1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 PMCID: PMC12110815 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany;
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
2
|
Plata VTG, de Jesus Simão J, de Sousa Bispo AF, Alonso-Vale MI, Armelin-Correa L. Impact of fish oil on epigenetic regulation in perirenal adipose tissue of obese mice. Obes Res Clin Pract 2025; 19:122-129. [PMID: 40246605 DOI: 10.1016/j.orcp.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
It has been demonstrated that fish oil (FO), a source of omega-3 polyunsaturated fatty acids (n-3 PUFA), offers partial protection to mice from the adverse effects of a high-fat diet (HFD) by altering the expression of genes involved in adipogenesis and adipocyte metabolism. Histone 3 lysine 27 (H3K27) modifiers, namely Ezh2, Kdm6a, Kdm6b, Crebbp and Ep300, are vital for the appropriate differentiation and metabolism of adipocytes, as they can either silence or activate transcription. The expansion of perirenal adipose tissue (AT) in obesity is associated with a number of complications, including hypertension and kidney disease. The aim of this study was to assess the expression of H3K27 modifiers and genes involved in adipogenesis and adipocyte metabolism in perirenal AT of HFD-fed and FO-treated (5DHA:1EPA) mice using real-time PCR. This study demonstrates, for the first time, that a high-fat diet (HFD) increases the expression of Kdm6b (H3K27 demethylase) in perirenal AT, and that treatment with FO can completely reverse this effect. Conversely, the expression of the Acly gene, which encodes an enzyme that provides a substrate for histone acetylases, was found to be reduced in HFD-fed mice and this was not reversed by FO treatment. Additionally, transcription factor genes, such as Tbx1, exhibited diminished expression in perirenal AT of mice fed an HFD. These observations suggest that a HFD affects the expression of chromatin modifiers, transcription factors, and metabolic genes in perirenal AT, and that FO can reverse some of these effects, offering a promising avenue for the treatment of obesity.
Collapse
Affiliation(s)
- Victor Tadeu Gonçalves Plata
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Jussara de Jesus Simão
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Andressa França de Sousa Bispo
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Maria Isabel Alonso-Vale
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduation Program in Chemical Biology Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil; Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
3
|
Swanson K, Bell J, Hendrix D, Jiang D, Kutzler M, Batty B, Hanlon M, Bionaz M. Bovine milk consumption affects the transcriptome of porcine adipose stem cells: Do exosomes play any role? PLoS One 2024; 19:e0302702. [PMID: 39705291 DOI: 10.1371/journal.pone.0302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 12/22/2024] Open
Abstract
The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity. The objective of this study was to evaluate the effect of milk consumption on miR present in circulating exosomes and the transcriptome of ASC in piglets. Piglets were supplemented for 11 weeks with 750 mL of whole milk (n = 6; M) or an isocaloric maltodextrin solution (n = 6; C). After euthanasia, ASC were isolated, quantified, and characterized. RNA was extracted from passage 1 ASC and sequenced. Exosomes were isolated and quantified from the milk and plasma of the pigs at 6-8 hours after milk consumption, and miRs were isolated from exosomes and sequenced. The transfer of exosomes from milk to porcine plasma was assessed by measuring bovine milk-specific miRs and mRNA in exosomes isolated from the plasma of 3 piglets during the first 6h after milk consumption. We observed a higher proportion of exosomes in the 80 nM diameter, enriched in milk, in M vs. C pigs. Over 500 genes were differentially expressed (DEG) in ASC isolated from M vs. C pigs. Bioinformatic analysis of DEG indicated an inhibition of the immune, neuronal, and endocrine systems and insulin-related pathways in ASC of milk-fed pigs compared with maltodextrin-fed pigs. Of the 900 identified miRs in porcine plasma exosomes, only 3 miRs were differentially abundant between the two groups and could target genes associated with neuronal functions. We could not detect exosomal miRs or mRNA transfer from milk to porcine-circulating plasma exosomes. Our data highlights the significant nutrigenomic role of milk consumption on ASC, a finding that does not appear to be attributed to miRs in bovine milk exosomes. The downregulation of insulin resistance and inflammatory-related pathways in the ASC of milk-fed pigs should be further explored in relation to milk and human health. In conclusion, the bioinformatic analyses and the absence of bovine exosomal miRs in porcine plasma suggest that miRs are not vertically transferred from milk exosomes.
Collapse
Affiliation(s)
- Katherine Swanson
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jimmy Bell
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Hendrix
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Duo Jiang
- Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michelle Kutzler
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon Batty
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Hanlon
- Food Science and Technology, Oregon State University, Corvallis, Oregon, United States of America
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Bakhtiari M, Jordan SC, Mumme HL, Sharma R, Shanmugam M, Bhasin SS, Bhasin M. ARMH1 is a novel marker associated with poor pediatric AML outcomes that affect the fatty acid synthesis and cell cycle pathways. Front Oncol 2024; 14:1445173. [PMID: 39703843 PMCID: PMC11655347 DOI: 10.3389/fonc.2024.1445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite remarkable progress in Pediatric Acute Myeloid Leukemia (pAML) treatments, the relapsed disease remains difficult to treat, making it pertinent to identify novel biomarkers of prognostic/therapeutic significance. Material and methods Bone marrow samples from 21 pAML patients were analyzed using single cell RNA sequencing, functional assays with ARMH1 knockdown and overexpression were performed in leukemia cell lines to evaluate impact on proliferation and migration, and chemotherapy sensitivity. Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting proteins were studied using co-immunoprecipitation. Bulk RNA-seq was performed on ARMH1knockdown and over expressing cell lines to evaluate the pathways and networks impacted by ARMH1. Results Our data shows that ARMH1, a novel cancer-associated gene, is highly expressed in the malignant blast cells of multiple pediatric hematologic malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1 expression is significantly elevated in blast cells of patients who relapsed or have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv (16)). ARMH1 expression is also significantly correlated with the pediatric leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes. Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines significantly impacted cell proliferation and migration. The RNA-sequencing analysis on multiple ARMH1 knockdown and overexpressing cell lines established an association with mitochondrial fatty acid synthesis and cell cycle pathways.The investigation of the mitochondrial matrix shows that pharmacological inhibition of a key enzyme in fatty acid synthesis regulation, CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a significant reduction in CPT1A and ATP production as well as Oxygen Consumption Rate. Our data indicates that downregulating ARMH1 impacts cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2. Further, we also established that ARMH1 is a key physical interactant of EZH2, associated with multiple cancers. Conclusion Our findings underscore further evaluation of ARMH1 as a potential candidate for targeted therapies and stratification of aggressive pAML to improve outcomes.
Collapse
Affiliation(s)
- Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
| | - Sean C. Jordan
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Hope L. Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Richa Sharma
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Lowe TL, Valencia DA, Velasquez VE, Quinlan ME, Clarke SG. Methylation and phosphorylation of formin homology domain proteins (Fhod1 and Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho kinase (ROCK1). J Biol Chem 2024; 300:107857. [PMID: 39368550 PMCID: PMC11584945 DOI: 10.1016/j.jbc.2024.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Protein post-translational modifications (PTMs) can regulate biological processes by altering an amino acid's bulkiness, charge, and hydrogen bonding interactions. Common modifications include phosphorylation, methylation, acetylation, and ubiquitylation. Although a primary focus of studying PTMs is understanding the effects of a single amino acid modification, the possibility of additional modifications increases the complexity. For example, substrate recognition motifs for arginine methyltransferases and some serine/threonine kinases overlap, leading to potential enzymatic crosstalk. In this study we have shown that the human family of formin homology domain-containing proteins (Fhods) contain a substrate recognition motif specific for human protein arginine methyltransferase 7 (PRMT7). In particular, PRMT7 methylates two arginine residues in the diaphanous autoinhibitory domain (DAD) of the family of Fhod proteins: R1588 and/or R1590 of Fhod3 isoform 4. Additionally, we confirmed that S1589 and S1595 in the DAD domain of Fhod3 can be phosphorylated by Rho/ROCK1 kinase. Significantly, we have determined that if S1589 is phosphorylated then PRMT7 cannot subsequently methylate R1588 or R1590. In contrast, if R1588 or R1590 of Fhod3 is methylated then ROCK1 phosphorylation activity is only slightly affected. Finally, we show that the interaction of the N-terminal DID domain can also inhibit the methylation of the DAD domain. Taken together these results suggest that the family of Fhod proteins, potential in vivo substrates for PRMT7, might be regulated by a combination of methylation and phosphorylation.
Collapse
Affiliation(s)
- Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Dylan A Valencia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Vicente E Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California - Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
6
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 PMCID: PMC11877395 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
8
|
Chao X, Guo L, Ye C, Liu A, Wang X, Ye M, Fan Z, Luan K, Chen J, Zhang C, Liu M, Zhou B, Zhang X, Li Z, Luo Q. ALKBH5 regulates chicken adipogenesis by mediating LCAT mRNA stability depending on m 6A modification. BMC Genomics 2024; 25:634. [PMID: 38918701 PMCID: PMC11197345 DOI: 10.1186/s12864-024-10537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aijun Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mao Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Manqing Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Aldehoff AS, Karkossa I, Goerdeler C, Krieg L, Schor J, Engelmann B, Wabitsch M, Landgraf K, Hackermüller J, Körner A, Rolle-Kampczyk U, Schubert K, von Bergen M. Unveiling the dynamics of acetylation and phosphorylation in SGBS and 3T3-L1 adipogenesis. iScience 2024; 27:109711. [PMID: 38840842 PMCID: PMC11152682 DOI: 10.1016/j.isci.2024.109711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents Ulm, Ulm, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz-Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
11
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
13
|
Kim H, Lebeau B, Papadopoli D, Jovanovic P, Russo M, Avizonis D, Morita M, Afzali F, Ursini-Siegel J, Postovit LM, Witcher M, Topisirovic I. MTOR modulation induces selective perturbations in histone methylation which influence the anti-proliferative effects of mTOR inhibitors. iScience 2024; 27:109188. [PMID: 38433910 PMCID: PMC10904987 DOI: 10.1016/j.isci.2024.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Emerging data suggest a significant cross-talk between metabolic and epigenetic programs. However, the relationship between the mechanistic target of rapamycin (mTOR), which is a pivotal metabolic regulator, and epigenetic modifications remains poorly understood. Our results show that mTORC1 activation caused by the abrogation of its negative regulator tuberous sclerosis complex 2 (TSC2) coincides with increased levels of the histone modification H3K27me3 but not H3K4me3 or H3K9me3. This selective H3K27me3 induction was mediated via 4E-BP-dependent increase in EZH2 protein levels. Surprisingly, mTOR inhibition also selectively induced H3K27me3. This was independent of TSC2, and was paralleled by reduced EZH2 and increased EZH1 protein levels. Notably, the ability of mTOR inhibitors to induce H3K27me3 levels was positively correlated with their anti-proliferative effects. Collectively, our findings demonstrate that both activation and inhibition of mTOR selectively increase H3K27me3 by distinct mechanisms, whereby the induction of H3K27me3 may potentiate the anti-proliferative effects of mTOR inhibitors.
Collapse
Affiliation(s)
- HaEun Kim
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
| | - Benjamin Lebeau
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - David Papadopoli
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Predrag Jovanovic
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
| | - Mariana Russo
- Goodman Cancer Research Centre, Montréal, QC H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Research Centre, Montréal, QC H3A 1A3, Canada
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Farzaneh Afzali
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Josie Ursini-Siegel
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Michael Witcher
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ivan Topisirovic
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
14
|
Zhao Y, Skovgaard Z, Wang Q. Regulation of adipogenesis by histone methyltransferases. Differentiation 2024; 136:100746. [PMID: 38241884 DOI: 10.1016/j.diff.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.
Collapse
Affiliation(s)
| | | | - Qinyi Wang
- Computer Science Department, California State Polytechnic University Pomona, USA
| |
Collapse
|
15
|
Ma Z, Chen L, Wang Y, Zhang S, Zheng J, Luo Y, Wang C, Zeng H, Xue L, Tan Z, Wang D. Novel insights of EZH2-mediated epigenetic modifications in degenerative musculoskeletal diseases. Ageing Res Rev 2023; 90:102034. [PMID: 37597667 DOI: 10.1016/j.arr.2023.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Degenerative musculoskeletal diseases (Osteoporosis, Osteoarthritis, Degenerative Spinal Disease and Sarcopenia) are pathological conditions that affect the function and pain of tissues such as bone, cartilage, and muscles, and are closely associated with ageing and long-term degeneration. Enhancer of zeste homolog 2 (EZH2), an important epigenetic regulator, regulates gene expression mainly through the PRC2-dependent trimethylation of histone H3 at lysine 27 (H3K27me3). Increasing evidence suggests that EZH2 is involved in several biological processes closely related to degenerative musculoskeletal diseases, such as osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells, osteoclast activation, chondrocyte functional status, and satellite cell proliferation and differentiation, mainly through epigenetic regulation (H3K27me3). Therefore, the synthesis and elucidation of the role of EZH2 in degenerative musculoskeletal diseases have attracted increasing attention. In addition, although EZH2 inhibitors have been approved for clinical use, whether they can be repurposed for the treatment of degenerative musculoskeletal diseases needs to be considered. Here, we reviewed the role of EZH2 in the development of degenerative musculoskeletal diseases and brought forward prospects of its pharmacological inhibitors in the improvement of the treatment of the diseases.
Collapse
Affiliation(s)
- Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lei Chen
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China; Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Yushun Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Sheng Zhang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Yuhong Luo
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Chao Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| |
Collapse
|
16
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
17
|
Huang CJ, Choo KB. Circular RNA- and microRNA-Mediated Post-Transcriptional Regulation of Preadipocyte Differentiation in Adipogenesis: From Expression Profiling to Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054549. [PMID: 36901978 PMCID: PMC10002489 DOI: 10.3390/ijms24054549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Adipogenesis is an indispensable cellular process that involves preadipocyte differentiation into mature adipocyte. Dysregulated adipogenesis contributes to obesity, diabetes, vascular conditions and cancer-associated cachexia. This review aims to elucidate the mechanistic details on how circular RNA (circRNA) and microRNA (miRNA) modulate post-transcriptional expression of targeted mRNA and the impacted downstream signaling and biochemical pathways in adipogenesis. Twelve adipocyte circRNA profiling and comparative datasets from seven species are analyzed using bioinformatics tools and interrogations of public circRNA databases. Twenty-three circRNAs are identified in the literature that are common to two or more of the adipose tissue datasets in different species; these are novel circRNAs that have not been reported in the literature in relation to adipogenesis. Four complete circRNA-miRNA-mediated modulatory pathways are constructed via integration of experimentally validated circRNA-miRNA-mRNA interactions and the downstream signaling and biochemical pathways involved in preadipocyte differentiation via the PPARγ/C/EBPα gateway. Despite the diverse mode of modulation, bioinformatics analysis shows that the circRNA-miRNA-mRNA interacting seed sequences are conserved across species, supporting mandatory regulatory functions in adipogenesis. Understanding the diverse modes of post-transcriptional regulation of adipogenesis may contribute to the development of novel diagnostic and therapeutic strategies for adipogenesis-associated diseases and in improving meat quality in the livestock industries.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 11114 Taipei, Taiwan
- Correspondence: (C.-J.H.); (K.B.C.)
| | - Kong Bung Choo
- Department of Preclinical Sciences, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Selangor, Malaysia
- Correspondence: (C.-J.H.); (K.B.C.)
| |
Collapse
|
18
|
Regué L, Wang W, Ji F, Avruch J, Wang H, Dai N. Human T2D-Associated Gene IMP2/IGF2BP2 Promotes the Commitment of Mesenchymal Stem Cells Into Adipogenic Lineage. Diabetes 2023; 72:33-44. [PMID: 36219823 PMCID: PMC9797317 DOI: 10.2337/db21-1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/06/2022] [Indexed: 01/19/2023]
Abstract
Excessive adiposity is the main cause of obesity and type two diabetes (T2D). Variants in human IMP2/IGF2BP2 gene are associated with increased risk of T2D. However, little is known about its role in adipogenesis and in insulin resistance. Here, we investigate the function of IMP2 during adipocyte development. Mice with Imp2 deletion in mesenchymal stem cells (MSC) are resistant to diet-induced obesity without glucose and insulin tolerance affected. Imp2 is essential for the early commitment of adipocyte-derived stem cells (ADSC) into preadipocytes, but the deletion of Imp2 in MSC is not required for the proliferation and terminal differentiation of committed preadipocytes. Mechanistically, Imp2 binds Wnt receptor Fzd8 mRNA and promotes its degradation by recruiting CCR4-NOT deadenylase complex in an mTOR-dependent manner. Our data demonstrate that Imp2 is required for maintaining white adipose tissue homeostasis through controlling mRNA stability in ADSC. However, the contribution of IMP2 to insulin resistance, a main risk of T2D, is not evident.
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - William Wang
- The Lundquist Institute, Torrance, CA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hua Wang
- The Lundquist Institute, Torrance, CA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Nuclear S6K1 Enhances Oncogenic Wnt Signaling by Inducing Wnt/β-Catenin Transcriptional Complex Formation. Int J Mol Sci 2022; 23:ijms232416143. [PMID: 36555784 PMCID: PMC9785994 DOI: 10.3390/ijms232416143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Ribosomal protein S6 kinase 1 (S6K1), a key downstream effector of the mammalian target of rapamycin (mTOR), regulates diverse functions, such as cell proliferation, cell growth, and protein synthesis. Because S6K1 was previously known to be localized in the cytoplasm, its function has been mainly studied in the cytoplasm. However, the nuclear localization and function of S6K1 have recently been elucidated and other nuclear functions are expected to exist but remain elusive. Here, we show a novel nuclear role of S6K1 in regulating the expression of the Wnt target genes. Upon activation of the Wnt signaling, S6K1 translocated from the cytosol into the nucleus and subsequently bound to β-catenin and the cofactors of the Wnt/β-catenin transcriptional complex, leading to the upregulation of the Wnt target genes. The depletion or repression of S6K1 downregulated the Wnt target gene expression by inhibiting the formation of the Wnt/β-catenin transcriptional complex. The S6K1-depleted colon cancer cell lines showed lower transcription levels of the Wnt/β-catenin target genes and a decrease in the cell proliferation and invasion compared to the control cell lines. Taken together, these results indicate that nuclear S6K1 positively regulates the expression of the Wnt target genes by inducing the reciprocal interaction of the subunits of the transcriptional complex.
Collapse
|
20
|
Amar-Schwartz A, Ben Hur V, Jbara A, Cohen Y, Barnabas GD, Arbib E, Siegfried Z, Mashahreh B, Hassouna F, Shilo A, Abu-Odeh M, Berger M, Wiener R, Aqeilan R, Geiger T, Karni R. S6K1 phosphorylates Cdk1 and MSH6 to regulate DNA repair. eLife 2022; 11:79128. [PMID: 36189922 PMCID: PMC9529248 DOI: 10.7554/elife.79128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The mTORC1 substrate, S6 Kinase 1 (S6K1), is involved in the regulation of cell growth, ribosome biogenesis, glucose homeostasis, and adipogenesis. Accumulating evidence has suggested a role for mTORC1 signaling in the DNA damage response. This is mostly based on the findings that mTORC1 inhibitors sensitized cells to DNA damage. However, a direct role of the mTORC1-S6K1 signaling pathway in DNA repair and the mechanism by which this signaling pathway regulates DNA repair is unknown. In this study, we discovered a novel role for S6K1 in regulating DNA repair through the coordinated regulation of the cell cycle, homologous recombination (HR) DNA repair (HRR) and mismatch DNA repair (MMR) mechanisms. Here, we show that S6K1 orchestrates DNA repair by phosphorylation of Cdk1 at serine 39, causing G2/M cell cycle arrest enabling homologous recombination and by phosphorylation of MSH6 at serine 309, enhancing MMR. Moreover, breast cancer cells harboring RPS6KB1 gene amplification show increased resistance to several DNA damaging agents and S6K1 expression is associated with poor survival of breast cancer patients treated with chemotherapy. Our findings reveal an unexpected function of S6K1 in the DNA repair pathway, serving as a tumorigenic barrier by safeguarding genomic stability. Damage to the DNA in our cells can cause harmful changes that, if unchecked, can lead to the development of cancer. To help prevent this, cellular mechanisms are in place to repair defects in the DNA. A particular process, known as the mTORC1-S6K1 pathway is suspected to be important for repair because when this pathway is blocked, cells become more sensitive to DNA damage. It is still unknown how the various proteins involved in the mTORC1-S6K1 pathway contribute to repairing DNA. One of these proteins, S6K1, is an enzyme involved in coordinating cell growth and survival. The tumor cells in some forms of breast cancer produce more of this protein than normal, suggesting that S6K1 benefits these cells’ survival. However, it is unclear exactly how the enzyme does this. Amar-Schwartz, Ben-Hur, Jbara et al. studied the role of S6K1 using genetically manipulated mouse cells and human cancer cells. These experiments showed that the protein interacts with two other proteins involved in DNA repair and activates them, regulating two different repair mechanisms and protecting cells against damage. These results might explain why some breast cancer tumors are resistant to radiotherapy and chemotherapy treatments, which aim to kill tumor cells by damaging their DNA. If this is the case, these findings could help clinicians choose more effective treatment options for people with cancers that produce additional S6K1. In the future, drugs that block the activity of the enzyme could make cancer cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
- Adi Amar-Schwartz
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Vered Ben Hur
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amina Jbara
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliran Arbib
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bayan Mashahreh
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Fouad Hassouna
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Asaf Shilo
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mohammad Abu-Odeh
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Berger
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
21
|
da Silva VS, Simão JJ, Plata V, de Sousa AF, da Cunha de Sá RDC, Machado CF, Stumpp T, Alonso-Vale MIC, Armelin-Correa L. High-fat diet decreases H3K27ac in mice adipose-derived stromal cells. Obesity (Silver Spring) 2022; 30:1995-2004. [PMID: 36062886 DOI: 10.1002/oby.23537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The study goal was to analyze the effects of a high-fat diet (HFD) on the histone 3 lysine 27 (H3K27) posttranscriptional modifications and the expression of histone-modifying enzymes in adipose-derived stromal cells (ASCs) from white adipose tissue (WAT). METHODS Male C57BL/6J mice received control or HFD for 12 weeks. The ASCs were isolated from subcutaneous and visceral (epididymal) WAT, cultivated, and evaluated for expression of H3K27 trimethylation (H3K27me3) and H3K27 acetylation (H3K27ac) by Western blot. The transcription of histone-modifying enzymes was analyzed by real-time polymerase chain reaction. RESULTS When compared with control, HFD ASCs showed a decrease in H3K27ac enrichment in subcutaneous and visceral WAT and ATP-citrate lyase expression in subcutaneous WAT. Curiously, the expression of CREB-binding protein was increased in visceral ASCs from HFD-fed mice. CONCLUSIONS These results show that an HFD significantly reduces acetylation of H3K27 in ASCs and the expression of ATP-citrate lyase in subcutaneous ASCs, suggesting that, in this fat depot, the H3K27ac reduction could be partly due to lower acetyl-coenzyme A availability. H3K27ac is an epigenetic mark responsible for increasing the transcription rate and its reduction can have an important impact on ASC proliferation and differentiation potential.
Collapse
Affiliation(s)
- Viviane S da Silva
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Jussara J Simão
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Victor Plata
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Andressa França de Sousa
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Roberta D C da Cunha de Sá
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | | | - Taiza Stumpp
- Laboratory of Developmental Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Isabel C Alonso-Vale
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduation Program in Chemical Biology-Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| |
Collapse
|
22
|
Fumagalli S, Pende M. S6 kinase 1 at the central node of cell size and ageing. Front Cell Dev Biol 2022; 10:949196. [PMID: 36036012 PMCID: PMC9417411 DOI: 10.3389/fcell.2022.949196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
Collapse
Affiliation(s)
| | - Mario Pende
- *Correspondence: Stefano Fumagalli, ; Mario Pende,
| |
Collapse
|
23
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
24
|
Lluch A, Veiga SR, Latorre J, Moreno-Navarrete JM, Bonifaci N, Nguyen VD, Zhou Y, Horing M, Liebisch G, Olkkonen VM, Llobet-Navas D, Thomas G, Rodriguez-Barrueco R, Fernández-Real JM, Kozma SC, Ortega FJ. A compound directed against S6K1 hampers fat mass expansion and mitigates diet-induced hepatosteatosis. JCI Insight 2022; 7:150461. [PMID: 35737463 PMCID: PMC9431684 DOI: 10.1172/jci.insight.150461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sonia R Veiga
- Department of Aging & Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Núria Bonifaci
- Breast Cancer and Systems Biology Unit, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Van Dien Nguyen
- Division of Infection and Immunity, Cardiff University School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Marcus Horing
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Vesa M Olkkonen
- Biomedicum, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newastle, United Kingdom
| | - George Thomas
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | | | - José M Fernández-Real
- Department of Endocrinology, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
25
|
Yi SA, Jeon YJ, Lee MG, Nam KH, Ann S, Lee J, Han JW. S6K1 controls adiponectin expression by inducing a transcriptional switch: BMAL1-to-EZH2. Exp Mol Med 2022; 54:324-333. [PMID: 35338256 PMCID: PMC8979988 DOI: 10.1038/s12276-022-00747-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
Adiponectin (encoded by Adipoq), a fat-derived hormone, alleviates risk factors associated with metabolic disorders. Although many transcription factors are known to control adiponectin expression, the mechanism underlying its fluctuation with regard to metabolic status remains unclear. Here, we show that ribosomal protein S6 kinase 1 (S6K1) controls adiponectin expression by inducing a transcriptional switch between two transcriptional machineries, BMAL1 and EZH2. Active S6K1 induced a suppressive histone code cascade, H2BS36p-EZH2-H3K27me3, leading to suppression of adiponectin expression. Moreover, active S6K1 phosphorylated BMAL1, an important transcription factor regulating the circadian clock system, at serine 42, which led to its dissociation from the Adipoq promoter region. This response resulted in EZH2 recruitment and subsequent H3K27me3 modification of the Adipoq promoter. Upon fasting, inactivation of S6K1 induced the opposite transcriptional switch, EZH2-to-BMAL1, promoting adiponectin expression. Consistently, S6K1-depleted mice exhibited lower H3K27me3 levels and elevated adiponectin expression. These findings identify a novel epigenetic switch system by which S6K1 controls the production of adiponectin, which displays beneficial effects on metabolism.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ye Ji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sora Ann
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea.
- Imnewrun Biosciences, Inc, Suwon, 16419, Korea.
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
26
|
p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett 2022; 535:215593. [PMID: 35176419 DOI: 10.1016/j.canlet.2022.215593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
p70 S6 kinase (p70S6K) is best-known for its regulatory roles in protein synthesis and cell growth by phosphorylating its primary substrate, ribosomal protein S6, upon mitogen stimulation. The enhanced expression/activation of p70S6K has been correlated with poor prognosis in some cancer types, suggesting that it may serve as a biomarker for disease monitoring. p70S6K is a critical downstream effector of the oncogenic PI3K/Akt/mTOR pathway and its activation is tightly regulated by an ordered cascade of Ser/Thr phosphorylation events. Nonetheless, it should be noted that other upstream mechanisms regulating p70S6K at both the post-translational and post-transcriptional levels also exist. Activated p70S6K could promote various aspects of cancer progression such as epithelial-mesenchymal transition, cancer stemness and drug resistance. Importantly, novel evidence showing that p70S6K may also regulate different cellular components in the tumor microenvironment will be discussed. Therapeutic targeting of p70S6K alone or in combination with traditional chemotherapies or other microenvironmental-based drugs such as immunotherapy may represent promising approaches against cancers with aberrant p70S6K signaling. Currently, the only clinically available p70S6K inhibitors are rapamycin analogs (rapalogs) which target mTOR. However, there are emerging p70S6K-selective drugs which are going through active preclinical or clinical trial phases. Moreover, various screening strategies have been used for the discovery of novel p70S6K inhibitors, hence bringing new insights for p70S6K-targeted therapy.
Collapse
|
27
|
Nuclear S6K1 regulates cAMP-responsive element-dependent gene transcription through activation of mTOR signal pathway. Biochem Biophys Res Commun 2022; 594:101-108. [DOI: 10.1016/j.bbrc.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
|
28
|
Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Front Endocrinol (Lausanne) 2021; 12:787580. [PMID: 34975759 PMCID: PMC8716683 DOI: 10.3389/fendo.2021.787580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and metabolic disorders have become a worldwide pandemic affecting millions of people. Although obesity is a multifaceted disease, there is growing evidence supporting the obesogen hypothesis, which proposes that exposure to a subset of endocrine disrupting chemicals (EDCs), known as obesogens, promotes obesity. While these effects can be observed in vitro using cell models, in vivo and human epidemiological studies have strengthened this hypothesis. Evidence from animal models showed that the effects of obesogen exposure can be inherited transgenerationally through at least the F4 generation. Transgenerational effects of EDC exposure predispose future generations to undesirable phenotypic traits and diseases, including obesity and related metabolic disorders. The exact mechanisms through which phenotypic traits are passed from an exposed organism to their offspring, without altering the primary DNA sequence, remain largely unknown. Recent research has provided strong evidence suggesting that a variety of epigenetic mechanisms may underlie transgenerational inheritance. These include differential DNA methylation, histone methylation, histone retention, the expression and/or deposition of non-coding RNAs and large-scale alterations in chromatin structure and organization. This review highlights the most recent advances in the field of epigenetics with respect to the transgenerational effects of environmental obesogens. We highlight throughout the paper the strengths and weaknesses of the evidence for proposed mechanisms underlying transgenerational inheritance and why none of these is sufficient to fully explain the phenomenon. We propose that changes in higher order chromatin organization and structure may be a plausible explanation for how some disease predispositions are heritable through multiple generations, including those that were not exposed. A solid understanding of these possible mechanisms is essential to fully understanding how environmental exposures can lead to inherited susceptibility to diseases such as obesity.
Collapse
Affiliation(s)
- Nicole Mohajer
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Erika M. Joloya
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jeongbin Seo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
29
|
Zhang W, Tan X, Lin S, Gou Y, Han C, Zhang C, Ning W, Wang C, Xue Y. CPLM 4.0: an updated database with rich annotations for protein lysine modifications. Nucleic Acids Res 2021; 50:D451-D459. [PMID: 34581824 PMCID: PMC8728254 DOI: 10.1093/nar/gkab849] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we reported the compendium of protein lysine modifications (CPLM 4.0, http://cplm.biocuckoo.cn/), a data resource for various post-translational modifications (PTMs) specifically occurred at the side-chain amino group of lysine residues in proteins. From the literature and public databases, we collected 450 378 protein lysine modification (PLM) events, and combined them with the existing data of our previously developed protein lysine modification database (PLMD 3.0). In total, CPLM 4.0 contained 592 606 experimentally identified modification events on 463 156 unique lysine residues of 105 673 proteins for up to 29 types of PLMs across 219 species. Furthermore, we carefully annotated the data using the knowledge from 102 additional resources that covered 13 aspects, including variation and mutation, disease-associated information, protein-protein interaction, protein functional annotation, DNA & RNA element, protein structure, chemical-target relation, mRNA expression, protein expression/proteomics, subcellular localization, biological pathway annotation, functional domain annotation, and physicochemical property. Compared to PLMD 3.0 and other existing resources, CPLM 4.0 achieved a >2-fold increase in collection of PLM events, with a data volume of ∼45GB. We anticipate that CPLM 4.0 can serve as a more useful database for further study of PLMs.
Collapse
Affiliation(s)
- Weizhi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Han
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chi Zhang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu 210031, China
| |
Collapse
|
30
|
Yi SA, Nam KH, Lee MG, Oh H, Noh JS, Jeong JK, Kwak S, Jeon YJ, Kwon SH, Lee J, Han JW. Transcriptomics-Based Repositioning of Natural Compound, Eudesmin, as a PRC2 Modulator. Molecules 2021; 26:5665. [PMID: 34577136 PMCID: PMC8465685 DOI: 10.3390/molecules26185665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Extensive epigenetic remodeling occurs during the cell fate determination of stem cells. Previously, we discovered that eudesmin regulates lineage commitment of mesenchymal stem cells through the inhibition of signaling molecules. However, the epigenetic modulations upon eudesmin treatment in genomewide level have not been analyzed. Here, we present a transcriptome profiling data showing the enrichment in PRC2 target genes by eudesmin treatment. Furthermore, gene ontology analysis showed that PRC2 target genes downregulated by eudesmin are closely related to Wnt signaling and pluripotency. We selected DKK1 as an eudesmin-dependent potential top hub gene in the Wnt signaling and pluripotency. Through the ChIP-qPCR and RT-qPCR, we found that eudesmin treatment increased the occupancy of PRC2 components, EZH2 and SUZ12, and H3K27me3 level on the promoter region of DKK1, downregulating its transcription level. According to the analysis of GEO profiles, DEGs by depletion of Oct4 showed an opposite pattern to DEGs by eudesmin treatment. Indeed, the expression of pluripotency markers, Oct4, Sox2, and Nanog, was upregulated upon eudesmin treatment. This finding demonstrates that pharmacological modulation of PRC2 dynamics by eudesmin might control Wnt signaling and maintain pluripotency of stem cells.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Jae Sung Noh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Jae Kyun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Sangwoo Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - Ye Ji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, International Campus, Yonsei University, Incheon 21983, Korea;
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Natural Sciences Campus, Sungkyunkwan University, Suwon 16419, Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.A.Y.); (K.H.N.); (M.G.L.); (H.O.); (J.S.N.); (J.K.J.); (S.K.); (Y.J.J.); (J.L.)
| |
Collapse
|
31
|
Wu X, Li J, Chang K, Yang F, Jia Z, Sun C, Li Q, Xu Y. Histone H3 methyltransferase Ezh2 promotes white adipocytes but inhibits brown and beige adipocyte differentiation in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158901. [PMID: 33571671 DOI: 10.1016/j.bbalip.2021.158901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/22/2023]
Abstract
Obesity is a disease characterized by imbalance between energy intake and expenditure, excessive energy store in white adipocytes, but brown and beige adipocytes consume energy to relieve obesity. In this study, we want to explore the role of the histone H3 methyltransferase Ezh2 in the differentiation of white, brown and beige adipocytes with Ezh2 conditional knockout mice (Ezh2flox/floxPrx1-cre) and mouse embryonic fibroblasts (MEFs). The results showed that Ezh2-deficient mice have a leaner phenotype and less white adipose tissues. The morphological changes in the adipose tissue included smaller white adipose tissue depots, white adipocytes with smaller diameter, smaller lipid droplets inside the brown adipocytes and more beige adipocytes in the Ezh2-deficient mice compared with the control. The differentiation markers of white adipocytes in Ezh2 knockout mice decreased; Ucp1 and other browning markers increased in brown and beige adipocytes. The Ezh2 knockout mice could better tolerate cold stimulation, and they can also resist obesity and insulin resistance induced by a high-fat diet. The Ezh2 inhibitor GSK126 could inhibit the differentiation of MEFs into white adipocytes but promote their differentiation into brown/beige adipocytes. The H3K27me3 demethylase Jmjd3/UTX inhibitor GSKJ4 inhibited MEFs' differentiation into brown/beige adipocytes. These results showed that Ezh2 promotes the differentiation of white adipocytes and inhibits the differentiation of brown and beige adipocytes in vivo and in vitro through its methylase activity and this may represent new knowledge for obesity therapeutic strategy.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/cytology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/cytology
- Cell Differentiation
- Diet, High-Fat/adverse effects
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Indoles
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/metabolism
- Obesity/genetics
- Obesity/pathology
- Pyridones/pharmacology
Collapse
Affiliation(s)
- Xiaohui Wu
- State Key Laboratory of Cancer Biology, Department of Pathology, First Affiliated Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China; Institute of Obesity and Metabolic Diseases, Clinical Medical School, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Jianqiang Li
- Cadets of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Kaixuan Chang
- Cadets of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Yang
- Clinical Medical School, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Zhen Jia
- Cadets of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng Sun
- Cadets of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Qing Li
- State Key Laboratory of Cancer Biology, Department of Pathology, First Affiliated Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Yuqiao Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, First Affiliated Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
32
|
Loras A, Segovia C, Ruiz-Cerdá JL. Epigenomic and Metabolomic Integration Reveals Dynamic Metabolic Regulation in Bladder Cancer. Cancers (Basel) 2021; 13:2719. [PMID: 34072826 PMCID: PMC8198168 DOI: 10.3390/cancers13112719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.
Collapse
Affiliation(s)
- Alba Loras
- Unidad Mixta de Investigación en TICs Aplicadas a la Reingeniería de Procesos Socio-Sanitarios (eRPSS), Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Cristina Segovia
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - José Luis Ruiz-Cerdá
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Departamento de Cirugía, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
33
|
Wei M, Zhang C, Tian Y, Du X, Wang Q, Zhao H. Expression and Function of WNT6: From Development to Disease. Front Cell Dev Biol 2021; 8:558155. [PMID: 33425886 PMCID: PMC7794017 DOI: 10.3389/fcell.2020.558155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
WNT family member 6 (WNT6) is a member of the highly conserved WNT protein family. It plays an essential role in the normal development process, not only in embryonic morphogenesis, but also in post-natal homeostasis. WNT6 functions in mice and humans. This review summarizes the current findings on the biological functions of WNT6, describing its involvement in regulating embryogenesis, decidualization, and organ development. Aberrant WNT6 signaling is related to various pathologies, such as promoting cancer development, lung tuberculosis, and kidney fibrosis and improving the symptoms of Rett syndrome (RTT). Thus, due to its various functions, WNT6 has great potential for in-depth research. This work not only describes the signaling mechanism and function of WNT6 under physiological and pathological conditions, but also provides a theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Ming Wei
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Congmin Zhang
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yujia Tian
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- The Health Check Up Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Chae SI, Yi SA, Nam KH, Park KJ, Yun J, Kim KH, Lee J, Han JW. Morolic Acid 3- O-Caffeate Inhibits Adipogenesis by Regulating Epigenetic Gene Expression. Molecules 2020; 25:molecules25245910. [PMID: 33322233 PMCID: PMC7764869 DOI: 10.3390/molecules25245910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Obesity causes a wide range of metabolic diseases including diabetes, cardiovascular disease, and kidney disease. Thus, plenty of studies have attempted to discover naturally derived compounds displaying anti-obesity effects. In this study, we evaluated the inhibitory effects of morolic acid 3-O-caffeate (MAOC), extracted from Betula schmidtii, on adipogenesis. Treatment of 3T3-L1 cells with MAOC during adipogenesis significantly reduced lipid accumulation and decreased the expression of adiponectin, a marker of mature adipocytes. Moreover, the treatment with MAOC only during the early phase (day 0-2) sufficiently inhibited adipogenesis, comparable with the inhibitory effects observed following MAOC treatment during the whole processes of adipogenesis. In the early phase of adipogenesis, the expression level of Wnt6, which inhibits adipogenesis, increased by MAOC treatment in 3T3-L1 cells. To identify the gene regulatory mechanism, we assessed alterations in histone modifications upon MAOC treatment. Both global and local levels on the Wnt6 promoter region of histone H3 lysine 4 trimethylation, an active transcriptional histone marker, increased markedly by MAOC treatment in 3T3-L1 cells. Our findings identified an epigenetic event associated with inhibition of adipocyte generation by MAOC, suggesting its potential as an efficient therapeutic compound to cure obesity and metabolic diseases.
Collapse
Affiliation(s)
- Sook In Chae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Jihye Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Imnewrun Biosciences Inc., Suwon 16419, Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.I.C.); (S.A.Y.); (K.H.N.); (K.J.P.); (J.Y.); (K.H.K.); (J.L.)
- Correspondence: ; Tel.: +82-31-290-7716
| |
Collapse
|
35
|
S6K1 inhibits HBV replication through inhibiting AMPK-ULK1 pathway and disrupting acetylation modification of H3K27. Life Sci 2020; 265:118848. [PMID: 33278383 DOI: 10.1016/j.lfs.2020.118848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
AIMS To investigated the effect of S6K1 on the replication and transcription of HBV DNA using multiple cell models. MAIN METHODS The pgRNA, total HBV RNA and HBV DNA level were detected by Real-time PCR. The HBcAg expression by Western blot and the activity of four HBV promoters, such as preS1, preS2/S, core, and X promoters by using dual luciferase reporter assay. Moreover, we determined S6K1 interacted with HBcAg in both cytoplasm and nucleus through Immunofluorescence, co-immunoprecipitation (CoIP) and Western blot. KEY FINDINGS S6K1 inhibited HBV DNA replication and cccDNA-dependent transcription in HBV-expressing stable cell lines. The mechanistic study revealed that S6K1 suppressed HBV DNA replication by inhibiting AMPK-ULK1 autophagy pathway, and the nuclear S6K1 suppressed HBV cccDNA-dependent transcription by inhibiting the acetylation modification of H3K27. In addition, HBV capsid protein (HBcAg) suppressed the phosphorylation level of S6K1Thr389 by interacting with S6K1, indicating a viral antagonism of S6K1-mediated antiviral mechanism. SIGNIFICANCE The p70 ribosomal S6 kinase (S6K1) is a serine/threonine protein kinase, and it plays a significant role in different cellular processes. It has been previously reported that S6K1 affects hepatitis B virus (HBV) replication but the underlying mechanism remains unclear. In this study, our data suggested that the activation of S6K1 restricts HBV replication through inhibiting AMPK-ULK1 autophagy pathway and H3K27 acetylation. These findings indicated that S6K1 might be a potential therapeutic target for HBV infection.
Collapse
|
36
|
PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep 2020; 39:221398. [PMID: 31799599 PMCID: PMC6923342 DOI: 10.1042/bsr20191041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
PD-L1 is a well-known immune co-stimulatory molecule that regulates tumour cell escape from immunity by suppressing the immune response. However, the clinical significance of PD-L1 in the progression of ovarian cancer is unclear. Our study demonstrated that PD-L1 is up-regulated in ovarian tumour tissue compared with its expression level in adjacent normal tissue. Furthermore, we confirmed that PD-L1 increases the proliferation of cancer cells by activating the AKT-mTORC signalling pathway, which is also enhanced by the expression of S6K, the substrate of mTORC. In addition, PD-L1 promotes the autophagy of ovarian cancer cells by up-regulating the expression of BECN1, a crucial molecule involved in the regulation of autophagy. In conclusion, PD-L1 may provide a target for the development of a novel strategy for the treatment of ovarian cancer.
Collapse
|
37
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Yi SA, Lee DH, Kim GW, Ryu HW, Park JW, Lee J, Han J, Park JH, Oh H, Lee J, Choi J, Kim HS, Kang HG, Kim DH, Chun KH, You JS, Han JW, Kwon SH. HPV-mediated nuclear export of HP1γ drives cervical tumorigenesis by downregulation of p53. Cell Death Differ 2020; 27:2537-2551. [PMID: 32203172 PMCID: PMC7429875 DOI: 10.1038/s41418-020-0520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
E6 oncoprotein derived from high-risk human papillomavirus (HPV) drives the development of cervical cancer through p53 degradation. Because cervical cancer therapies to inactivate HPV or E6 protein are not available, alternative strategies are required. Here, we show that HPV-mediated nuclear export of human heterochromatin protein 1γ (HP1γ) reduces the stability of p53 through UBE2L3-mediated p53 polyubiquitination during cervical cancer progression. In general, HP1 plays a key role in heterochromatin formation and transcription in the nucleus. However, our immunostaining data showed that the majority of HP1γ is localized in the cytoplasm in HPV-mediated cervical cancer. We found that HPV E6 protein drives unusual nuclear export of HP1γ through the interaction between the NES sequence of HP1γ and exportin-1. The mutation of the NES sequence in HP1γ led to nuclear retention of HP1γ and reduced cervical cancer cell growth and tumor generation. We further discovered that HP1γ directly suppresses the expression of UBE2L3 which drives E6-mediated proteasomal degradation of p53 in cervical cancer. Downregulation of UBE2L3 by overexpression of HP1γ suppressed UBE2L3-dependent p53 degradation-promoting apoptosis of cervical cancer cells. Our findings propose a useful strategy to overcome p53 degradation in cervical cancer through the blockage of nuclear export of HP1γ.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jong Woo Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihoon Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee Hun Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwamok Oh
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jieun Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
39
|
Huang D, Camacho CV, Setlem R, Ryu KW, Parameswaran B, Gupta RK, Kraus WL. Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis. Mol Cell 2020; 79:934-949.e14. [PMID: 32822587 DOI: 10.1016/j.molcel.2020.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/17/2023]
Abstract
Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P.R. China
| | - Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keun Woo Ryu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Balaji Parameswaran
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
HP1γ Sensitizes Cervical Cancer Cells to Cisplatin through the Suppression of UBE2L3. Int J Mol Sci 2020; 21:ijms21175976. [PMID: 32825184 PMCID: PMC7503686 DOI: 10.3390/ijms21175976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is the most frequently used agent for chemotherapy against cervical cancer. However, recurrent use of cisplatin induces resistance, representing a major hurdle in the treatment of cervical cancer. Our previous study revealed that HP1γ suppresses UBE2L3, an E2 ubiquitin conjugating enzyme, thereby enhancing the stability of tumor suppressor p53 specifically in cervical cancer cells. As a follow-up study of our previous findings, here we have identified that the pharmacological substances, leptomycin B and doxorubicin, can improve the sensitivity of cervical cancer cells to cisplatin inducing HP1γ-mediated elevation of p53. Leptomycin B, which inhibits the nuclear export of HP1γ, increased cisplatin-dependent apoptosis induction by promoting the activation of p53 signaling. We also found that doxorubicin, which induces the DNA damage response, promotes HP1γ-mediated silencing of UBE2L3 and increases p53 stability. These effects resulted from the nuclear translocation and binding of HP1γ on the UBE2L3 promoter. Doxorubicin sensitized the cisplatin-resistant cervical cancer cells, enhancing their p53 levels and rate of apoptosis when administered together with cisplatin. Our findings reveal a therapeutic strategy to target a specific molecular pathway that contributes to p53 degradation for the treatment of patients with cervical cancer, particularly with cisplatin resistance.
Collapse
|
41
|
Fang Y, Liang F, Yuan R, Zhu Q, Cai S, Chen K, Zhang J, Luo X, Chen Y, Mo D. High mobility group box 2 regulates skeletal muscle development through ribosomal protein S6 kinase 1. FASEB J 2020; 34:12367-12378. [DOI: 10.1096/fj.202001183r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Fang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Feng Liang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Qi Zhu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Shufang Cai
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Keren Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Delin Mo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| |
Collapse
|
42
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
43
|
Zhang T, Gong Y, Meng H, Li C, Xue L. Symphony of epigenetic and metabolic regulation-interaction between the histone methyltransferase EZH2 and metabolism of tumor. Clin Epigenetics 2020; 12:72. [PMID: 32448308 PMCID: PMC7245796 DOI: 10.1186/s13148-020-00862-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has suggested that epigenetic and metabolic alterations in cancer cells are highly intertwined. As the master epigenetic regulator, enhancer of zeste homolog 2 (EZH2) suppresses gene transcription mainly by catalyzing the trimethylation of histone H3 at lysine 27 (H3K27me3) and exerts highly enzymatic activity in cancer cells. Cancer cells undergo the profound metabolic reprogramming and manifest the distinct metabolic profile. The emerging studies have explored that EZH2 is involved in altering the metabolic profiles of tumor cells by multiple pathways, which cover glucose, lipid, and amino acid metabolism. Meanwhile, the stability and methyltransferase activity of EZH2 can be also affected by the metabolic activity of tumor cells through various mechanisms, including post-translational modification. In this review, we have summarized the correlation between EZH2 and cellular metabolic activity during tumor progression and drug treatment. Finally, as a promising target, we proposed a novel strategy through a combination of EZH2 inhibitors with metabolic regulators for future cancer therapy.
Collapse
Affiliation(s)
- Tengrui Zhang
- Center of Basic Medical Research, Peking University Third Hospital, Institute of Medical Innovation and Research, 49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Yueqing Gong
- Center of Basic Medical Research, Peking University Third Hospital, Institute of Medical Innovation and Research, 49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Hui Meng
- Center of Basic Medical Research, Peking University Third Hospital, Institute of Medical Innovation and Research, 49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Chen Li
- Center of Basic Medical Research, Peking University Third Hospital, Institute of Medical Innovation and Research, 49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Lixiang Xue
- Center of Basic Medical Research, Peking University Third Hospital, Institute of Medical Innovation and Research, 49 North Garden Road, Haidian District, Beijing, 100191 China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191 China
| |
Collapse
|
44
|
Lee S, Roh HS, Song SS, Shin J, Lee J, Bhang DH, Kim BG, Um SH, Jeong HS, Baek KH. Loss of S6K1 But Not S6K2 in the Tumor Microenvironment Suppresses Tumor Growth by Attenuating Tumor Angiogenesis. Transl Oncol 2020; 13:100767. [PMID: 32251993 PMCID: PMC7132264 DOI: 10.1016/j.tranon.2020.100767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022] Open
Abstract
Two isoforms of the 70-kDa ribosomal protein S6 kinase, S6K1 and S6K2, have been identified and are considered key downstream effectors of the mTOR signaling pathway, which is involved in tumor growth and progression. However, their biological roles in the tumor microenvironment are poorly understood. In this study, utilizing tumor xenograft models in S6k1−/− and S6k2−/− mice, we show that loss of S6K1 but not S6K2 in the tumor stroma suppresses tumor growth, accompanied by attenuated tumor angiogenesis. We found that while S6K1 depletion had no effect on the proangiogenic phenotype of endothelial cells, the growth and angiogenesis of tumor xenografts were significantly reduced in wild-type mice upon reconstitution with S6K1-deficient bone marrow cells. Furthermore, upon S6K1 loss, induction of both mRNA and protein levels of Hif-1α and those of the downstream target, Vegf, was compromised in bone marrow–derived macrophages stimulated with lactate. These findings indicate that S6K1 but not S6K2 contributes to establishing a microenvironment that favors tumor growth through mediating angiogenesis, and suggest that attenuated tumor angiogenesis upon loss of S6K1 in the tumor stroma is, at least in part, attributable to impaired upregulation of Vegf in tumor-associated macrophages.
Collapse
Affiliation(s)
- Seul Lee
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seong-Soo Song
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jimin Shin
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jangchoon Lee
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Byung Gak Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Sung Hee Um
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Han-Sin Jeong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea.
| |
Collapse
|
45
|
Ordway B, Swietach P, Gillies RJ, Damaghi M. Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor Evolution. Front Oncol 2020; 10:373. [PMID: 32292719 PMCID: PMC7119341 DOI: 10.3389/fonc.2020.00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
When cancer research advanced into the post-genomic era, it was widely anticipated that the sought-after cure will be delivered promptly. Instead, it became apparent that an understanding of cancer genomics, alone, is unable to translate the wealth of information into successful cures. While gene sequencing has significantly improved our understanding of the natural history of cancer and identified candidates for therapeutic targets, it cannot predict the impact of the biological response to therapies. Hence, patients with a common mutational profile may respond differently to the same therapy, due in part to different microenvironments impacting on gene regulation. This complexity arises from a feedback circuit involving epigenetic modifications made to genes by the metabolic byproducts of cancer cells. New insights into epigenetic mechanisms, activated early in the process of carcinogenesis, have been able to describe phenotypes which cannot be inferred from mutational analyses per se. Epigenetic changes can propagate throughout a tumor via heritable modifications that have long-lasting consequences on ensuing phenotypes. Such heritable epigenetic changes can be evoked profoundly by cancer cell metabolites, which then exercise a broad remit of actions across all stages of carcinogenesis, culminating with a meaningful impact on the tumor's response to therapy. This review outlines some of the cross-talk between heritable epigenetic changes and tumor cell metabolism, and the consequences of such changes on tumor progression.
Collapse
Affiliation(s)
- Bryce Ordway
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert J Gillies
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mehdi Damaghi
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
46
|
Xie X, Yu C, Ren Q, Wen Q, Zhao C, Tang Y, Du Y. Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135917. [PMID: 31865202 DOI: 10.1016/j.scitotenv.2019.135917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant, and a ubiquitous environmental contaminant. However, effects and mechanisms underlying HBCD and the development of obesity remain largely unknown. Here, we investigated the effects and underlying mechanisms of HBCD on adipogenesis. Our results firstly disclosed that both murine 3T3-L1 and human HPA-V preadipocyte exposed to HBCD displayed markedly enhanced adipogenesis, manifesting with increase of triglyceride accumulation and expression of adipogenic marker genes. HBCD was further identified to play roles mainly during early-stage adipogenesis and increased expression of Pparγ, a key adipogenic regulator. Interestingly, HBCD didn't affect early key event mitotic clonal expansion (MCE), expression and activation of early pivotal factor C/EBPβ. In virtue of RNA sequencing, HBCD was further demonstrated to specially block Wnt6 gene expression and inhibited the Wnt/β-catenin pathway at an early stage of adipogenesis. Consistent with cellular finding, C57BL/6 male mice chronically exposed to HBCD exhibited specially increased epididymal white adipose tissue (eWAT) weight gain, elevated expression of master adipogenic genes and down-regulated expression of Wnt6 in eWAT. Taking together, our findings firstly revealed that HBCD promotes adipogenesis in vitro and in vivo by specifically inhibiting Wnt6 expression, presumably connecting exposure of HBCD to the development of obesity.
Collapse
Affiliation(s)
- Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Cuixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Tang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
47
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
48
|
Choi J, Park CS, Seong MK, Seol H, Kim JS, Park IC, Noh WC, Kim HA. Predicting the Benefit of Adjuvant Aromatase Inhibitor Therapy in Postmenopausal Breast Cancer Patients with Phosphorylated S6K1 Expression Status. J Breast Cancer 2019; 23:10-19. [PMID: 32140266 PMCID: PMC7043945 DOI: 10.4048/jbc.2020.23.e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Phosphorylated ribosomal S6 kinase 1 (pS6K1) is a major downstream regulator of the mammalian target of rapamycin (mTOR) pathway. Recent studies have addressed the role of S6K1 in adipogenesis. pS6K1 may affect the outcome of estrogen depletion therapy in patients with hormone-sensitive breast cancer due to its association with adipogenesis and increased local estrogen levels. This study aimed to investigate the potential of pS6K1 as a predictive marker of adjuvant aromatase inhibitor (AI) therapy outcome in postmenopausal or ovarian function-suppressed patients with hormone-sensitive breast cancer. Methods Medical records were retrospectively reviewed in postmenopausal or ovarian function-suppressed patients with estrogen receptor-positive and node-positive primary breast cancer. pS6K1 expression status was scored on a scale from 0 (negative) to 3+ (positive) based on immunohistochemical analysis. Results A total of 428 patients were eligible. The median follow-up duration was 44 months (range, 1–90). In patients with positive pS6K1 expression, AIs significantly improved disease-free survival (DFS) compared to selective estrogen receptor modulators (SERMs) (5 year-DFS: 83.5% vs. 50.7%, p = 0.016). However, there was no benefit of AIs on DFS in the pS6K1 negative group (5 year-DFS 87.6% vs. 91.4%, p = 0.630). On multivariate analysis, AI therapy remained a significant predictor for DFS in the pS6K1 positive group (hazard ratio, 0.39; 95% confidence interval, 0.16–0.96; p = 0.041). pS6K1 was more effective in predicting the benefit of AI therapy in patients with ages < 50 (p = 0.021) compared to those with ages ≥ 50 (p = 0.188). Conclusion pS6K1 expression may predict AI therapy outcomes and serve as a potential predictive marker for adjuvant endocrine therapy in postmenopausal and ovarian function-suppressed patients with hormone-sensitive breast cancer. AIs may be more effective in patients with pS6K1 positive tumors, while SERM could be considered an alternative option for patients with pS6K1 negative tumors.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Surgery, National Medical Center, Seoul, Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyesil Seol
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Sung Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In-Chul Park
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
49
|
Vulpinic Acid Controls Stem Cell Fate toward Osteogenesis and Adipogenesis. Genes (Basel) 2019; 11:genes11010018. [PMID: 31878002 PMCID: PMC7017160 DOI: 10.3390/genes11010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Vulpinic acid, a naturally occurring methyl ester of pulvinic acid, has been reported to exert anti-fungal, anti-cancer, and anti-oxidative effects. However, its metabolic action has not been implicated yet. Here, we show that vulpinic acid derived from a mushroom, Pulveroboletus ravenelii controls the cell fate of mesenchymal stem cells and preadipocytes by inducing the acetylation of histone H3 and α-tubulin, respectively. The treatment of 10T1/2 mesenchymal stem cells with vulpinic acid increased the expression of Wnt6, Wnt10a, and Wnt10b, which led to osteogenesis inhibiting the adipogenic lineage commitment, through the upregulation of H3 acetylation. By contrast, treatment with vulpinic acid promoted the terminal differentiation of 3T3-L1 preadipocytes into mature adipocytes. In this process, the increase in acetylated tubulin was accompanied, while acetylated H3 was not altered. As excessive generation of adipocytes occurs, the accumulation of lipid drops was not concentrated, but dispersed into a number of adipocytes. Consistently, the expressions of lipolytic genes were upregulated and inflammatory factors were downregulated in adipocytes exposed to vulpinic acid during adipogenesis. These findings reveal the multiple actions of vulpinic acid in two stages of differentiation, promoting the osteogenesis of mesenchymal stem cells and decreasing hypertrophic adipocytes, which can provide experimental evidence for the novel metabolic advantages of vulpinic acid.
Collapse
|
50
|
Nam KH, Yi SA, Nam G, Noh JS, Park JW, Lee MG, Park JH, Oh H, Lee J, Lee KR, Park HJ, Lee J, Han JW. Identification of a novel S6K1 inhibitor, rosmarinic acid methyl ester, for treating cisplatin-resistant cervical cancer. BMC Cancer 2019; 19:773. [PMID: 31387554 PMCID: PMC6683399 DOI: 10.1186/s12885-019-5997-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background The mTOR/S6K1 signaling pathway is often activated in cervical cancer, and thus considered a molecular target for cervical cancer therapies. Inhibiting mTOR is cytotoxic to cervical cancer cells and creates a synergistic anti-tumor effect with conventional chemotherapy agents. In this study, we identified a novel S6K1 inhibitor, rosmarinic acid methyl ester (RAME) for the use of therapeutic agent against cervical cancer. Methods Combined structure- and ligand-based virtual screening was employed to identify novel S6K1 inhibitors among the in house natural product library. In vitro kinase assay and immunoblot assay was used to examine the effects of RAME on S6K1 signaling pathway. Lipidation of LC3 and mRNA levels of ATG genes were observed to investigate RAME-mediated autophagy. PARP cleavage, mRNA levels of apoptotic genes, and cell survival was measured to examine RAME-mediated apoptosis. Results RAME was identified as a novel S6K1 inhibitor through the virtual screening. RAME, not rosmarinic acid, effectively reduced mTOR-mediated S6K1 activation and the kinase activity of S6K1 by blocking the interaction between S6K1 and mTOR. Treatment of cervical cancer cells with RAME promoted autophagy and apoptosis, decreasing cell survival rate. Furthermore, we observed that combination treatment with RAME and cisplatin greatly enhanced the anti-tumor effect in cisplatin-resistant cervical cancer cells, which was likely due to mTOR/S6K1 inhibition-mediated autophagy and apoptosis. Conclusions Our findings suggest that inhibition of S6K1 by RAME can induce autophagy and apoptosis in cervical cancer cells, and provide a potential option for cervical cancer treatment, particularly when combined with cisplatin. Electronic supplementary material The online version of this article (10.1186/s12885-019-5997-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Sung Noh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|