by promoting ASCT2 degradation and inhibiting glutamine uptake. Acta Pharmacol Sin 2025:10.1038/s41401-025-01562-2. [PMID: 40374895 DOI: 10.1038/s41401-025-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 05/18/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells exhibit a high dependency on glutamine metabolism, making it an attractive target. Despite the well-established link between glutamine reliance and tumor progression, the specific role of glutamine transporters in HNSCC remains poorly understood. The alanine-serine-cysteine transporter 2 (ASCT2), a key glutamine transporter, is overexpressed in HNSCC, and its silencing has been shown to reduce intracellular glutamine and glutathione levels, inhibiting tumor growth. These facts suggest that targeting ASCT2-mediated glutamine uptake could offer a promising therapeutic strategy for HNSCC. But no clinically approved drugs directly target ASCT2, and challenges such as the limited stability of antisense oligonucleotides persist. In this study we evaluated the correlation between ASCT2-mediate glutamine metabolism and its impact on HNSCC patients. We established a virtual screening method followed by cytotoxic assays to identify small molecules that specifically target ASCT2. Among the top 15 candidates, we identified yuanhuacine (YC) as the most potent antitumor compound with IC50 values of 1.43, 6.62, and 6.46 μM against HN6, CAL33, and SCC7 cells, respectively. We demonstrated that YC (0.3-5 μM) dose-dependently induced ASCT2 degradation by recruiting the E3 ubiquitin ligase RNF5, inhibiting glutamine uptake in HN6 cells. This disruption led to mitochondrial dysfunction and enhanced the therapeutic efficacy of YC. Our results highlight YC as a promising regulator of ASCT2-mediated glutamine metabolism in HNSCC.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong-Rong Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Yi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Xia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Li X, Zhang H, Cao Z, Xiao H, Weng C, Zheng Q. Mitochondria-targeted and ROS-sensitive main-chain ruthenium polymer overcomes cancer drug resistance. J Control Release 2025; 383:113840. [PMID: 40368191 DOI: 10.1016/j.jconrel.2025.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/04/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The clinical efficacy of platinum-based chemotherapeutics, such as cisplatin, has been compromised by the prevalent emergence of drug resistance. This has propelled the search for alternative metal-based anti-tumor agents. Herein, we introduce PolyRu, a novel amphiphilic polymer containing a ruthenium complex and thioketal bonds in its main chain, for lung cancer treatment. PolyRu can self-assemble into nanoparticles (NP@PolyRu) in aqueous solutions and degrade within the reactive oxygen species-rich tumor microenvironment. The ruthenium complex in PolyRu specifically targets mitochondria and induces cancer cell apoptosis. The efficacy of NP@PolyRu was validated in a patient-derived xenograft model of human lung cancer, where NP@PolyRu significantly suppressed tumor progression with favorable biocompatibility,and showed excellent anti-tumor immune effect. NP@PolyRu emerges as a promising candidate for addressing cancer drug resistance, signifying a substantial leap forward in the realm of metal polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 90066, CA, USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Chao Weng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Qingfeng Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
12
|
Lin X, Zheng J, Li Y, Liu L, Liu Q, Lin J, Sun Y. Mitochondria-related genes as prognostic signature of endometrial cancer and the effect of MACC1 on tumor cells. PLoS One 2025; 20:e0323002. [PMID: 40354443 PMCID: PMC12068703 DOI: 10.1371/journal.pone.0323002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/30/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria are essential organelles involved in cell metabolism and are closely linked to various metabolic disorders. In this study, we aimed to develop a prognostic model for endometrial cancer (EC) patients based on mitochondria-related genes (MRGs), and to investigate the role of MACC1 in EC. As shown in the graphic summary, we retrieved gene expression and clinical data from open-access databases. To construct a predictive signature, we applied the Lasso Cox regression algorithm to MRGs. The predictive performance, immune features, and anti-tumor response of the mitochondrial signature were evaluated through multiple algorithms. Additionally, expression levels of key genes were validated using quantitative Real-Time PCR and Western Blot. A total of 2030 MRGs were retrieved, and 267 were found to be prognostically relevant. Eight MRGs-MACC1, CMPK2, NDUFAF6, DUSP18, TOMM40L, MT-TP, SAMM50, and MAIP1-were identified to construct a prognostic signature for EC. The MRG signature demonstrated significant associations with drug sensitivity, immune therapy, and immune cell infiltration. Based on comprehensive bioinformatic analysis, MACC1 was identified as the most promising MRG candidate in EC. Systematic experimental validation, including both in vitro and in vivo approaches, demonstrated that MACC1 down-regulation significantly suppressed EC progression, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| | - Yanhong Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
- Fujian University of Traditional Chinese Medicine, Fuzhou City, Fujian Province, China
| | - Linying Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, Fujian Province, China
| |
Collapse
|
13
|
Wang JD, Wang JX, Lin ZL, Xu N, Zhang L, Liu JJ, Gao R, Long ZJ. GPX1 confers resistance to metabolic stress in BCR/ABL-T315I mutant chronic myeloid leukemia cells. Cell Death Discov 2025; 11:229. [PMID: 40346054 PMCID: PMC12064725 DOI: 10.1038/s41420-025-02502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic myeloid leukemia (CML) harboring BCR/ABL-T315I mutation has been a challenging obstacle for targeted therapy due to the acquired resistance to tyrosine kinase inhibitor (TKI)-based therapy. Thus, it is especially urgent to investigate more effective therapeutic targets to overcome T315I-induced resistance. Here, we reported that BCR/ABL-T315I mutant CML cells possessed a long-term proliferative capacity and tolerance to metabolic stress. Importantly, we also found that selenoamino acid metabolism was increased in the bone marrows of BCR/ABL-T315I patients compared with non-T315I patients by GSEA from RNA-Seq data. Indeed, GPX1 was highly expressed in T315I mutant cells, while knockout of GPX1 significantly suppressed cell proliferation and triggered apoptosis under glucose-deprived condition. GPX1 knockout showed decreased cell metabolism signaling as well as mitochondrial gene expression by RNA-Seq. Mechanistically, GPX1 maintained mitochondrial activity and oxygen consumption rate (OCR), retaining mitochondrial redox homeostasis and oxidative phosphorylation (OXPHOS). Additionally, mercaptosuccinic acid (MSA), a GPX inhibitor, inhibited CML colony formation and induced cell apoptosis under glucose-free condition. Therefore, GPX1 is a promising therapeutic target to overcome drug resistance induced by the T315I mutation, which provides a novel approach for BCR/ABL-T315I CML treatment by disturbing mitochondrial OXPHOS.
Collapse
Affiliation(s)
- Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Jin-Xing Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
- Department of Pathology Technique, Guangdong Medical University, Dongguan, China
| | - Zhi-Li Lin
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Rui Gao
- Department of Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University; Institute of Hematology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Huang Y, Qiu Z, Jiang C, Fang Q, Wang J, Han M, Liu Y, Li Z. ANXA2 regulates mitochondrial function and cellular senescence of PDLCs via AKT/eNOS signaling pathway under high glucose conditions. Sci Rep 2025; 15:15843. [PMID: 40328825 PMCID: PMC12056103 DOI: 10.1038/s41598-025-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Diabetes mellitus is one of the risk factors for periodontitis. Patients with diabetes mellitus possess higher prevalence of periodontitis, more severe periodontal destruction, yet the underlying mechanisms of action are not yet clear. Annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein widely involved in membrane repair, cytokinesis, and endocytosis. In this study, we explore whether ANXA2 is one of the associative links between diabetes and periodontitis and find out its underlying mechanisms. Cellular senescence and mitochondrial functions (ROS, mitochondrial morphology, mitochondrial autophagy) were observed. We observed that ANXA2 expression was down-regulated in Periodontal ligament cells (PDLCs) under high glucose conditions. Furthermore, overexpression of ANXA2 delayed high glucose-induced cellular senescence and mitochondrial dysfunction. β-galactosidase activity and the mRNA levels of the senescence-relative genes(p21,p16) were decreased, mitochondrial fracture and ROS release were reduced, and the expression of mitochondrial autophagy-related proteins (LC3,p62,Parkin) was enhanced. expression was enhanced. Mechanistically, we demonstrated that it can regulate the AKT/eNOS signaling pathway by knockdown and overexpression of ANXA2 which was measured using Western blotting (WB) assay to measure the expression of eNOS, p-eNOS Ser1177, Akt and p-Akt Ser473 proteins in PDLCs. After that, we used AKT and eNOS inhibitors to demonstrate the protective effect of ANXA2 on PDLCs under high glucose conditions. The above results suggest that ANXA2 has an anti-aging protective effect, attenuates high glucose-induced cellular senescence in PDLCs, and maintains mitochondrial homeostasis. Therefore, it would be valuable to further explore its role in the link between diabetes and periodontitis in future experiments.
Collapse
Affiliation(s)
- Yanlin Huang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of stomatology, The People's Hospital of Sanshui District, Foshan, Guangdong, China
| | - Zejing Qiu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Chunhui Jiang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Fang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiaye Wang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingfang Han
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yizhao Liu
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zehui Li
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 2025; 66:35. [PMID: 40116120 PMCID: PMC12002672 DOI: 10.3892/ijo.2025.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yanyu Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Lin Fu
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Huiling Chen
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China
| | - Zhongshu Wang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yan Zhang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yu Huang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yi Xiao
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
16
|
Zhang J, Yu Q, Chen W. Advancements in Small Molecule Fluorescent Probes for Superoxide Anion Detection: A Review. J Fluoresc 2025; 35:2497-2509. [PMID: 38656646 DOI: 10.1007/s10895-024-03727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Superoxide anion (O2•-), a significant reactive oxygen species (ROS) within biological systems, plays a widespread role in cellular function regulation and is closely linked to the onset and progression of numerous diseases. To unveil the pathological implications of O2•- in these diseases, the development of effective monitoring techniques within biological systems is imperative. Small molecule fluorescent probes have garnered considerable attention due to their advantages: simplicity in operation, heightened sensitivity, exceptional selectivity, and direct applicability in monitoring living cells, tissues, and animals. In the past few years, few reports have focused on small molecule fluorescence probes for the detection of O2•-. In this small review, we systematically summarize the design and application of O2•- responsive small molecule fluorescent probes. In addition, we present the limitations of the current detection of O2•- and suggest the construction of new fluorescent imaging probes to indicate O2•- in living cells and in vivo.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing, 400054, China
| | - Qinghua Yu
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China.
| |
Collapse
|
17
|
Fu H, Cheng J, Hu L, Heng BC, Zhang X, Deng X, Liu Y. Mitochondria-targeting materials and therapies for regenerative engineering. Biomaterials 2025; 316:123023. [PMID: 39708774 DOI: 10.1016/j.biomaterials.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The hemostatic, inflammatory, proliferative, and remodeling phases of healing require precise spatiotemporal coordination and orchestration of numerous biological processes. As the primary energy generators in the cell, mitochondria play multifunctional roles in regulating metabolism, stress reactions, immunity, and cell density during the process of tissue regeneration. Mitochondrial dynamics involves numerous crucial processes, fusion, fission, autophagy, and translocation, which are all necessary for preserving mitochondrial function, distributing energy throughout cells, and facilitating cellular signaling. Tissue regeneration is specifically associated with mitochondrial dynamics due to perturbations of Ca2+, H2O2 and ROS levels, which can result in mitochondrial malfunction. Increasing evidence from multiple models suggests that clinical interventions or medicinal drugs targeting mitochondrial dynamics could be a promising approach. This review highlights significant advances in the understanding of mitochondrial dynamics in tissue regeneration, with specific attention on mitochondria-targeting biomaterials that accelerate multiple tissues' regeneration by regulating mitochondrial metabolism. The innovations in nanomaterials and nanosystems enhance mitochondrial-targeting therapies are critically examined with the prospects of modulating mitochondrial dynamics for new therapies in regenerative engineering.
Collapse
Affiliation(s)
- Hongying Fu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Jingrong Cheng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Le Hu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Xuliang Deng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Yang Liu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Jia F, Peng Y, Li X, Yang S, Xie Y, Han Y, Huang M, Liu T, Zou W, Chen L, Liang Z. Matrix metallopeptidase 2-responsive curcumin-loaded nanoparticles-induced signal transducer and activator of transcription 3 inhibition suppresses glioblastoma multiforme growth via enhancing nuclear factor erythroid 2-related factor 2 activity. Int J Biol Macromol 2025; 307:141998. [PMID: 40081725 DOI: 10.1016/j.ijbiomac.2025.141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the inhibitory effects of matrix metallopeptidase 2 (MMP2)-responsive curcumin-loaded nanoparticles on glioblastoma multiforme (GBM), and elucidated their underlying mechanisms. The methods employed included the Cell Counting Kit-8 viability assay, colony formation assay, flow cytometry for apoptosis analysis, wound healing migration assay, quantitative real-time polymerase chain reaction, western blotting for gene expression profiling, mitochondrial function assessment, and in vivo antitumor efficacy evaluation. Curcumin significantly reduced the viability, proliferation, and migratory capacity of murine glioma cells (GL261). It also induced apoptosis, disrupted mitochondrial function, and increased reactive oxygen species levels. Notably, curcumin upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression while inhibiting signal transducer and activator of transcription 3 (STAT3) activation. The synthesized MMP2-responsive curcumin nanoparticles (Cur-NPs) effectively suppressed tumor growth and prolonged survival in a GBM mouse model. These data suggest that curcumin inhibits STAT3 activity via an Nrf2-dependent mechanism. This study advances our understanding of the mechanism of action of curcumin and suggests potential avenues for the development of targeted therapies for GBM.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yingpeng Peng
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xuanzi Li
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yuping Xie
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yuanyuan Han
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Mingsheng Huang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Tingyao Liu
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Zou
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Lei Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519020, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
19
|
Li Y, Lang M, He Q, Hu Y, Shi H, Zheng S, Wu Z, Zhou S. Nutritional and hormonal regulation of mitochondrial biogenesis drives fat body remodeling for reproductive competence. J Adv Res 2025:S2090-1232(25)00285-1. [PMID: 40306618 DOI: 10.1016/j.jare.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Insect fat body serves as a central hub for energy mobilization and protein synthesis. During larval metamorphosis, fat body undergoes programmed cell death and tissue disassembly. Following adult eclosion, fat body reconstructs with cell proliferation and becomes competent for large-scale vitellogenin (Vg) synthesis required for the maturation of dozens of eggs. OBJECTIVES This study aims to uncover the molecular mechanisms underlying the remodeling of fat body in acquisition of competence for massive Vg production. METHODS RNA-seq and metabolomics were used for identification of differentially expressed genes and metabolites. RNAi was applied for gene knockdown. Transmission electron microscope, MitoTracker staining, mitochondrial DNA quantification, ATP and citrate synthase assays were employed for examining mitochondrial biogenesis. Dual-luciferase reporter assay and EMSA were performed for transcriptional regulation. qRT-PCR and western blot were performed for measuring Vg synthesis. RESULTS Transcriptomic and metabolomic analyses revealed significant upregulation of genes and metabolites involved in mitochondrial biogenesis in the fat body of adult locusts. PGC-1α was highly expressed in adult fat body. Knockdown of PGC-1α reduced mitochondrial biogenesis, fat body cell number, Vg synthesis and ovarian development. CREBB bound to PGC-1α promoter and activated its transcription. CREBB depletion impaired mitochondrial biogenesis and fat body remodeling. Moreover, loss of TORC1 function suppressed CREBB function and PGC-1α expression, subsequently disrupting mitochondrial biogenesis and fat body remodeling. Juvenile hormone (JH) deprivation also decreased CREBB function and PGC-1α expression, which was reversible with JH treatment. Our results suggest that TORC1 and JH coordinate CREBB-upregulated PGC-1α expression, which promotes mitochondrial biogenesis and fat body remodeling for Vg synthesis and egg production. CONCLUSION The findings provide new insights into the molecular mechanisms of post-metamorphic fat body development, and highlight the role of JH/TORC1/CREBB/PGC-1α/mitochondrial biogenesis axis in insect reproduction. The data also offer potential targets for insect pest control.
Collapse
Affiliation(s)
- Yiying Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengyao Lang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiongjie He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Huanhuan Shi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Siqian Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongxia Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
20
|
Chen X, Kadier M, Shi M, Li K, Chen H, Xia Y, Wang Q, Li R, Long Y, Qin J, Wang H, Jiang G. Targeting Melatonin to Mitochondria Mitigates Castration-Resistant Prostate Cancer by Inducing Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408996. [PMID: 40285589 DOI: 10.1002/smll.202408996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Prostate cancer frequently progresses to castration-resistant prostate cancer (CRPC) following androgen deprivation therapy, presenting a significant clinical challenge. Targeting tumor metabolism, particularly mitochondrial pathways, offers a promising strategy for overcoming CRPC. The modification of melatonin (Mel) to a triphenylphosphonium (TPP) cation-targeted mitochondria-melatonin (Mito-Mel) significantly increases its potency by over 1000-fold. Mito-Mel selectively targets mitochondria, enhancing reactive oxygen species (ROS) generation and causing mitochondrial membrane potential disruption. This leads to the inhibition of mitochondrial respiration including the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), which, in turn, suppresses CRPC survival metabolic adaptations, such as glycolysis. In vitro and in vivo experiments reveal for the first time that natural small molecule compound with mitochondrial targeting via TPP exhibits excellent anticancer efficacy by inducing tumor cellular pyroptosis and facilitating the immune response, underlining the encouraging promise of this strategy for the effective treatment of CRPC.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Mairehaba Kadier
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Mengting Shi
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR, 999078, China
| | - Hongtao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Yongzhen Xia
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Qiaohua Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Rongna Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Yili Long
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Jingbo Qin
- Guangdong Provincial Engineering Research Center of Molecular Imaging and Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine Foundation of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Hao Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
21
|
Ghanbarian M, Dolgova N, Vizeacoumar FS, Vizeacoumar FJ, Michel D, El-Aneed A, Dmitriev OY. Metabolic Effects of the Cancer Metastasis Modulator MEMO1. Metabolites 2025; 15:277. [PMID: 40278406 PMCID: PMC12029338 DOI: 10.3390/metabo15040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Cancer cells often display altered energy metabolism. In particular, expression levels and activity of the tricarboxylic acid cycle (TCA cycle) enzymes may change in cancer, and dysregulation of the TCA cycle is a frequent hallmark of cancer cell metabolism. MEMO1, a modulator of cancer metastasis, has been shown to bind iron and regulate iron homeostasis in the cells. MEMO1 knockout changed mitochondrial morphology and iron content in breast cancer cells. Our previous genome-wide analysis of MEMO1 genetic interactions across multiple cancer cell lines revealed that gene sets involved in mitochondrial respiration and the TCA cycle are enriched among the gain-of-function interaction partners of MEMO1. Based on these findings, we measured the TCA cycle metabolite levels in breast cancer cells with varying levels of MEMO1 expression. Methods: ShRNA knockdown assay was performed to test essentiality of key TCA cycle enzymes. TCA metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in MDA-MB-231 (high MEMO1), M67-2 (MEMO1 knockdown), and M67-9 (MEMO1 knockout) cells under iron-depleted, basal iron, and iron-supplemented conditions. Results:ACO2 and OGDH knockdowns inhibit cell proliferation, indicating an essential role of the TCA cycle in MDA-MB-231 metabolism. α-Ketoglutarate and citrate levels exhibited an inverse relationship with MEMO1 expression, increasing significantly in MEMO1 knockout cells regardless of iron availability. In contrast, fumarate, malate, and glutamate levels were elevated in MEMO1 knockout cells specifically under low iron conditions, suggesting an iron-dependent effect. Conclusions: Overall, our results indicate that MEMO1 plays a role in regulating the TCA in cancer cells in an iron-dependent manner.
Collapse
Affiliation(s)
- Marziyeh Ghanbarian
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.)
| | - Natalia Dolgova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.)
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Franco J. Vizeacoumar
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada
- Division of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Oleg Y. Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.)
| |
Collapse
|
22
|
Yang X, Zhan Y, Li Y, Shen X, Ma Y, Liu Z, Liu Y, Liang C, Zhang X, Yan Y, Shen W. Synthesis of a novel mitochondrial fluorescent probe - killing cancer cells in vitro and in vivo. Front Pharmacol 2025; 16:1543559. [PMID: 40308767 PMCID: PMC12040830 DOI: 10.3389/fphar.2025.1543559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Purpose The global incidence and mortality rates associated with cancer are increasing annually, presenting significant challenges in oncology, particularly regarding the efficacy and toxicity of antineoplastic agents. Additionally, mitochondria are recognized for their multifaceted roles in the progression of malignant tumors. Mitochondrial-targeting drugs offer promising avenues for cancer therapy. This study focuses on the synthesis of a mitochondrial fluorescent probe, designated Mitochondrial Probe Molecule-1 (MPM-1), and evaluates its anti-tumor effects on colon cancer (CRC) and lung cancer (LUNG) both in vitro and in vivo. Methods Mito Tracker Green FM staining was performed to investigate the subcellular location of MPM-1. Cell cycle assay, colony formation, EdU, assay of cell apoptosis, wound healing assay, and trans-well migration assay were utilized to confirm anticancer properties of MPM-1 in vitro. Using a xenograft mouse model, the effects of MPM-1 in tumor treatment were also identified. RNA-seq and Western blot were performed to examine the underlying mechanism of MPM-1. Results The findings indicate that MPM-1 selectively targets mitochondria and exerts inhibitory effects on CRC and LUNG cells. Specifically, MPM-1 significantly reduced the proliferation and migration of lung cancer cell lines A549 and H1299, as well as colon cancer cell lines SW480 and LOVO, with IC50 values of 4.900, 7.376, 8.677, and 7.720 µM, respectively, while also promoting apoptosis. RNA-seq analysis revealed that MPM-1 exerts its broad-spectrum anticancer effects through interactions with multiple signaling pathways, including mTOR, Wnt, Hippo, PI3K/Akt, and MAPK pathways. Additionally, in vivo studies demonstrated that MPM-1 effectively inhibited tumor progression. Conclusion In summary, MPM-1 demonstrates the ability to inhibit the growth of CRC and LUNG by targeting mitochondria and modulating several signaling pathways that attenuate tumor cell migration and proliferation while promoting apoptosis. This research underscores the potential of MPM-1 as a tumor suppressor and lays a robust foundation for the future development of innovative anticancer therapies that target mitochondrial functions.
Collapse
Affiliation(s)
- Xiaowen Yang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiting Zhan
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yifei Li
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Xinzhuang Shen
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yuqiu Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Zongjun Liu
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yipeng Liu
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Chengjin Liang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaoyuan Zhang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, China
| | - Wenzhi Shen
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
23
|
Kang Q, Liu F, Tan S, Wu F, Liu Y, Li Z, Yang S, Huang H, Xiong J, Chen G, Wu GL, Tan X, Yang Q. Molecular Engineering of NIR-II Excitable Phototheranostic for Mitochondria-Targeted Cancer Photoimmunotherapy. J Med Chem 2025; 68:7707-7719. [PMID: 40138524 DOI: 10.1021/acs.jmedchem.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The advancement of mitochondria-targeted near-infrared-II (NIR-II) excitable phototheranostics constitutes a promising strategy for improving fluorescence-image-guided cancer phototherapy. However, developing phototheranostic agents that simultaneously combine high-contrast NIR-II fluorescence imaging with effective multimodal therapeutic techniques remains a substantial challenge. Herein, we reported a shielding-donor-acceptor-donor-shielding structured NIR-II phototheranostic (FCD-T) by a molecular engineering strategy, followed by self-assembly with glutathione-responsive copolymer to form FCD-T nanoparticles. The introduction of functional bithiophene endows FCD-T with significant electron-donating properties and reduces intermolecular π-π stacking interactions. The robust π-conjugation of fluorene with good rigidity would enhance the intramolecular charge transfer capability. Therefore, FCD-T NPs exhibited an NIR-II absorption peak at 1075 nm and an emission peak at 1280 nm. Upon NIR-II light excitation, such nanoparticles could generate excellent photothermal and photodynamic performances with good biocompatibility. Moreover, the NIR-II mitochondria-targeted phototherapy further facilitated mitochondrial apoptosis-related pathways, activating antitumor immunity and inhibiting tumor growth with single irradiation at low doses.
Collapse
Affiliation(s)
- Qiang Kang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | | | - Zelong Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sha Yang
- Pathology Research Group & Department of Pathology Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Hejin Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gui-Long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
24
|
Xu X, Huang Z, Han H, Yu Z, Ye L, Zhao Z, Qian Y, Li Y, Zhao R, Zhang T, Liu Y, Cai J, Lin S, Zhai E, Chen J, Cai S. N 7-methylguanosine tRNA modification promotes gastric cancer progression by activating SDHAF4-dependent mitochondrial oxidative phosphorylation. Cancer Lett 2025; 615:217566. [PMID: 39965707 DOI: 10.1016/j.canlet.2025.217566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
N7-methylguanosine (m7G) tRNA modification is closely implicated in tumor occurrence and development. However, the precise function and molecular mechanisms of m7G tRNA modification in gastric cancer (GC) remain unclear. In this study, we evaluated the expression and function of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) in GC and elucidated the mechanisms underlying the role of METTL1/WDR4-mediated m7G tRNA modifications in promoting GC progression. Upregulation of m7G methyltransferase complex proteins, METTL1 and WDR4, in GC tissues significantly correlates with poor patient prognosis. Functionally, METTL1 and WDR4 facilitate GC progression in vitro and in vivo. Mechanistically, METTL1 knockdown reduces the expression of m7G-modified tRNAs and attenuates the translation of oncogenes enriched in pathways associated with oxidative phosphorylation. Furthermore, METTL1 strengthens mitochondrial electron transport chain complex II (ETC II) activity by promoting succinate dehydrogenase assembly factor 4 (SDHAF4) translation, thereby accelerating GC metabolism and progression. Forced expression of SDHAF4 and chemical modulators of ETC II could reverse the effects of METTL1 on mouse GC. Collectively, our findings delineate the oncogenic role and molecular mechanisms of METTL1/WDR4-mediated m7G tRNA modifications in GC progression, suggesting METTL1/WDR4 and its downstream signaling axis as potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiang Xu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Hui Han
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zihan Yu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Linying Ye
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zeyu Zhao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, Guangdong, China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianhao Zhang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Junchao Cai
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of General Surgery, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-sen University, Nanning, 530000, Guangxi, China.
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
25
|
Wu L, Yan Y, Yuan Y, Zhao Z, Qu W, Huang X, Wang H, Li P, Li X. Viral protease binds to nucleosomal DNA and cleaves nuclear cGAS that attenuates type I interferon. mBio 2025; 16:e0339524. [PMID: 39998223 PMCID: PMC11980361 DOI: 10.1128/mbio.03395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Nuclear cyclic GMP-AMP synthetase (cGAS) binds to nucleosome with high affinity to prevent its activation by self-DNA. Upon stimulation with double-stranded DNA, cGAS is activated and translocates from the nucleus to the cytoplasm, guided by its N-terminal domain. However, it remains unclear whether viruses can hijack cGAS translocation and regulate its activation. Here, we discovered that the protease 3C of picornavirus Seneca Valley virus (SVV) translocates from the cytoplasm to the nucleus upon viral infection and binds to nuclear DNA. Protease 3C specifically cleaves histone H2A while leaving other histone proteins unaffected. Additionally, DNA binding enhances the protease 3C's ability to cleave nuclear cGAS, leading to its retention in the nucleus. This, in turn, suppresses the induction of type I interferon (IFN-I) following poly(dA:dT) stimulation. These findings reveal a novel mechanism by which a viral protease binds nuclear DNA, cleaves nuclear cGAS and histone H2A, and thereby mislocalizes cGAS, facilitating immune evasion. IMPORTANCE Cyclic GMP-AMP synthetase (cGAS) is robustly expressed in the nucleus and tightly tethered by chromatin to prevent its activation with self-DNA. During stimulation or infection, nuclear cGAS is activated and translocates from the nucleus to the cytoplasm. However, the viral strategies specifically targeting nuclear cGAS are completely unexplored. Here, we discovered that protease 3C of Seneca Valley virus translocates from the cytoplasm to the nucleus upon viral infection, binds to nuclear DNA, and specifically cleaves H2A. Furthermore, DNA binding to 3C enhances the cleavage of nuclear cGAS within its N-terminal domain. The hindrance of cGAS translocation from the nucleus to the cytoplasm results in the suppression of IFN-I induction and leads to immune evasion. This work uncovers a unique mechanism wherein a viral protease binds to nuclear DNA and cleaves nuclear cGAS and histone H2A, leading to viral evasion of cGAS-mediated immune restriction.
Collapse
Affiliation(s)
- Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Chang X, Huang Y, Qu Y, Guo Y, Fan W, Zhen H. Integrative analysis of mitochondrial-related gene profiling identifies prognostic clusters and drug resistance mechanisms in low-grade glioma. Discov Oncol 2025; 16:465. [PMID: 40186003 PMCID: PMC11971116 DOI: 10.1007/s12672-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Mitochondrial dysfunction has emerged as a critical factor in the progression and prognosis of low-grade glioma (LGG). In this study, we explored the role of mitochondrial-related genes through consensus clustering analysis using multi-omics data from the TCGA, CGGA, and other independent datasets. Patients were categorized into three clusters (Cluster A, B, and C), with Cluster B consistently associated with poorer prognosis. Mutation landscape analysis revealed distinct genetic alterations and copy number variations among clusters, particularly in Cluster B, which exhibited unique genetic signatures. Immune infiltration analysis showed that Cluster B had higher expression levels of immune checkpoint genes, stronger immune evasion activity, and greater immune cell infiltration, suggesting an immunosuppressive tumor microenvironment. Furthermore, we identified mitochondrial-related prognostic markers and developed a MITscore based on gene expression patterns, which stratified patients into high- and low-risk groups. High MITscore groups displayed stronger stemness characteristics, poorer survival outcomes, and differential responses to chemotherapy and immunotherapy. Cross-validation with drug sensitivity and immunotherapy cohorts indicated that high MITscore patients were more sensitive to certain chemotherapeutic agents and responded better to immunotherapy. Finally, using the SRGA method, we identified novel biomarkers (KDR, LRRK2, SQSTM1) closely associated with mitochondrial function, which may serve as potential targets for therapeutic intervention. These findings highlight the critical role of mitochondrial dysfunction in LGG prognosis, tumor microenvironment regulation, and treatment response, providing new avenues for precision oncology.
Collapse
Affiliation(s)
- Xiaozan Chang
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China
| | - Yingxuan Huang
- Pediatric Intensive Care Unit, The Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, China
| | - Ying Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Guo
- Nanfang Hospital (ZengCheng Branch), Southern Medical University, No. 28, Innovation Avenue, Ningxi Street, Guangzhou, China.
| | - Wenwen Fan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Nanli, Panjiayuan, Beijing, 100021, China.
| | - Haining Zhen
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Markov N, Sabirova S, Sharapova G, Gomzikova M, Brichkina A, Barlev NA, Egger M, Rizvanov A, Simon HU. Mitochondrial, metabolic and bioenergetic adaptations drive plasticity of colorectal cancer cells and shape their chemosensitivity. Cell Death Dis 2025; 16:253. [PMID: 40185729 PMCID: PMC11971274 DOI: 10.1038/s41419-025-07596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
The extent of mitochondrial heterogeneity and the presence of mitochondrial archetypes in cancer remain unknown. Mitochondria play a central role in the metabolic reprogramming that occurs in cancer cells. This process adjusts the activity of metabolic pathways to support growth, proliferation, and survival of cancer cells. Using a panel of colorectal cancer (CRC) cell lines, we revealed extensive differences in their mitochondrial composition, suggesting functional specialisation of these organelles. We differentiated bioenergetic and mitochondrial phenotypes, which point to different strategies used by CRC cells to maintain their sustainability. Moreover, the efficacy of various treatments targeting metabolic pathways was dependent on the respiration and glycolysis levels of cancer cells. Furthermore, we identified metabolites associated with both bioenergetic profiles and cell responses to treatments. The levels of these molecules can be used to predict the therapeutic efficacy of anti-cancer drugs and identify metabolic vulnerabilities of CRC. Our study indicates that the efficacy of CRC therapies is closely linked to mitochondrial status and cellular bioenergetics.
Collapse
Affiliation(s)
- Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Sirina Sabirova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Gulnaz Sharapova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Nick A Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany.
| |
Collapse
|
28
|
Zeng Q, Li L, Chang T, Sun Y, Zheng B, Xue L, Liu C, Li X, Huang R, Gu J, An Z, Yao H, Zhou D, Fan J, Dai Y. Phosphorylation of POU3F3 Mediated Nuclear Translocation Promotes Proliferation in Non-Small Cell Lung Cancer through Accelerating ATP5PF Transcription and ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411503. [PMID: 39932442 PMCID: PMC11967767 DOI: 10.1002/advs.202411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Indexed: 04/05/2025]
Abstract
Targeting oxidative phosphorylation (OXPHOS) through inhibiting the electron transport chain (ETC) has shown promising pre-clinical efficacy in cancer therapy. Although aerobic glycolysis is a hallmark of cancer, emerging evidence suggest OXPHOS is frequently enhanced, providing metabolic advantages for cell proliferation, metastasis, and drug resistance in a variety of aggressive cancer types including non-small cell lung cancer (NSCLC), yet the underlying molecular mechanisms remain elusive. Here it is reported that POU-domain containing family protein POU3F3 is translocated into the nuclei of NSCLC cell lines harboring mutant RAS, where it activates transcription of ATP5PF, an essential component of mitochondrial ATP synthase and consequent ATP production, leading to enhanced NSCLC proliferation and migration. Moreover, it is further found out that ERK1 phosphorylates POU3F3 at the S393 site in the cytoplasm and promotes the nuclear translocation of POU3F3 via receptor importin β1 in RAS mutant NSCLC cells. Mechanistically, RNA sequencing analysis combined with chromatin immunoprecipitation (ChIP) assay revealed that POU3F3 binds to the promoter of ATP5PF, leading to enhanced ATP5PF transcription and ATP production. Together, this study uncovers a novel RAS-POU3F3-ATP5PF axis in facilitating NSCLC progression, providing a new perspective on the understanding of molecular mechanisms for NSCLC progression.
Collapse
Affiliation(s)
- Qi‐Gang Zeng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Le Li
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Tao Chang
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Sun
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Bin Zheng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Ling‐Na Xue
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Chao‐Ling Liu
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Xia‐Qing Li
- Institute of Nephrology and Blood PurificationThe First Affiliated HospitalJinan UniversityGuangdong510632China
- Nephrology departmentThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityGuangdong517000China
| | - Ruo‐Tong Huang
- Department of Metabolism, Digestion, and ReproductionFaculty of MedicineImperial College LondonLondonW12 0NNUK
| | - Jia‐Xin Gu
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Zhao‐Rong An
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Hao‐Tao Yao
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Dan‐Yang Zhou
- Department of RespiratoryNanjing First HospitalNanjing Medical UniversityJiangsu210012China
| | - Jun Fan
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Dai
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| |
Collapse
|
29
|
Jia H, Wang C, Fu Y, Wang Y, Zhang X, Tang Y, Ding J, He K, Wang J, Shen Y. Visualization of mitochondrial molecular dynamics during mitophagy process by label-free surface-enhanced Raman scattering spectroscopy. Anal Chim Acta 2025; 1345:343748. [PMID: 40015786 DOI: 10.1016/j.aca.2025.343748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitophagy is a selective way to eliminate dysfunctional mitochondria and recycle their constituents, which plays an important role in regulating and maintaining intracellular homeostasis. Real-time monitoring mitophagy process is of great importance for cellular physiological and pathological processes related to mitochondria. Howbeit, most of the current methods only focus on single-parameter detection of mitochondrial microenvironmental changes such as pH, viscosity and polarity. The mitochondrial molecular responses under mitophagy are not clear. Therefore, developing a new and simple method for molecular profiling is of great importance for accurately and comprehensively visualizing mitophagy. RESULTS In this work, Au NPs-based mitochondria-targeting nanoprobe was developed and the nanoprobe-based label-free surface enhanced Raman spectroscopy (SERS) method was proposed to track starvation induced mitophagy process at molecular level. The nanoprobe displayed good SERS performance and low cytotoxicity. Based on the developed strategy, the molecular response within mitochondria under mitophagy was validated. Meanwhile, the protein denaturation, conformational change, lipid degradation and DNA fragmentation within mitochondria under mitophagy were revealed for the first time, which provides molecular evidence for mitophagy. The changes in reactive oxygen species level and mitochondrial membrane potential further confirmed the damage of mitochondria. Moreover, the developed label-free SERS strategy was used to detect mitophagy in drug (cisplatin)-induced liver injury (DILI) cell model, and obvious mitophagy in DILI cells was observed. SIGNIFICANCE The molecular biochemical signature dynamic changes within mitochondria during mitophagy process were revealed by SERS for the first time. Moreover, compared with the current research, our study can provide new insights into mitophagy and mitophagy-involved diseases at molecular level. This study will provide new insights into the molecular mechanism of mitophagy and offer a simple and effective method for mitochondrial molecular event monitoring in mitophagy-involved cellular processes.
Collapse
Affiliation(s)
- Hailan Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Chi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalin Wang
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoyu Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuezhou Tang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jiahao Ding
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun He
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
30
|
Panpan SI, Wei GE, Kaiming WU, Zhang R. O-GlcNAcylation of hexokinase 2 modulates mitochondrial dynamics and enhances the progression of lung cancer. Mol Cell Biochem 2025; 480:2633-2643. [PMID: 39496915 PMCID: PMC11961486 DOI: 10.1007/s11010-024-05146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Non-small cell lung cancer (NSCLC) stands as the prevailing manifestation of lung cancer, with current therapeutic modalities linked to a dismal prognosis, necessitating further advancements. Hexokinase 2 (HK2), a critical enzyme positioned on the mitochondrial membrane, exerts control over diverse biological pathways, thereby regulating cancer. Nevertheless, the precise role and mechanism of HK2 in NSCLC remain inadequately elucidated, warranting comprehensive investigation. HK2 expression in NSCLC tissues and cell lines was detected through immunohistochemistry and western blot analysis. Concurrently, shRNA assays were applied to scrutinize the impact of HK2 on cell proliferation, apoptosis, migration, and invasion processes in NSCLC cell lines, utilizing CCK8, flow cytometry, wound-healing assay, and transwell techniques. The involvement of HK2 in mitochondrial dynamics was probed through western blot analysis, mitochondrial membrane potential assay, and assessment of ROS generation. Next, the functional role of HK2 was assessed by examining its influence on xenograft tumor growth in nude mice in vivo. Further research has demonstrated that HK2 played a role in NSCLC through its O-GlcNAcylation process. The results of the study revealed that HK2 O-GlcNAcylation promoted the proliferation, migration, and invasive characteristics of NSCLC cells, while alleviating mitochondrial damage, whereas O-GlcNAcylation inactivation yielded the opposite effect. Furthermore, in vivo experiments in nude mice illustrated that HK2 O-GlcNAcylation could stimulate tumor growth in NSCLC. These results suggested that HK2 may impact mitochondrial dynamics in NSCLC through its O-GlcNAcylation, thereby contributing to the progression of NSCLC.
Collapse
Affiliation(s)
- S I Panpan
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - G E Wei
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - W U Kaiming
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Renquan Zhang
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China.
| |
Collapse
|
31
|
Chen F, Chen J, Zhou L, Hu X, Huang X, Lin S. A Water-Soluble Small-Molecule Fluorescent Probe for Selective Imaging of Colorectal Cancer with High Biosafety. J Fluoresc 2025:10.1007/s10895-025-04267-1. [PMID: 40163173 DOI: 10.1007/s10895-025-04267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Early diagnosis of colorectal cancer (CRC), a malignant tumor with high incidence and mortality rates worldwide, can significantly reduce both its incidence and mortality. Among cancer diagnostic methods, tumor fluorescence imaging provides a non-invasive approach, eliminating the need for tissue biopsy and minimizing patient discomfort. In this study, we identified a water-soluble quinolinium molecular fluorescent probe (CYI), which exhibits a dose-dependent quantum yield in PBS solution, reaching 5.96% at a concentration of 20 µM. The results demonstrated that CYI selectively enters CRC cells and maintains stable fluorescence intensity within them by specifically targeting the mitochondria and lysosomes, leading to probe accumulation and enhanced intracellular fluorescence. Importantly, toxicity assays at both the cellular and animal levels confirmed that CYI is highly biocompatible at fluorescence imaging doses, with no toxic effects observed in normal colorectal cells or organisms. This study identifies CYI as a water-soluble molecular fluorescent probe with a high biosafety profile, excellent imaging stability, and preferential uptake by CRC cells, demonstrating strong potential for early CRC screening and in vivo monitoring.
Collapse
Affiliation(s)
- Fang Chen
- The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jian Chen
- The First People's Hospital of Linping, Hangzhou, China
| | - Lu Zhou
- The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xianqing Hu
- The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiaohui Huang
- The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Shangqin Lin
- The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China.
| |
Collapse
|
32
|
Jin S, He Y, Feng C, Yuan J, Guo Y, Guo Z, Wang X. Cellular Discrepancy of Platinum Complexes in Interfering with Mitochondrial DNA. ACS CENTRAL SCIENCE 2025; 11:393-403. [PMID: 40161961 PMCID: PMC11950849 DOI: 10.1021/acscentsci.4c01941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 04/02/2025]
Abstract
Mitochondria are associated with cellular energy metabolism, proliferation, and mode of death. Damage to mitochondrial DNA (mtDNA) greatly affects mitochondrial function by interfering with energy production and the signaling pathway. Monofunctional trinuclear platinum complex MTPC demonstrates different actions on the mtDNA of cancerous and normal cells. It severely impairs the integrity and function of mitochondria in the human lung cancer A549 cells, such as dissipating mitochondrial membrane potential, decreasing the copy number of mtDNA, interfering in nucleoid proteins and polymerase gamma gene, reducing adenosine triphosphate (ATP), and inducing mitophagy, whereas it barely affects the mtDNA of the human kidney 2 (HK-2) cells. Moreover, MTPC promotes the release of mtDNA into the cytosol and stimulates the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, thus showing the potential to trigger antitumor immunity. MTPC displays significant cytotoxicity against A549 cells, while it exhibits weak toxicity toward HK-2 cells, therefore displaying great advantage to overcome the lingering nephrotoxicity of platinum anticancer drugs. Discrepant effects of a metal complex on mitochondria of different cells mean that targeting mitochondria has special significance in cancer therapy.
Collapse
Affiliation(s)
- Suxing Jin
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng He
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chenyao Feng
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yan Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
33
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
34
|
Gonzales CB, Seubert JM, Paes AM. Editorial: Targeting mitochondria in aging and disease. Front Pharmacol 2025; 16:1589728. [PMID: 40191428 PMCID: PMC11968664 DOI: 10.3389/fphar.2025.1589728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Affiliation(s)
- Cara B. Gonzales
- Department of Comprehensive Dentistry, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Antonio Marcus Paes
- Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
35
|
Chen X, Zhou Y, Yao W, Gao C, Sha Z, Yi J, Wang J, Liu X, Dai C, Zhang Y, Wu Z, Yao X, Zhou J, Liu H, Chen Y, Ouyang H. Organelle-tuning condition robustly fabricates energetic mitochondria for cartilage regeneration. Bone Res 2025; 13:37. [PMID: 40097410 PMCID: PMC11914688 DOI: 10.1038/s41413-025-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
Mitochondria are vital organelles whose impairment leads to numerous metabolic disorders. Mitochondrial transplantation serves as a promising clinical therapy. However, its widespread application is hindered by the limited availability of healthy mitochondria, with the dose required reaching up to 109 mitochondria per injection/patient. This necessitates sustainable and tractable approaches for producing high-quality human mitochondria. In this study, we demonstrated a highly efficient mitochondria-producing strategy by manipulating mitobiogenesis and tuning organelle balance in human mesenchymal stem cells (MSCs). Utilizing an optimized culture medium (mito-condition) developed from our established formula, we achieved an 854-fold increase in mitochondria production compared to normal MSC culture within 15 days. These mitochondria were not only significantly expanded but also exhibited superior function both before and after isolation, with ATP production levels reaching 5.71 times that of normal mitochondria. Mechanistically, we revealed activation of the AMPK pathway and the establishment of a novel cellular state ideal for mitochondrial fabrication, characterized by enhanced proliferation and mitobiogenesis while suppressing other energy-consuming activities. Furthermore, the in vivo function of these mitochondria was validated in the mitotherapy in a mouse osteoarthritis model, resulting in significant cartilage regeneration over a 12-week period. Overall, this study presented a new strategy for the off-the-shelf fabrication of human mitochondria and provided insights into the molecular mechanisms governing organelle synthesis.
Collapse
Affiliation(s)
- Xuri Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunting Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyu Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenlu Gao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuomin Sha
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhi Yi
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiasheng Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xindi Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenjie Dai
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonglin Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yishan Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
36
|
Gao L, Huang J, Xia J, Zhao P, Dong S, Jiang W, Zhou Q, Xu Z, Luo H, Zhou W, Sun J, Wang G, Geng Q, Wang J, Zou C. SNHG17 Reprograms Energy Metabolism of Breast Cancer by Activating Mitochondrial DNA Transcription. Cancer Res 2025; 85:1097-1112. [PMID: 39841089 DOI: 10.1158/0008-5472.can-24-1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable the development of metabolism-targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long noncoding RNA small nuclear RNA host gene 17 (SNHG17) and unfavorable prognosis in breast cancer. SNHG17 promoted breast cancer cell proliferation by augmenting mitochondrial ATP production. Mechanistically, SNHG17 directly interacted with the P65 subunit of NF-κB and phosphorylated P65 at the threonine 505 site. SNHG17 bound to P65 at its truncated loop2 site, recruited P65 to mitochondria, and coregulated the transcriptional activation of mitochondrial DNA to promote ATP production. Accordingly, targeting SNHG17 with an antisense oligonucleotide significantly reduced breast cancer tumor growth both in vitro and in vivo. Overall, these results established a role for SNHG17 in promoting breast cancer progression by increasing ATP production and provided insights into the reprogramming of energy metabolism in solid tumors. Significance: SNHG17 cooperates with NF-κB to induce expression of mitochondrial DNA and boost ATP production in breast cancer, suggesting that targeting SNHG17 could reverse metabolic reprogramming to suppress tumor progression.
Collapse
Affiliation(s)
- Lin Gao
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jingyi Huang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jinquan Xia
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Pan Zhao
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, P.R. China
| | - Wei Jiang
- Department of Breast Surgery, Harbin Medical University, Harbin, P.R. China
| | - Qianqian Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Zhenglei Xu
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Hui Luo
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Wenbin Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jichao Sun
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Qingshan Geng
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jigang Wang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Chang Zou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, P.R. China
| |
Collapse
|
37
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
38
|
Zhang Q, Lin J, Li J, Zhou Y, Bi Z, Yang H, Lu W, Lu T, Qian R, Yang X, Guo Y, Xin X, Yan L, Wang S, Qi R. Mitochondrial-Targeted Multifunctional Platinum-Based Nano "Terminal-Sensitive Projectile" for Enhanced Cancer Chemotherapy Efficacy. ACS NANO 2025; 19:8711-8726. [PMID: 39999348 DOI: 10.1021/acsnano.4c15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Platinum-based anticancer drugs exert their effects by forming adducts within nuclear DNA (nDNA), inhibiting transcription and inducing apoptosis in cancer cells. However, tumor cells have evolved mechanisms to resist these drugs. Given mitochondria's role in cancer and their lack of nucleotide excision repair (NER), targeting mitochondrial DNA (mtDNA) offers a strategy. Herein, a platinum-based terminal-sensitive projectile (TSB) which comprises a heterofunctional tetravalent platinum prodrug as the primary warhead, complemented by a guidance system incorporating triphenylphosphine (TPP) and a secondary warhead, FFa (Fenofibric acid) was developed. TSB was then encapsulated within IR780 coupling DSPE-PEG2K for enhanced delivery (NTSB). This design allows the TSB to be precisely targeted into intertumoral mitochondria as its targeting terminal, releasing free oxaliplatin (OXA) and FFa upon reaching its terminal destination. The accumulation of OXA leads to cross-linking with mtDNA, causing mitochondrial dysfunction, while FFa disrupts the electron transport chain (ETC), impairing oxidative phosphorylation (OXPHOS). Furthermore, under near-infrared (NIR) irradiation, the IR780 component generates a phototherapeutic thermal effect and reactive oxygen species (ROS), which deplete intracellular glutathione (GSH) levels and facilitate Pt cross-linking with mtDNA. Both in vitro and in vivo studies have demonstrated that this comprehensive approach significantly enhances the sensitivity of tumor cells to platinum-based chemotherapeutic drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiamin Lin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- College of Life Science, Yulin University, Yulin 719000, China
| | - Yitian Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiqiang Bi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Yang
- Department of Pharmacy, Ji'an Central People's Hospital, Ji'an 343000, China
| | - Wenli Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Yang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuanyuan Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqing Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shanshan Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
39
|
Yao L, Gu C, Ge R, Zhang X, Meng X, Wang L, Peng D, Li G. Acetylated Dendrobium huoshanense polysaccharide: a novel inducer of apoptosis in colon cancer cells via Fas-FasL pathway activation and metabolic reprogramming. Front Oncol 2025; 15:1529868. [PMID: 40104499 PMCID: PMC11913854 DOI: 10.3389/fonc.2025.1529868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Not all polysaccharides function as antitumor drugs, nor do they universally possess the same advantages regarding safety and biocompatibility. Those polysaccharides that are effective antitumor agents typically demonstrate superior safety profiles and biocompatibility compared to synthetic anticancer drugs, which can exhibit high toxicity and harmful side effects. Dendrobium huoshanense polysaccharide (DHP) has been recognized for its potential bioactive properties, particularly in anti-tumor treatment. This study investigates the effects of DHP on the proliferation and apoptosis of HCT116 colon cancer cells. Methods DHP was extracted according to previously published experimental methods. The inhibitory effects of DHP were evaluated using IEC6, Caco-2, and HCT116 cell lines, with changes in cell morphology observed via transmission electron microscopy. After establishing the conditions for DHP administration, flow cytometry was employed to assess its effects on apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential of HCT116 cells. Additionally, immunoprecipitation, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and biomarker detection were utilized to investigate the mechanisms underlying DHP's inhibition of HCT116 cells and its impact on metabolic reprogramming. Results In the present study, we observed that DHP treatment at 600 μg/ml for 24 h reduced HCT116 cell viability to 54.87%. In contrast, the inhibitory effect of DHP on the viability of IEC6 and Caco-2 cells was relatively mild. The specific mechanism involves DHP activating the mitochondrial apoptotic pathway leading to the downregulation of key metabolic intermediates and enzymes such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and ST6Gal-I. By inhibiting ST6Gal-I activity, DHP activates the Fas/FasL signaling pathway. Additionally, DHP-induced ROS production effectively triggers apoptosis in HCT116 cells. Conclusion Our study demonstrates that DHP effectively inhibits the proliferation and induces apoptosis in HCT116 colon cancer cells through the activation of the Fas-FasL signaling pathway and metabolic reprogramming. The selective inhibitory effect of DHP on HCT116 cells, the activation of both death receptor and mitochondrial apoptotic pathways, and the modulation of metabolic reprogramming provide novel insights into the potential therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Chen Gu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Xinqian Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Guozhuan Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
40
|
Chen Y, Zhang X, Liu M, Zhang Y, Li S, Zhou L, Yang X, Chen X, Yue M, Qu Q, Qiu Y, Shi J. The association between basal metabolic rate and ischemic stroke: a Mendelian randomization study. Front Neurol 2025; 16:1434740. [PMID: 40098688 PMCID: PMC11912940 DOI: 10.3389/fneur.2025.1434740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Objective This study aims to elucidate the potential impact of basal metabolic rate on ischemic stroke at the genetic prediction level through a two-sample Mendelian randomization analysis. Methods Using summary data from genome-wide association studies, we obtained information on basal metabolic rate and ischemic stroke from a large-scale genome-wide association study. MR analysis used inverse variance weighting, weighted median, MR-Egger, simple mode, and weighted estimation. Sensitivity analyses, including the MR-Egger method, MR-PRESSO, Cochran's Q-test, and leave-one-out assessment, were performed to assess the reliability of the results. Results Genetic susceptibility to basal metabolic rate was significantly associated with ischemic stroke in multiple models, including the inverse variance weighting model (OR, 1.108 [95% CI: 1.005-1.221]; p = 0.0392), the weighted median method (OR, 1.179 [95% CI: 1.020-1.363]; p = 0.0263), and MR-Egger (OR, 1.291 [95% CI: 1.002-1.663]; p = 0.0491). These results indicate a positive causal relationship between basal metabolic rate and ischemic stroke. The MR-Egger intercept and Cochran's Q-test indicated the absence of heterogeneity and horizontal pleiotropy in the analyses of basal metabolic rate and ischemic stroke. Conclusion The MR analysis suggests a positive correlation between basal metabolic rate and ischemic stroke.
Collapse
Affiliation(s)
- Yizhou Chen
- Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xiahui Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Meifang Liu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yi Zhang
- Qingdao Central Hospital, Qingdao, China
| | - Song Li
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Li Zhou
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiaolin Yang
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xu Chen
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Mengqi Yue
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qi Qu
- Department of Medicine, Hubei Minzu University, Enshi, China
| | - Yong Qiu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jing Shi
- Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Department of Acupuncture and Moxibustion, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
41
|
Tsukamura A, Ariyama H, Hayashi N, Miyatake S, Okado S, Sultana S, Terakado I, Yamamoto T, Yamanaka S, Fujii S, Hamanoue H, Asano R, Mizushima T, Matsumoto N, Maruo Y, Mori M. KNTC1 introduces segmental heterogeneity to mitochondria. Dis Model Mech 2025; 18:DMM052063. [PMID: 39829138 PMCID: PMC11911638 DOI: 10.1242/dmm.052063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Mitochondria contribute to cellular metabolism by providing a specialised milieu for energising cells by incorporating and processing the metabolites. However, heterogeneity between mitochondria has only partially been elucidated. Mitochondria dynamically alter their morphology and function during the life of an animal, when cells proliferate and grow. We here show that Kntc1, a highly evolutionarily conserved protein, translocates from the Golgi apparatus to linear mitochondrial segments (LMSs) upon glutamine deprivation and plays an essential role in maintaining LMSs. The LMSs to which Kntc1 localised exhibited an increase in the mitochondrial membrane potential, suggesting the role of Kntc1 in functioning as a reservoir for the energy-generating potential. Suppression of Kntc1 led to glutamine consumption and lactate production, thus impacting cellular metabolism, eventually leading to anchorage-independent growth of cells. Indeed, a KNTC1 variant was identified in a patient with ovarian cancer, suggesting that segmental regulation of the mitochondrial function is essential for maintaining tissue integrity.
Collapse
Affiliation(s)
- Atsushi Tsukamura
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hirotaka Ariyama
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Natsuki Hayashi
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi 980-0872, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University (YCU) Graduate School of Medicine, Kanagawa 236-0004, Japan
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Satoko Okado
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Sara Sultana
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Ichiro Terakado
- Research Center for Animal Life Science (RCALS), Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Shoji Yamanaka
- Department of Pathology, YCU Hospital, Kanagawa 236-0004, Japan
| | - Satoshi Fujii
- Department of Pathology, YCU Hospital, Kanagawa 236-0004, Japan
- Department of Molecular Pathology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Ryoko Asano
- Department of Obstetrics and Gynecology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Taichi Mizushima
- Department of Obstetrics and Gynecology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University (YCU) Graduate School of Medicine, Kanagawa 236-0004, Japan
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masaki Mori
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi 980-0872, Japan
| |
Collapse
|
42
|
Liu K, Liu J, Meng T, Wu N, Liu J, Qiao M, Dong L, Liu J. Triptolide reverses cis‑diamminedichloroplatinum resistance in esophageal squamous cell carcinoma by suppressing glycolysis and causing mitochondrial malfunction. Mol Med Rep 2025; 31:74. [PMID: 39886972 PMCID: PMC11795233 DOI: 10.3892/mmr.2025.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
The present study investigated the sensitization mechanism of triptolide (TPL) in esophageal squamous cell carcinoma (ESCC) resistant to cis‑diamminedichloroplatinum (CDDP). CDDP‑resistant TE‑1/CDDP and KYSE30/CDDP cells were created using an incremental drug concentration approach. TPL and CDDP treatment conditions were screened based on the Cell Counting Kit‑8 cell viability assay and cell proliferation was detected using 5‑ethynyl‑2'‑deoxyuridine and clone formation assays. Flow cytometry combined with Hoechst 33258 staining was used to assess cell cycle progression and apoptosis. Scratch healing assay, Transwell assay and western blotting were used to investigate the malignant behaviors of the cells. Changes in cellular glycolysis were investigated by measuring glucose uptake, lactate production and the levels of related regulatory factors. Changes in mitochondrial function were examined by detecting ATP and reactive oxygen species levels, as well as mitochondrial membrane potential and cytochrome c release. Furthermore, a nude mouse subcutaneous graft tumor model assay was used to assess the in vivo effect of TPL. In vitro dosages of TPL and CDDP were tested at 2 nM and 4 µM, respectively. Notably, TPL decreased the proliferation, migration, invasion and epithelial‑mesenchymal transition of CDDP‑resistant ESCC cells, increased their apoptosis and significantly suppressed tumor growth in a nude mouse model of ESCC. TPL was shown to have a strong CDDP‑sensitizing effect in vitro and in vivo and its mechanism may involve inhibiting anaerobic glycolysis and causing mitochondrial energy metabolism impairment to induce apoptosis. In conclusion, TPL may be considered a potential CDDP sensitizer with substantial clinical implications for ESCC therapy.
Collapse
Affiliation(s)
- Kuiyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jia Liu
- Intensive Care Unit, Sun Yat sen University Cancer Center, Guangzhou, Guangdong 510030, P.R. China
| | - Tiebao Meng
- Department of Medical Imaging, Sun Yat sen University Cancer Center, Guangzhou, Guangdong 510030, P.R. China
| | - Nan Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juntao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingxu Qiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liangyi Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingeng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
43
|
Kellman LN, Neela PH, Srinivasan S, Siprashvili Z, Shanderson RL, Hong AW, Rao D, Porter DF, Reynolds DL, Meyers RM, Guo MG, Yang X, Zhao Y, Wozniak GG, Donohue LKH, Shenoy R, Ko LA, Nguyen DT, Mondal S, Garcia OS, Elcavage LE, Elfaki I, Abell NS, Tao S, Lopez CM, Montgomery SB, Khavari PA. Functional analysis of cancer-associated germline risk variants. Nat Genet 2025; 57:718-728. [PMID: 39962238 DOI: 10.1038/s41588-024-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2024] [Indexed: 03/15/2025]
Abstract
Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising >90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210 , showed that its risk allele increases rhophilin RHPN2 expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.
Collapse
Affiliation(s)
- Laura N Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Rao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Glenn G Wozniak
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajani Shenoy
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara E Elcavage
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Lopez
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
44
|
Sugawara K, Sakashita S, Fukuda T, Murakami C, Oka D, Amori G, Ishibashi K, Kobayashi Y, Kanda H, Motoi N. Survival Impacts of Mitochondrial Status in Esophageal Squamous Cell Carcinoma Patients. Ann Surg Oncol 2025; 32:1963-1972. [PMID: 39645554 PMCID: PMC11811432 DOI: 10.1245/s10434-024-16533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Little is known about the survival impacts of mitochondrial status in esophageal squamous cell carcinoma (ESCC) patients who undergo neoadjuvant chemotherapy (NAC) followed by surgery. METHODS In total, 260 pre-NAC samples from ESCC patients were analyzed. Mitochondrial status was estimated employing an objective, immunohistochemistry-based system (Mito-score). Mito-scores were dichotomized according to the median value of our cohort. We also evaluated the immune microenvironment (CD4, CD8, Foxp3, HLA class-1, Ki-67 and programmed death ligand-1) on pre-NAC specimens. Multivariate Cox hazards models were applied to determine independent predictors of poor overall survival (OS). RESULTS Patients with cT3-4 tumors had higher Mito-scores than those with cT1-2 tumors (p = 0.06), and good responders to NAC had significantly higher Mito-scores than poor responders to NAC (p = 0.04). CD8 cells and Ki-67 expression were significantly higher in Mito-high than Mito-low tumors (p = 0.017 and p < 0.001, respectively). Patients with low Mito-scores had significantly poorer OS than those with high Mito-scores (3-year OS: 57.6% vs. 68.2%; p = 0.03). A survival difference by Mito-score was evident in cStage III-IV patients (3-year OS: low 50.6% vs. high 66.1%; p = 0.006). Multivariable analysis revealed that a low Mito-score (hazard ratio 1.59, 95% confidence interval 1.12-2.24; p = 0.009) as well as pT3-4 disease (p < 0.001) and pN2-3 disease (p < 0.001) were independently associated with poor OS outcomes. CONCLUSIONS A low Mito-score before NAC had a significant survival impact in ESCC patients, especially in those with advanced disease. Mitochondrial status might be associated with tumor aggressiveness and responsiveness to NAC, thereby possibly affecting the survival outcomes of ESCC patients.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
- Department of Gastroenterological Surgery, Saitama Cancer Center Hospital, Saitama, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shingo Sakashita
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takashi Fukuda
- Department of Gastroenterological Surgery, Saitama Cancer Center Hospital, Saitama, Japan
| | - Chiaki Murakami
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Daiji Oka
- Department of Gastroenterological Surgery, Saitama Cancer Center Hospital, Saitama, Japan
| | - Gulanbar Amori
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
| | | | | | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
| | - Noriko Motoi
- Department of Pathology, Saitama Cancer Center, Saitama, Japan.
- Center for Cancer Genomic Medicine, Saitama Cancer Center, Saitama, Japan.
| |
Collapse
|
45
|
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, Hoyer P, Lötvall J, Thakur BK. Unravelling the Significance of Extracellular Vesicle-Associated DNA in Cancer Biology and Its Potential Clinical Applications. J Extracell Vesicles 2025; 14:e70047. [PMID: 40091452 PMCID: PMC11911540 DOI: 10.1002/jev2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cell-to-cell communication and have drawn significant attention due to their potential clinical applications. However, much remains to be understood about the biology of EV-associated DNA (EV-DNA). EV-DNA is actively released by both normal and malignant cells and consists of diverse fragments with varying structures. Because EV-DNA spans the entire genome of cells from which it originates, it continues to be attractive as a biomarker for cancer diagnosis and monitoring. Further, EV-DNA delivery can alter the function of recipient cells by interfering with cytoplasmic DNA sensor pathways. This review explores the biology and significance of EV-DNA, including its topology and fragmentomics features, modality of association with EVs, packaging mechanisms, and potential functions. It also emphasizes the specificity of vesicular DNA in identifying genetic and epigenetic changes in cancer. Additionally, it delves into the impact of EV-DNA on cellular behaviour and its potential use as a therapeutic target in cancer. The review discusses new insights into EV-DNA biology and provides perspectives and alternatives to address the challenges and concerns for future EV-DNA studies.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | | | | | | | - Barbora Tamášová
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | - Peter Hoyer
- Department of Pediatrics IIUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
46
|
Wu H, Zhang W, Chang J, Wu J, Zhang X, Jia F, Li L, Liu M, Zhu J. Comprehensive analysis of mitochondrial-related gene signature for prognosis, tumor immune microenvironment evaluation, and candidate drug development in colon cancer. Sci Rep 2025; 15:6173. [PMID: 39979377 PMCID: PMC11842742 DOI: 10.1038/s41598-024-85035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Colon adenocarcinoma (COAD), a common digestive system malignancy, involves crucial alterations in mitochondria-related genes influencing tumor growth, metastasis, and immune evasion. Despite limited studies on prognostic models for these genes in COAD, we established a mitochondrial-related risk prognostic model, including nine genes based on available TCGA and MitoCarta 3.0 databases, and validated its predictive power. We investigated the tumor microenvironment (TME), immune cell infiltration, complex cell communication, tumor mutation burden, and drug sensitivity of COAD patients using R language, CellChat, and additional bioinformatic tools from single-cell and bulk-tissue sequencing data. The risk model revealed significant differences in immune cell infiltration between high-risk and low-risk groups, with the strongest correlation found between tissue stem cells and macrophages in COAD. The risk score exhibited a robust correlation with TME signature genes and immune checkpoint molecules. Integrating the risk score with the immune score, microsatellite status, or TMB through TIDE analysis enhanced the accuracy of predicting immunotherapy benefits. Predicted drug efficacy offered options for both high- and low-risk group patients. Our study established a novel mitochondrial-related nine-gene prognostic signature, providing insights for prognostic assessment and clinical decision-making in COAD patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjia Chang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Wu
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xintong Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, 030006, China
| | - Li Li
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ming Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianjun Zhu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
47
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
48
|
Fu X, Yu Z, Fang F, Zhou W, Bai Y, Jiang Z, Yang B, Sun Y, Tian X, Liu G. Cannabidiol attenuates lipid metabolism and induces CB1 receptor-mediated ER stress associated apoptosis in ovarian cancer cells. Sci Rep 2025; 15:4307. [PMID: 39910152 PMCID: PMC11799381 DOI: 10.1038/s41598-025-88917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Ovarian cancer (OC) is the most deadly gynecological tumor. OC cells utilize cellular metabolic reprogramming to gain a survival advantage, particularly through aberrant lipid metabolic process. As the primary ingredient in exogenous cannabinoids, cannabidiol (CBD) has been confirmed to exhibit antitumor activity in preclinical studies. However, it is still unclear whether CBD can disrupt fatty acid metabolism and induce apoptosis in OC cells. In this study, we have demonstrated that CBD significantly inhibits the proliferation of OCs through a cannabinoid receptor type 1 (CB1R)-mediated manner. Fatty acid metabolic profiling and flow cytometry analysis revealed that CBD has the ability to decrease fatty acid levels and significantly suppress the transcription of genes involved in fatty acid uptake and synthesis in ES-2 cells. In addition, the analysis from RNA-seq and real-time RT-PCR revealed that CBD activated the endoplasmic reticulum (ER) stress pathway. Conversely, by supplementation with unsaturated fatty acid or blocking CB1R, ER stress or reactive oxygen species (ROS) signals with specific inhibitors could significantly relieve CBD induced, dose-dependent, ER stress associated apoptosis, G0-G1 phase arrest, and mitochondrial dysfunction. Taken collectively, these data indicate that CBD may disrupt lipid metabolism, and lead to ER stress-related apoptosis in OCs. Our findings may provide a theoretical mechanism for anti-ovarian cancer using CBD.
Collapse
Affiliation(s)
- Xuanhe Fu
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Stree, Shenyang, 110034, PR China
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, China
| | - Zhixiong Yu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Fang Fang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yuxin Bai
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Biao Yang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Ye Sun
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Guangyan Liu
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, China.
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
49
|
Vázquez-Villa H, Rueda-Zubiaurre A, Fernández D, Foronda R, Parker CG, Cravatt BF, Martín-Fontecha M, Ortega-Gutiérrez S. Chemical probes for the identification of the molecular targets of honokiol. Eur J Med Chem 2025; 283:117102. [PMID: 39616692 DOI: 10.1016/j.ejmech.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
Abstract
Honokiol is a natural product with an interesting array of biological effects, including significant anti-tumor properties. However, full exploration of its therapeutic potential is hampered by its modest pharmacokinetic profile and by the lack of synthetic methods that allow to obtain specifically designed derivatives with improved properties. In addition, the specific molecular targets of honokiol remain poorly understood, a fact that limits the search of alternative hits for subsequent optimization programs. In this work we describe an optimized series of synthetic routes that allow to access to a variety of honokiol derivatives, including a set of minimalist photoaffinity probes to map potential protein targets in live cells. Chemical proteomic studies of the most potent probe revealed a defined set of proteins as the cellular targets of honokiol. Significantly, up to the 62 % of the identified proteins have described roles in cancer, highlighting their potential relationship with the antitumor effects of honokiol. Furthermore, several of the top hits have been validated as direct binding partners of honokiol by cellular thermal shift assay (CETSA). In sum, the work described herein provides the first landscape of the cellular targets of honokiol in living cells and contributes to define the specific molecular pathways affected by this natural product.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Daniel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Román Foronda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, United States
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Avda. Arcos de Jalón, 118, Universidad Complutense de Madrid, E-28037, Madrid, Spain.
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
50
|
Zhang W, Lin YT, Jiang JW, Hu Y. Mapping the expression and functional landscape of key enzymes in glucose metabolism within human gynecological tumors. Curr Probl Cancer 2025; 54:101155. [PMID: 39521683 DOI: 10.1016/j.currproblcancer.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Gynecological tumors, primarily ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), have a significant global impact on women's health, characterized by high mortality rates. Emerging evidence underscores the pivotal role of altered glucose metabolism in the initiation and progression of these malignancies. Glucose metabolism, encompassing glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and the pentose phosphate pathway (PPP), among others, is intricately governed by a spectrum of key enzymes. These enzymes drive metabolic reprogramming essential for tumor growth and survival, thereby influencing patient outcomes and clinical management strategies. However, the comprehensive characterization and summary of the expression profiles, regulatory networks involved, and functional roles of these glucose metabolic enzymes in human gynecological tumors remain incomplete. In this review, we systematically map the expression landscape of these critical glucose metabolic enzymes in gynecological cancers based on research utilizing clinical gynecological tumor tissues. Additionally, we summarize the specific functions of key enzymes of glucose metabolism and the pathways they regulate in gynecological tumors. This review provides profound insights into the metabolic dynamics underlying these diseases. This understanding illuminates the metabolic strategies employed by tumor cells and sets the stage for innovative therapeutic approaches targeting cancer cell glucose metabolic dependencies, thereby holding promise for enhancing patient outcomes in gynecological oncology.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China; Department of Ultrasonic Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ying-Tong Lin
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Wen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|