1
|
Liu P, Zhou G. The Evolving Role of Histone H1 in Shaping Chromatin and Epigenetic Landscapes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112557. [PMID: 40381700 DOI: 10.1016/j.plantsci.2025.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Histone H1, long recognized for its fundamental role in stabilizing nucleosomes and compacting chromatin, is now emerging as a highly dynamic and versatile regulator essential for diverse nuclear processes. This review synthesizes recent advancements that move beyond H1's canonical structural functions, illuminating its intricate, often context-dependent, control over epigenetic modifications, gene expression, and 3D genome organization across eukaryotes. H1's ability to modulate chromatin accessibility and architecture, influenced by its local density, variant composition, and dynamic binding, dictates its species- and locus-specific impacts. H1 critically shapes DNA methylation landscapes and the deposition of key histone marks H3K27me3, often by affecting enzyme accessibility and inter-pathway dynamics. Its transcriptional impact transcends canonical transposable element silencing, extending to the selective fine-tuning of gene expression, with certain H1 variants even functioning as direct transcriptional activators. Regarding 3D genome organization, while H1's local density drives compartmentalization and influences epigenetic states in mammals, in Arabidopsis, it exhibits more complex, locus-specific roles including modulating telomere clustering, interstitial telomeric repeat insulation, and facilitating phase separation for heterochromatin foci assembly. Collectively, these findings establish histone H1 not merely as a structural backbone, but as a sophisticated regulator that intricately links chromatin's physical state to its functional outputs, profoundly impacting genome integrity, gene regulation, and cellular identity.
Collapse
Affiliation(s)
- Peng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College for Overseas Education, Yangzhou University, Yangzhou, 225009, China; Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Liao Z, Yang L, Cheng X, Huang X, Zhang Q, Wen D, Song Z, Li Y, Wen S, Li Y, Ou M, Huang Z, Liu T, He M. pir-hsa-216911 inhibit pyroptosis in hepatocellular carcinoma by suppressing TLR4 initiated GSDMD activation. Cell Death Discov 2025; 11:11. [PMID: 39824843 PMCID: PMC11742400 DOI: 10.1038/s41420-024-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells. This overexpression of pir-hsa-216911 promotes HCC cell invasion and inhibits cell death, particularly pyroptosis. Knocking out pir-hsa-216911 led to increased cell pyroptosis activity, resulting in the activation of caspase-1 and GSDMD. Further analysis revealed that pir-hsa-216911 targets and suppresses TLR4, a key gene associated with pyroptosis in HCC. In the Huh7 cell line, pir-hsa-216911 knockout confirmed its role in suppressing the TLR4/NFκB/NLRP3 pathway by silencing TLR4. Knocking out pir-hsa-216911 significantly inhibited the formation of Huh7 xenograft tumor. In HCC patients, pir-hsa-216911 was highly expressed in HCC tumor samples with steatosis, suppressing TLR4 expression and inhibiting GSDMD activation. This study introduces pir-hsa-216911 as a new high-expressing piRNA in HCC, which inhibits pyroptosis by silencing TLR4 to suppress GSDMD activation. These findings have significant implications for HCC molecular subtyping and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lichao Yang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute of Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Qi Zhang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Daoqiang Wen
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhenyu Song
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sha Wen
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yongfeng Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Meizhen Ou
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Zhangnan Huang
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tianqi Liu
- Department of Hepatobiliary Surgery, Hospital of Guangxi Jiang Bing, Nanning, 530021, China.
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
3
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
4
|
Ariura M, Solberg T, Ishizu H, Takahashi H, Carninci P, Siomi H, Iwasaki YW. Drosophila Piwi distinguishes transposons from mRNAs by piRNA complementarity and abundance. Cell Rep 2024; 43:115020. [PMID: 39636727 DOI: 10.1016/j.celrep.2024.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are the main repressors of transposable elements (TEs) in animal germlines. In Drosophila, Piwi-piRNA complexes associate with nascent TE transcripts to drive heterochromatin formation and TE repression. However, previous studies have shown that Piwi also associates with large numbers of mRNAs, raising the question of how Piwi discriminates between mRNAs and TEs. To answer this question, we performed a comprehensive analysis of Piwi-associated RNAs, compositionally and functionally, to decipher the targeting rules of Piwi-piRNA complexes. While Piwi initially identifies its targets through the seed sequence, it requires pairing well beyond the seed, nearly a perfect match, to elicit a repressive response. In addition to the complementarity of piRNAs to their targets, their abundance must reach a certain threshold to be functional. Together, these findings explain large differences in the target repression of Piwi-associated RNAs and reveal how Piwi efficiently distinguishes TEs from mRNAs despite associating with both.
Collapse
Affiliation(s)
- Masaru Ariura
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| | - Yuka W Iwasaki
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
5
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Guo X, Wang C, Zhang Y, Wei R, Xi R. Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor. Nat Commun 2024; 15:2656. [PMID: 38531872 DOI: 10.1038/s41467-024-46956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity. Depleting the transcription factor Tramtrack in the differentiated ECs can initiate Prospero-mediated cell transdifferentiation, leading to EE-like cells. On the other hand, depletion of Prospero in the differentiated EEs can lead to the loss of EE-specific transcription programs and the gain of intestinal progenitor cell identity, allowing cell cycle re-entry or differentiation into ECs. We find that intestinal progenitor cells, ECs, and EEs have a similar chromatin accessibility profile, supporting the concept that cell plasticity is enabled by pre-existing chromatin accessibility with switchable transcription programs. Further genetic analysis with this system reveals that the NuRD chromatin remodeling complex, cell lineage confliction, and age act as barriers to EC-to-EE transdifferentiation. The establishment of this genetically tractable in vivo model should facilitate mechanistic investigation of cell plasticity at the molecular and genetic level.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yongchao Zhang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ruxue Wei
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
8
|
Rajeev R, Mishra RK, Khosla S. DNMT3L interacts with Piwi and modulates the expression of piRNAs in transgenic Drosophila. Epigenomics 2024; 16:375-388. [PMID: 38440884 DOI: 10.2217/epi-2023-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aim: To explore the role of Piwi protein and piRNAs in DNMT3L-mediated epigenetic inheritance. Materials & methods: Transgenic Drosophila were used to examine the effect of ectopically expressed DNMT3L on the profile of piRNAs by sequencing of small RNAs. Results & conclusion: Our previous work showed accumulation and inheritance of epimutations across multiple generations in transgenic DNMT3L Drosophila. Here, we show interaction of DNMT3L with Piwi and a significant alteration in the piRNA profile across multiple generations in transgenic Drosophila. In the light of its interaction with histone H1, we propose that in addition to its role of modulating core histone modifications, DNMT3L allows for inheritance of epigenetic information through its collaboration with Piwi, piRNAs and histone H1.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500 039, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, 500 007, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500 039, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
9
|
Cui X, Shang X, Xie J, Xie C, Tang Z, Luo Q, Wu C, Wang G, Wang N, He K, Wang L, Huang L, Wan B, Roeder RG, Han ZG. Cooperation between IRTKS and deubiquitinase OTUD4 enhances the SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. Cancer Lett 2023; 575:216404. [PMID: 37739210 DOI: 10.1016/j.canlet.2023.216404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.
Collapse
Affiliation(s)
- Xiaofang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenyi Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongchao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
11
|
Tang X, Liu N, Qi H, Lin H. Piwi maintains homeostasis in the Drosophila adult intestine. Stem Cell Reports 2023; 18:503-518. [PMID: 36736325 PMCID: PMC9969073 DOI: 10.1016/j.stemcr.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
PIWI genes are well known for their germline but not somatic functions. Here, we report the function of the Drosophila piwi gene in the adult gut, where intestinal stem cells (ISCs) produce enteroendocrine cells and enteroblasts that generate enterocytes. We show that piwi is expressed in ISCs and enteroblasts. Piwi deficiency reduced ISC number, compromised enteroblasts maintenance, and induced apoptosis in enterocytes, but did not affect ISC proliferation and its differentiation to enteroendocrine cells. In addition, deficiency of zygotic but not maternal piwi mildly de-silenced several retrotransposons in the adult gut. Importantly, either piwi mutations or piwi knockdown specifically in ISCs and enteroblasts shortened the Drosophila lifespan, indicating that intestinal piwi contributes to longevity. Finally, our mRNA sequencing data implied that Piwi may achieve its intestinal function by regulating diverse molecular processes involved in metabolism and oxidation-reduction reaction.
Collapse
Affiliation(s)
- Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Na Liu
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hongying Qi
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
12
|
Measuring Transposable Element Activity in Adult Drosophila Ovaries. Methods Mol Biol 2023; 2626:309-321. [PMID: 36715912 DOI: 10.1007/978-1-0716-2970-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transposons are genetic elements that use various mechanisms of transposition to move around the genome, thus posing a risk to genomic integrity. Repression of transposable elements (TEs) involves the complex PIWI pathway and several proteins associated with heterochromatinization. All players of TE repression are indispensable for proper reproductive fitness, as loss-of-function mutations in these genes result primarily in sterility and impaired reproductive development. When investigating the function of novel genes with similar phenotypes, elevated transposon expression in reproductive tissues can be a marker for involvement in the aforementioned processes. Here, we present a protocol for investigating TE levels in adult Drosophila ovaries, from dissection to data analysis.
Collapse
|
13
|
Takeuchi C, Yokoshi M, Kondo S, Shibuya A, Saito K, Fukaya T, Siomi H, Iwasaki Y. Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers. Nucleic Acids Res 2022; 50:11580-11599. [PMID: 36373634 PMCID: PMC9723646 DOI: 10.1093/nar/gkac1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Telomeres in Drosophila are composed of sequential non-LTR retrotransposons HeT-A, TART and TAHRE. Although they are repressed by the PIWI-piRNA pathway or heterochromatin in the germline, the regulation of these retrotransposons in somatic cells is poorly understood. In this study, we demonstrated that specific splice variants of Mod(mdg4) repress HeT-A by blocking subtelomeric enhancers in ovarian somatic cells. Among the variants, we found that the Mod(mdg4)-N variant represses HeT-A expression the most efficiently. Subtelomeric sequences bound by Mod(mdg4)-N block enhancer activity within subtelomeric TAS-R repeats. This enhancer-blocking activity is increased by the tandem association of Mod(mdg4)-N to repetitive subtelomeric sequences. In addition, the association of Mod(mdg4)-N couples with the recruitment of RNA polymerase II to the subtelomeres, which reinforces its enhancer-blocking function. Our findings provide novel insights into how telomeric retrotransposons are regulated by the specific variants of insulator proteins associated with subtelomeric sequences.
Collapse
Affiliation(s)
- Chikara Takeuchi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shu Kondo
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka 411-8540, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Yuka W Iwasaki
- To whom correspondence should be addressed. Tel: +81 3 5363 3529; Fax: +81 3 5363 3266;
| |
Collapse
|
14
|
Corsello T, Kudlicki AS, Liu T, Casola A. Respiratory syncytial virus infection changes the piwi-interacting RNA content of airway epithelial cells. Front Mol Biosci 2022; 9:931354. [PMID: 36158569 PMCID: PMC9493205 DOI: 10.3389/fmolb.2022.931354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (sncRNAs) of about 26–32 nucleotides in length and represent the largest class of sncRNA molecules expressed in animal cells. piRNAs have been shown to play a crucial role to safeguard the genome, maintaining genome complexity and integrity, as they suppress the insertional mutations caused by transposable elements. However, there is growing evidence for the role of piRNAs in controlling gene expression in somatic cells as well. Little is known about changes in piRNA expression and possible function occurring in response to viral infections. In this study, we investigated the piRNA expression profile, using a human piRNA microarray, in human small airway epithelial (SAE) cells infected with respiratory syncytial virus (RSV), a leading cause of acute respiratory tract infections in children. We found a time-dependent increase in piRNAs differentially expressed in RSV-infected SAE cells. We validated the top piRNAs upregulated and downregulated at 24 h post-infection by RT-qPCR and identified potential targets. We then used Gene Ontology (GO) tool to predict the biological processes of the predicted targets of the most represented piRNAs in infected cells over the time course of RSV infection. We found that the most significant groups of targets of regulated piRNAs are related to cytoskeletal or Golgi organization and nucleic acid/nucleotide binding at 15 and 24 h p.i. To identify common patterns of time-dependent responses to infection, we clustered the significantly regulated expression profiles. Each of the clusters of temporal profiles have a distinct set of potential targets of the piRNAs in the cluster Understanding changes in piRNA expression in RSV-infected airway epithelial cells will increase our knowledge of the piRNA role in viral infection and might identify novel therapeutic targets for viral lung-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Corsello
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Andrzej S Kudlicki
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- *Correspondence: Antonella Casola,
| |
Collapse
|
15
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
16
|
Lim LX, Isshiki W, Iki T, Kawaguchi S, Kai T. The Tudor Domain-Containing Protein, Kotsubu (CG9925), Localizes to the Nuage and Functions in piRNA Biogenesis in D. melanogaster. Front Mol Biosci 2022; 9:818302. [PMID: 35425810 PMCID: PMC9002060 DOI: 10.3389/fmolb.2022.818302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Silencing of transposable elements (TEs) by Piwi-interacting RNAs (piRNAs) is crucial for maintaining germline genome integrity and fertility in animals. To repress TEs, PIWI clade Argonaute proteins cooperate with several Tudor domain-containing (Tdrd) proteins at membraneless perinuclear organelles, called nuage, to produce piRNAs to repress transposons. Here, we identify and characterize Kotsubu (Kots), one of the Drosophila Tudor domain-containing protein-1 (Tdrd1) orthologs, encoded by the CG9925 gene, that localizes to the nuage in gonads. We further show the dynamic localization of Kots in the male germline, where it shows perinuclear signals in spermatogonia but forms large cytoplasmic condensates in the spermatocytes that overlap with components of piNG-body, a nuage-associated organelle. The loss of kots results in a notable upregulation of stellate and a corresponding reduction in the suppressor of stellate piRNAs in the mutants. Furthermore, a moderate yet significant reduction of other piRNAs was observed in kots mutant testes. Taken together, we propose that Kots functions in the piRNA pathway, predominantly in the male germline by forming discrete cytoplasmic granules.
Collapse
|
17
|
La Rocca G, Cavalieri V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes (Basel) 2022; 13:414. [PMID: 35327968 PMCID: PMC8954937 DOI: 10.3390/genes13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
18
|
Andreev VI, Yu C, Wang J, Schnabl J, Tirian L, Gehre M, Handler D, Duchek P, Novatchkova M, Baumgartner L, Meixner K, Sienski G, Patel DJ, Brennecke J. Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery. Nat Struct Mol Biol 2022; 29:130-142. [PMID: 35173350 PMCID: PMC11749891 DOI: 10.1038/s41594-022-00721-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022]
Abstract
Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila. We find that Panoramix, a corepressor required for piRNA-guided heterochromatin formation, is SUMOylated on chromatin in a Piwi-dependent manner. SUMOylation, together with an amphipathic LxxLL motif in Panoramix's intrinsically disordered repressor domain, are necessary and sufficient to recruit Small ovary (Sov), a multi-zinc-finger protein essential for general heterochromatin formation and viability. Structure-guided mutations that eliminate the Panoramix-Sov interaction or that prevent SUMOylation of Panoramix uncouple Sov from the piRNA pathway, resulting in viable but sterile flies in which Piwi-targeted transposons are derepressed. Thus, Piwi engages the heterochromatin machinery specifically at transposon loci by coupling recruitment of a corepressor to nascent transcripts with its SUMOylation.
Collapse
Affiliation(s)
- Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Changwei Yu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maja Gehre
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
19
|
Fefelova EA, Pleshakova IM, Mikhaleva EA, Pirogov SA, Poltorachenko V, Abramov Y, Romashin D, Shatskikh A, Blokh R, Gvozdev V, Klenov M. Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res 2022; 50:867-884. [PMID: 35037046 PMCID: PMC8789037 DOI: 10.1093/nar/gkab1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.
Collapse
Affiliation(s)
- Elena A Fefelova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena 91125, USA
| | - Irina M Pleshakova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Sergei A Pirogov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Valentin A Poltorachenko
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Daniil D Romashin
- Laboratory of Precision Biosystems, V. N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Aleksei S Shatskikh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Roman S Blokh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Department of Functional Genomics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| |
Collapse
|
20
|
Cheang I, Zhu Q, Liao S, Li X. Current Understanding of piRNA in Cardiovascular Diseases. FRONTIERS IN MOLECULAR MEDICINE 2022; 1:791931. [PMID: 39087079 PMCID: PMC11285661 DOI: 10.3389/fmmed.2021.791931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/17/2021] [Indexed: 08/02/2024]
Abstract
The relationship regarding non-coding genomes and cardiovascular disease (CVD) has been explored in the past decade. As one of the leading causes of death, there remains a lack of sensitive and specific genomic biomarkers in the diagnosis and prognosis of CVD. Piwi-interacting RNA (piRNA) is a group of small non-coding RNA (ncRNA) which associated with Piwi proteins. There is an emerging strong body of evidence in support of a role for ncRNAs, including piRNAs, in pathogenesis and prognosis of CVD. This article reviews the current evidence for piRNA-regulated mechanisms in CVD, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Xinli Li
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline. Int J Mol Sci 2021; 22:ijms222413430. [PMID: 34948223 PMCID: PMC8707237 DOI: 10.3390/ijms222413430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.
Collapse
|
22
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|
23
|
To export, or not to export: how nuclear export factor variants resolve Piwi's dilemma. Biochem Soc Trans 2021; 49:2073-2079. [PMID: 34643228 DOI: 10.1042/bst20201171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Piwi-interacting RNAs (piRNAs) defend animal gonads by guiding PIWI-clade Argonaute proteins to silence transposons. The nuclear Piwi/piRNA complexes confer transcriptional repression of transposons, which is accompanied with heterochromatin formation at target loci. On the other hand, piRNA clusters, genomic loci that transcribe piRNA precursors composed of transposon fragments, are often recognized by piRNAs to define their heterochromatic identity. Therefore, Piwi/piRNA complexes must resolve this conundrum of silencing transposons while allowing the expression of piRNA precursors, at least in Drosophila germlines. This review is focused on recent advances how the piRNA pathway deals with this genetic conflict.
Collapse
|
24
|
Nirala NK, Li Q, Ghule PN, Chen HJ, Li R, Zhu LJ, Wang R, Rice NP, Mao J, Stein JL, Stein GS, van Wijnen AJ, Ip YT. Hinfp is a guardian of the somatic genome by repressing transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2100839118. [PMID: 34620709 PMCID: PMC8521681 DOI: 10.1073/pnas.2100839118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Prachi N Ghule
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Junhao Mao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
25
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
27
|
Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat Cell Biol 2021; 23:1002-1012. [PMID: 34489571 DOI: 10.1038/s41556-021-00745-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Many animals have a conserved adaptive genome defence system known as the Piwi-interacting RNA (piRNA) pathway, which is essential for germ cell development and function. Disruption of individual mouse Piwi genes results in male but not female sterility, leading to the assumption that PIWI genes play little or no role in mammalian oocytes. Here, we report the generation of PIWI-defective golden hamsters, which have defects in the production of functional oocytes. The mechanisms involved vary among the hamster PIWI genes, whereby the lack of PIWIL1 has a major impact on gene expression, including hamster-specific young transposon de-silencing, whereas PIWIL3 deficiency has little impact on gene expression in oocytes, although DNA methylation was reduced to some extent in PIWIL3-deficient oocytes. Our findings serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes, including humans.
Collapse
|
28
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Iwasaki YW, Sriswasdi S, Kinugasa Y, Adachi J, Horikoshi Y, Shibuya A, Iwasaki W, Tashiro S, Tomonaga T, Siomi H. Piwi-piRNA complexes induce stepwise changes in nuclear architecture at target loci. EMBO J 2021; 40:e108345. [PMID: 34337769 PMCID: PMC8441340 DOI: 10.15252/embj.2021108345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
PIWI‐interacting RNAs (piRNAs) are germline‐specific small RNAs that form effector complexes with PIWI proteins (Piwi–piRNA complexes) and play critical roles for preserving genomic integrity by repressing transposable elements (TEs). Drosophila Piwi transcriptionally silences specific targets through heterochromatin formation and increases histone H3K9 methylation (H3K9me3) and histone H1 deposition at these loci, with nuclear RNA export factor variant Nxf2 serving as a co‐factor. Using ChEP and DamID‐seq, we now uncover a Piwi/Nxf2‐dependent target association with nuclear lamins. Hi‐C analysis of Piwi or Nxf2‐depleted cells reveals decreased intra‐TAD and increased inter‐TAD interactions in regions harboring Piwi–piRNA target TEs. Using a forced tethering system, we analyze the functional effects of Piwi–piRNA/Nxf2‐mediated recruitment of piRNA target regions to the nuclear periphery. Removal of active histone marks is followed by transcriptional silencing, chromatin conformational changes, and H3K9me3 and H1 association. Our data show that the Piwi–piRNA pathway can induce stepwise changes in nuclear architecture and chromatin state at target loci for transcriptional silencing.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
31
|
Ohtani H, Iwasaki YW. Rewiring of chromatin state and gene expression by transposable elements. Dev Growth Differ 2021; 63:262-273. [DOI: 10.1111/dgd.12735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Hitoshi Ohtani
- Laboratory of Genome and Epigenome Dynamics Department of Animal Sciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
- Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) Saitama Japan
| |
Collapse
|
32
|
Witt E, Svetec N, Benjamin S, Zhao L. Transcription Factors Drive Opposite Relationships between Gene Age and Tissue Specificity in Male and Female Drosophila Gonads. Mol Biol Evol 2021; 38:2104-2115. [PMID: 33481021 PMCID: PMC8097261 DOI: 10.1093/molbev/msab011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolutionarily young genes are usually preferentially expressed in the testis across species. Although it is known that older genes are generally more broadly expressed than younger genes, the properties that shaped this pattern are unknown. Older genes may gain expression across other tissues uniformly, or faster in certain tissues than others. Using Drosophila gene expression data, we confirmed previous findings that younger genes are disproportionately testis biased and older genes are disproportionately ovary biased. We found that the relationship between gene age and expression is stronger in the ovary than any other tissue and weakest in testis. We performed ATAC-seq on Drosophila testis and found that although genes of all ages are more likely to have open promoter chromatin in testis than in ovary, promoter chromatin alone does not explain the ovary bias of older genes. Instead, we found that upstream transcription factor (TF) expression is highly predictive of gene expression in ovary but not in testis. In the ovary, TF expression is more predictive of gene expression than open promoter chromatin, whereas testis gene expression is similarly influenced by both TF expression and open promoter chromatin. We propose that the testis is uniquely able to express younger genes controlled by relatively few TFs, whereas older genes with more TF partners are broadly expressed with peak expression most likely in the ovary. The testis allows widespread baseline expression that is relatively unresponsive to regulatory changes, whereas the ovary transcriptome is more responsive to trans-regulation and has a higher ceiling for gene expression.
Collapse
Affiliation(s)
- Evan Witt
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sigi Benjamin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
33
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
34
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Schnabl J, Wang J, Hohmann U, Gehre M, Batki J, Andreev VI, Purkhauser K, Fasching N, Duchek P, Novatchkova M, Mechtler K, Plaschka C, Patel DJ, Brennecke J. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev 2021; 35:392-409. [PMID: 33574069 PMCID: PMC7919418 DOI: 10.1101/gad.347989.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in Drosophila, facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.
Collapse
Affiliation(s)
- Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ulrich Hohmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maja Gehre
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Kim Purkhauser
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
36
|
HRV16 Infection Induces Changes in the Expression of Multiple piRNAs. Virol Sin 2021; 36:736-745. [PMID: 33616891 DOI: 10.1007/s12250-021-00344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022] Open
Abstract
Human rhinovirus (HRV) is one of the most important cold-causing pathogens in humans. Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. However, the profile of human/host piRNA during HRV infection is largely unknown. Here we performed high-throughput sequencing of piRNAs from H1-HeLa cells infected with HRV16 at 12 h, 24 h, and 36 h. The results showed that 22,151,664, 24,362,486 and 22,726,546 piRNAs displayed differential expression after HRV16 infection for three time points. A significant differential expression of 21 piRNAs was found in all time points and further verified by RT-qPCR, including 7 known piRNAs and 14 newly found piRNAs. In addition, piRNA prediction was performed on Piano using the SVM algorithm and transposon information. It found that novel_pir78110, novel_pir78107, novel_pir78097, novel_pir78094 and novel_pir76584 are associated with the DNA/hobo of Drosophila, Ac of maize and Tam3 of snapdragon (hAT)-Charlie transposon. The novel_pir97924, novel_pir105705 and novel_pir105700 recognize long interspersed nuclear elements 1 (LINE-1). The novel_pir33182 and novel_pir46604 are related to the long terminal repeat (LTR)/(Endogenous Retrovirus1) ERV1 repetitive element. The novel_pir73855 is related to the LTR/ERVK repetitive element. Both novel_pir70108 and novel_pir70106 are associated with the LTR/ERVL-MaLR repetitive element. The novel_pir15900 is associated with the DNA/hAT-Tip100 repetitive element. Overall, our results indicated that rhinovirus infection could reduce the expression of some piRNAs to facilitate upregulation of LINE-1 transcription or retrotransposons' expression, which is helpful to further explore the mechanism of rhinovirus infection.
Collapse
|
37
|
Harrison RES, Weng K, Wang Y, Peng Q. Phase Separation and Histone Epigenetics in Genome Regulation. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100892. [PMID: 33519290 PMCID: PMC7845916 DOI: 10.1016/j.cossms.2020.100892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.
Collapse
Affiliation(s)
- Reed E. S. Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, P. R. China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
39
|
Wang C, Lin H. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol 2021; 22:27. [PMID: 33419460 PMCID: PMC7792047 DOI: 10.1186/s13059-020-02221-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
PIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best known for their function in silencing transposons and germline development by partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs). However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway in regulating the expression of other major classes of RNAs in germ cells. In this review, we summarize how PIWI proteins and piRNAs regulate the expression of many disparate RNAs, describing a highly complex global genomic regulatory relationship at the RNA level through which piRNAs functionally connect all major constituents of the genome in the germline.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
40
|
Guo Y, Kawaguchi A, Takeshita M, Sekiya T, Hirohama M, Yamashita A, Siomi H, Murano K. Potent mouse monoclonal antibodies that block SARS-CoV-2 infection. J Biol Chem 2021; 296:100346. [PMID: 33524396 PMCID: PMC7846482 DOI: 10.1016/j.jbc.2021.100346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a global pandemic since its first outbreak in the winter of 2019. An extensive investigation of SARS-CoV-2 is critical for disease control. Various recombinant monoclonal antibodies of human origin that neutralize SARS-CoV-2 infection have been isolated from convalescent patients and will be applied as therapies and prophylaxis. However, the need for dedicated monoclonal antibodies suitable for molecular pathology research is not fully addressed. Here, we produced six mouse anti-SARS-CoV-2 spike monoclonal antibodies that not only exhibit robust performance in immunoassays including western blotting, ELISA, immunofluorescence, and immunoprecipitation, but also demonstrate neutralizing activity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells. Due to their mouse origin, our monoclonal antibodies are compatible with the experimental immunoassay setups commonly used in basic molecular biology research laboratories, providing a useful tool for future research. Furthermore, in the hope of applying the antibodies of clinical setting, we determined the variable regions of the antibodies and used them to produce recombinant human/mouse chimeric antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Binding Sites
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Mice
- Neutralization Tests
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Subunits/administration & dosage
- Protein Subunits/genetics
- Protein Subunits/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/administration & dosage
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccination
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan; Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Sekiya
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mikako Hirohama
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Onishi R, Sato K, Murano K, Negishi L, Siomi H, Siomi MC. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. SCIENCE ADVANCES 2020; 6:6/50/eaaz7420. [PMID: 33310860 PMCID: PMC7732180 DOI: 10.1126/sciadv.aaz7420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Drosophila Piwi associates with PIWI-interacting RNAs (piRNAs) and represses transposons transcriptionally through heterochromatinization; however, this process is poorly understood. Here, we identify Brahma (Brm), the core adenosine triphosphatase of the SWI/SNF chromatin remodeling complex, as a new Piwi interactor, and show Brm involvement in activating transcription of Piwi-targeted transposons before silencing. Bioinformatic analyses indicated that Piwi, once bound to target RNAs, reduced the occupancies of SWI/SNF and RNA polymerase II (Pol II) on target loci, abrogating transcription. Artificial piRNA-driven targeting of Piwi to RNA transcripts enhanced repression of Brm-dependent reporters compared with Brm-independent reporters. This was dependent on Piwi cofactors, Gtsf1/Asterix (Gtsf1), Panoramix/Silencio (Panx), and Maelstrom (Mael), but not Eggless/dSetdb (Egg)-mediated H3K9me3 deposition. The λN-box B-mediated tethering of Mael to reporters repressed Brm-dependent genes in the absence of Piwi, Panx, and Gtsf1. We propose that Piwi, via Mael, can rapidly suppress transcription of Brm-dependent genes to facilitate heterochromatin formation.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
42
|
Biopathological Significance of PIWI-piRNA Pathway Deregulation in Invasive Breast Carcinomas. Cancers (Basel) 2020; 12:cancers12102833. [PMID: 33008024 PMCID: PMC7600338 DOI: 10.3390/cancers12102833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The PIWI-piRNA ribonucleoproteic complexes are pivotal regulators of genome integrity, differentiation and homeostasis and their dysregulation has recently been implicated in carcinogenesis. The aim of this study was to analyze the four PIWILs gene expression in invasive breast carcinomas (IBC) at RNA level using quantitative RT-PCR and protein level using immunohistochemistry. In normal breast tissue, PIWILs 2 and 4 were solely expressed, whereas an abnormal emergence of PIWIL1 and 3 was observed in respectively 30% and 6% of IBCs. Conversely, PIWIL2 was underexpressed in 48.3% and PIWIL4 downregulated in 43.3% of IBCs. Similar patterns of PIWIL deregulation were observed in a multitumoral panel, suggesting a generic mechanism in most cancers. PIWIL2 underexpression was significantly associated with DNA methylation and strong cytotoxic immune response. Characterization of the newly recognized PIWIL-piRNA pathway in IBCs opens interesting therapeutic perspectives using piRNAs, hypomethylating drugs, checkpoints immunotherapies and anti-PIWIL 1–3 antibodies. Abstract The PIWI proteins emerging in the development of human cancers, edify PIWI-piRNA ribonucleoproteic complexes acting as pivotal regulators of genome integrity, differentiation and homeostasis. The aim of this study is to analyze the four PIWILs gene expression in invasive breast carcinomas (IBCs): at RNA level using quantitative RT-PCR (n = 526) and protein level using immunohistochemistry (n = 150). In normal breast tissue, PIWILs 2 and 4 were solely expressed, whereas an abnormal emergence of PIWIL1 and 3 was observed in respectively 30% and 6% of IBCs. Conversely, PIWIL2 was underexpressed in 48.3% and PIWIL4 downregulated in 43.3% of IBCs. Significant positive associations were observed between PIWIL4 underexpression, HR+ status and HR+ ERBB2+ molecular subtype and PIWIL2 underexpression, PR- status, ERBB2- status and molecular subtype. Similar patterns of PIWIL deregulation were observed in a multitumoral panel, suggesting a generic mechanism in most cancers. PIWIL2-4 underexpression was mainly regulated at epigenetic or post-transcriptional levels. PIWIL2 underexpression was significantly associated with DNA methylation and strong cytotoxic immune response. PIWIL2-4 were mainly associated with genes implicated in cell proliferation. As a result of this study, characterization of the PIWIL-piRNA pathway in IBCs opens interesting therapeutic perspectives using piRNAs, hypomethylating drugs, checkpoints immunotherapies and anti-PIWIL 1–3 antibodies.
Collapse
|
43
|
Kim IV, Riedelbauch S, Kuhn CD. The piRNA pathway in planarian flatworms: new model, new insights. Biol Chem 2020; 401:1123-1141. [DOI: 10.1515/hsz-2019-0445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
AbstractPIWI-interacting RNAs (piRNAs) are small regulatory RNAs that associate with members of the PIWI clade of the Argonaute superfamily of proteins. piRNAs are predominantly found in animal gonads. There they silence transposable elements (TEs), regulate gene expression and participate in DNA methylation, thus orchestrating proper germline development. Furthermore, PIWI proteins are also indispensable for the maintenance and differentiation capabilities of pluripotent stem cells in free-living invertebrate species with regenerative potential. Thus, PIWI proteins and piRNAs seem to constitute an essential molecular feature of somatic pluripotent stem cells and the germline. In keeping with this hypothesis, both PIWI proteins and piRNAs are enriched in neoblasts, the adult stem cells of planarian flatworms, and their presence is a prerequisite for the proper regeneration and perpetual tissue homeostasis of these animals. The piRNA pathway is required to maintain the unique biology of planarians because, in analogy to the animal germline, planarian piRNAs silence TEs and ensure stable genome inheritance. Moreover, planarian piRNAs also contribute to the degradation of numerous protein-coding transcripts, a function that may be critical for neoblast differentiation. This review gives an overview of the planarian piRNA pathway and of its crucial function in neoblast biology.
Collapse
Affiliation(s)
- Iana V. Kim
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sebastian Riedelbauch
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Claus-D. Kuhn
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
44
|
Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clin Sci (Lond) 2020; 134:791-805. [PMID: 32219337 DOI: 10.1042/cs20191318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.
Collapse
|
45
|
Mérel V, Boulesteix M, Fablet M, Vieira C. Transposable elements in Drosophila. Mob DNA 2020; 11:23. [PMID: 32636946 PMCID: PMC7334843 DOI: 10.1186/s13100-020-00213-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed significantly to our knowledge on the mechanisms of transposition and their regulation, but above all, it was one of the first organisms on which genetic and genomic studies of populations were done. In this review article, in a very broad way, we will approach the TEs of Drosophila with a historical hindsight as well as recent discoveries in the field.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
46
|
Ishizu H, Kinoshita T, Hirakata S, Komatsuzaki C, Siomi MC. Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis. Cell Rep 2020; 27:1822-1835.e8. [PMID: 31067466 DOI: 10.1016/j.celrep.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 11/27/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) repress transposons to maintain germline genome integrity. Previous studies showed that artificial tethering of Armitage (Armi) to reporter RNAs induced piRNA biogenesis. However, the lack of female sterile (1) Yb (Yb) in Drosophila ovarian somatic cells (OSCs) impaired the production of transposon-targeting piRNAs, even in the presence of Armi. Here, we show that the specific interaction of Armi with RNA transcripts of the flamenco piRNA cluster, the primary source of transposon-targeting piRNAs in OSCs, is strictly regulated by Yb. The lack of Yb allowed Armi to bind RNAs promiscuously, leading to the production of piRNAs unrelated to transposon silencing. The ATP hydrolysis-defective mutants of Armi failed to unwind RNAs and were retained on them, abolishing piRNA production. These findings shed light on distinct and collaborative requirements of Yb and Armi in transposon-targeting piRNA biogenesis. We also provide evidence supporting the direct involvement of Armi but not Yb in Zucchini-dependent piRNA phasing.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tatsuki Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeki Hirakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Chihiro Komatsuzaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
47
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
48
|
Ilyin AA, Stolyarenko AD, Klenov MS, Shevelyov YY. Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma 2020; 129:201-214. [PMID: 32500264 DOI: 10.1007/s00412-020-00738-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1a (HP1a) is a well-known component of pericentromeric and telomeric heterochromatin in Drosophila. However, its role and the mechanisms of its binding in the chromosome arms (ChAs) remain largely unclear. Here, we identified HP1a-interacting domains in the somatic cells of Drosophila ovaries using a DamID-seq approach and compared them with insertion sites of transposable elements (TEs) revealed by genome sequencing. Although HP1a domains cover only 13% of ChAs, they non-randomly associate with 42% of TE insertions. Furthermore, HP1a on average propagates at 2-kb distances from the TE insertions. These data confirm the role of TEs in formation of HP1a islands in ChAs. However, only 18% of HP1a domains have adjacent TEs, indicating the existence of other mechanisms of HP1a domain formation besides spreading from TEs. In particular, many TE-independent HP1a domains correspond to the regions attached to the nuclear pore complexes (NPCs) or contain active gene promoters. However, HP1a occupancy on the promoters does not significantly influence expression of corresponding genes. At the same time, the steady-state transcript level of many genes located outside of HP1a domains was altered upon HP1a knockdown in the somatic cells of ovaries, thus pointing to the strong indirect effect of HP1a depletion. Collectively, our results support an existence of at least three different mechanisms of HP1a domain emergence in ChAs: spreading from TE insertions, transient interactions with the chromatin located near NPCs, and targeting to the promoters of moderately expressed genes.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Anastasia D Stolyarenko
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
49
|
Kelleher ES, Barbash DA, Blumenstiel JP. Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends Genet 2020; 36:474-489. [PMID: 32473745 DOI: 10.1016/j.tig.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.
Collapse
|
50
|
Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun 2020; 11:1886. [PMID: 32312999 PMCID: PMC7170881 DOI: 10.1038/s41467-020-15809-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
In higher eukaryotes, heterochromatin is mainly composed of transposable elements (TEs) silenced by epigenetic mechanisms. But, the silencing of certain heterochromatin-associated TEs is disrupted by heat stress. By comparing genome-wide high-resolution chromatin packing patterns under normal or heat conditions obtained through Hi-C analysis, we show here that heat stress causes global rearrangement of the 3D genome in Arabidopsis thaliana. Contacts between pericentromeric regions and distal chromosome arms, as well as proximal intra-chromosomal interactions along the chromosomes, are enhanced. However, interactions within pericentromeres and those between distal intra-chromosomal regions are decreased. Many inter-chromosomal interactions, including those within the KNOT, are also reduced. Furthermore, heat activation of TEs exhibits a high correlation with the reduction of chromosomal interactions involving pericentromeres, the KNOT, the knob, and the upstream and downstream flanking regions of the activated TEs. Together, our results provide insights into the relationship between TE activation and 3D genome reorganization.
Collapse
|