1
|
Fajardo-Hernández CA, Zavala-Sierra ÁG, Merlin-Lucas VI, Morales-Jiménez JI, Rivera-Chávez J. Roseoglobuloside A, a Novel Nonanolide, and Identification of Specialized Metabolites as hPTP1B1 - 400 Inhibitors from Mangrove-Dwelling Aspergillus spp. PLANTA MEDICA 2025; 91:197-207. [PMID: 39870085 DOI: 10.1055/a-2515-9491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
An approach combining enzymatic inhibition and untargeted metabolomics through molecular networking was employed to search for human recombinant full-length protein tyrosine phosphatase 1B (hPTP1 B1 - 400) inhibitors from a collection of 66 mangrove-associated fungal taxa. This strategy prioritized two Aspergillus strains (IQ-1612, section Circumdati, and IQ-1620, section Nigri) for further studies. Chemical investigation of strain IQ-1612 resulted in the isolation of a new nonanolide derivative, roseoglobuloside A (1: ), along with two known metabolites (2: and 3: ), whereas strain IQ-1620 led to the isolation of four known naphtho-γ-pyrones and one known diketopiperazine (4: -8: ). Of all isolates, compounds 2, 3: , and 7: showed a marked inhibitory effect on hPTP1B1 - 400 with an IC50 value < 20 µM, while 6: showed moderate inhibition with IC50 of 65 µM. Compounds 1: and 8: were inactive at a concentration of 100 µM, whereas 4: and 5: demonstrated significant inhibition at 20 µM. The structure of 1: was established by comprehensive spectroscopic analysis, and its relative and absolute configuration was assigned based on NOE correlations and by comparison of calculated and experimental ECD curves. Molecular docking indicated that these molecules primarily bind to two different allosteric sites, thereby inducing conformational changes that impact enzymatic activity.
Collapse
Affiliation(s)
- Carlos A Fajardo-Hernández
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángeles G Zavala-Sierra
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verenice I Merlin-Lucas
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús I Morales-Jiménez
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - José Rivera-Chávez
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Yehorova D, Alansson N, Shen R, Denson JM, Robinson M, Risso VA, Molina NR, Loria JP, Gaucher EA, Sanchez-Ruiz JM, Hengge AC, Johnson SJ, Kamerlin SCL. Conformational Dynamics and Catalytic Backups in a Hyper-Thermostable Engineered Archaeal Protein Tyrosine Phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645524. [PMID: 40196513 PMCID: PMC11974932 DOI: 10.1101/2025.03.26.645524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes that play important roles in regulating cellular signaling pathways. The activity of these enzymes is regulated by the motion of a catalytic loop that places a critical conserved aspartic acid side chain into the active site for acid-base catalysis upon loop closure. These enzymes also have a conserved phosphate binding loop that is typically highly rigid and forms a well-defined anion binding nest. The intimate links between loop dynamics and chemistry in these enzymes make PTPs an excellent model system for understanding the role of loop dynamics in protein function and evolution. In this context, archaeal PTPs, which have evolved in extremophilic organisms, are highly understudied, despite their unusual biophysical properties. We present here an engineered chimeric PTP (ShufPTP) generated by shuffling the amino acid sequence of five extant hyperthermophilic archaeal PTPs. Despite ShufPTP's high sequence similarity to its natural counterparts, ShufPTP presents a suite of unique properties, including high flexibility of the phosphate binding P-loop, facile oxidation of the active site cysteine, mechanistic promiscuity, and most notably, hyperthermostability, with a denaturation temperature likely >130 °C (>8°C higher than the highest recorded growth temperature of any archaeal strain). Our combined structural, biochemical, biophysical and computational analysis provides insight both into how small steps in evolutionary space can radically modulate the biophysical properties of an enzyme, and showcase the tremendous potential of archaeal enzymes for biotechnology, to generate novel enzymes capable of operating under extreme conditions.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Nikolas Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ruidan Shen
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Joshua M Denson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Nuria Ramirez Molina
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - J Patrick Loria
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT, 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric A Gaucher
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Alvan C Hengge
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
3
|
Cavender CE, Case DA, Chen JCH, Chong LT, Keedy DA, Lindorff-Larsen K, Mobley DL, Ollila OHS, Oostenbrink C, Robustelli P, Voelz VA, Wall ME, Wych DC, Gilson MK. Structure-Based Experimental Datasets for Benchmarking Protein Simulation Force Fields [Article v0.1]. ARXIV 2025:arXiv:2303.11056v2. [PMID: 40196146 PMCID: PMC11975311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This review article provides an overview of structurally oriented experimental datasets that can be used to benchmark protein force fields, focusing on data generated by nuclear magnetic resonance (NMR) spectroscopy and room temperature (RT) protein crystallography. We discuss what the observables are, what they tell us about structure and dynamics, what makes them useful for assessing force field accuracy, and how they can be connected to molecular dynamics simulations carried out using the force field one wishes to benchmark. We also touch on statistical issues that arise when comparing simulations with experiment. We hope this article will be particularly useful to computational researchers and trainees who develop, benchmark, or use protein force fields for molecular simulations.
Collapse
Affiliation(s)
- Chapin E. Cavender
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David A. Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Julian C.-H. Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA; PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, NY, USA
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - O. H. Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland; VTT Technical Research Centre of Finland, Espoo, Finland
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA; The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Perdikari A, Woods VA, Ebrahim A, Lawler K, Bounds R, Singh NI, Mehlman T(S, Riley BT, Sharma S, Morris JW, Keogh JM, Henning E, Smith M, Farooqi IS, Keedy DA. Structures of human PTP1B variants reveal allosteric sites to target for weight loss therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.05.603709. [PMID: 39149290 PMCID: PMC11326154 DOI: 10.1101/2024.08.05.603709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of leptin signaling whose disruption protects against diet-induced obesity in mice. We investigated whether structural characterization of human PTP1B variant proteins might reveal allosteric sites to target for weight loss therapy. To do so, we selected 12 rare variants for functional characterization from exomes from 997 people with persistent thinness and 200,000 people from UK Biobank. Seven of 12 variants impaired PTP1B function by increasing leptin-stimulated STAT3 phosphorylation in human cells. Focusing on the variants in and near the ordered catalytic domain, we ascribed structural mechanism to their functional effects using in vitro enzyme activity assays, room-temperature X-ray crystallography, and local hydrogen-deuterium exchange mass spectrometry (HDX-MS). By combining these complementary structural biology experiments for multiple variants, we characterize an inherent allosteric network in PTP1B that differs from previously reported allosteric inhibitor-driven mechanisms mediated by catalytic loop motions. The most functionally impactful variant sites map to highly ligandable surface sites, suggesting untapped opportunities for allosteric drug design. Overall, these studies can inform the targeted design of allosteric PTP1B inhibitors for the treatment of obesity.
Collapse
Affiliation(s)
- Aliki Perdikari
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center; New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Nathanael I. Singh
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Tamar (Skaist) Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biochemistry, CUNY Graduate Center; New York, NY 10016, USA
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center; New York, NY 10016, USA
| | - Jackson W. Morris
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science & Addenbrooke’s Hospital; Cambridge, CB2 0QQ, UK
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center; New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York; New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center; New York, NY 10016, USA
| |
Collapse
|
5
|
Coquille S, Pereira CS, Roche J, Santoni G, Engilberge S, Brochier-Armanet C, Girard E, Sterpone F, Madern D. Allostery and Evolution: A Molecular Journey Through the Structural and Dynamical Landscape of an Enzyme Super Family. Mol Biol Evol 2025; 42:msae265. [PMID: 39834309 PMCID: PMC11747225 DOI: 10.1093/molbev/msae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon. By introducing a few of mutations associated to the emergence of allosteric LDHs into the non-allosteric MalDH from Methanopyrus kandleri, we have gradually shifted its enzymatic profile toward that typical of allosteric LDHs. We first investigated the process triggering homotropic activation. The structures of the resulting mutants show the typical compact organization of the R-active state of LDHs, but a distorted (T-like) catalytic site demonstrating that they corresponds to hybrid states. Molecular dynamics simulations and free energy calculations confirmed the capability of these mutants to sample the T-inactive state. By adding a final single mutation to fine-tune the flexibility of the catalytic site, we obtained an enzyme with both sigmoid (homotropic) and hyperbolic (heterotropic) substrate activation profiles. Its structure shows a typical extended T-state as in LDHs, whereas its catalytic state has as a restored configuration favorable for catalysis. Free energy calculations indicate that the T and R catalytic site configurations are in an equilibrium that depends on solvent conditions. We observed long-range communication between monomers as required for allosteric activation. Our work links the evolution of allosteric regulation in the LDH/MDH superfamily to the ensemble model of allostery at molecular level, and highlights the important role of the underlying protein dynamics.
Collapse
Affiliation(s)
| | - Caroline Simões Pereira
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Céline Brochier-Armanet
- Université Claude Bernard Lyon1, LBBE, UMR 5558 CNRS, VAS, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
6
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. Protein Sci 2025; 34:e70016. [PMID: 39723820 DOI: 10.1002/pro.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- PhD Program in Biochemistry, CUNY Graduate Center, New York, New York, USA
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Anne E van Vlimmeren
- Department of Chemistry, Columbia University, New York, New York, USA
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Andrew C Johns
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, New York, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Saeed A, Klureza MA, Hekstra DR. Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens. J Chem Inf Model 2024; 64:8937-8951. [PMID: 39530154 PMCID: PMC11633654 DOI: 10.1021/acs.jcim.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COnformational LAndscape Visualization (COLAV), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar
A. Saeed
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Margaret A. Klureza
- Department
of Chemistry & Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Doeke R. Hekstra
- Department
of Molecular & Cellular Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- School
of Engineering & Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Jiang Z, van Vlimmeren AE, Karandur D, Semmelman A, Shah NH. Deep mutational scanning of a multi-domain signaling protein reveals mechanisms of regulation and pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593907. [PMID: 39091798 PMCID: PMC11291063 DOI: 10.1101/2024.05.13.593907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Multi-domain signaling enzymes are often regulated through extensive inter-domain interactions, and disruption of inter-domain interfaces by mutations can lead to aberrant signaling and diseases. For example, the tyrosine phosphatase SHP2 contains two phosphotyrosine recognition domains that auto-inhibit its catalytic domain. SHP2 is canonically activated by binding of these non-catalytic domains to phosphoproteins, which destabilizes the auto-inhibited state, but numerous mutations at the main auto-inhibitory interface have been shown to hyperactivate SHP2 in cancers and developmental disorders. Hundreds of clinically observed mutations in SHP2 have not been characterized, but their locations suggest alternative modes of dysregulation. We performed deep mutational scanning on full-length SHP2 and the isolated phosphatase domain to dissect mechanisms of SHP2 dysregulation. Our analysis revealed mechanistically diverse mutational effects and identified key intra- and inter-domain interactions that contribute to SHP2 activity, dynamics, and regulation. Our datasets also provide insights into the potential pathogenicity of previously uncharacterized clinical variants.
Collapse
Affiliation(s)
- Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Deepti Karandur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Alyssa Semmelman
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
9
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603632. [PMID: 39071364 PMCID: PMC11275736 DOI: 10.1101/2024.07.16.603632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew C. Johns
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
10
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
11
|
Mehlman T, Ginn HM, Keedy DA. An expanded trove of fragment-bound structures for the allosteric enzyme PTP1B from computational reanalysis of large-scale crystallographic data. Structure 2024; 32:1231-1238.e4. [PMID: 38861991 PMCID: PMC11316629 DOI: 10.1016/j.str.2024.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Due to their low binding affinities, detecting small-molecule fragments bound to protein structures from crystallographic datasets has been a challenge. Here, we report a trove of 65 new fragment hits for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (∼50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.
Collapse
Affiliation(s)
- Tamar Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Helen M Ginn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany; Division of Life Sciences, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
12
|
Saeed AA, Klureza MA, Hekstra DR. Mapping protein conformational landscapes from crystallographic drug fragment screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605395. [PMID: 39131376 PMCID: PMC11312500 DOI: 10.1101/2024.07.29.605395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions. These transitions can be thought of as paths through a conformational landscape. Crystallographic drug fragment screens are high-throughput perturbation experiments, in which thousands of crystals of a drug target are soaked with small-molecule drug precursors (fragments) and examined for fragment binding, mapping potential drug binding sites on the target protein. Here, we describe an open-source Python package, COLAV (COnformational LAndscape Visualization), to infer conformational landscapes from such large-scale crystallographic perturbation studies. We apply COLAV to drug fragment screens of two medically important systems: protein tyrosine phosphatase 1B (PTP-1B), which regulates insulin signaling, and the SARS CoV-2 Main Protease (MPro). With enough fragment-bound structures, we find that such drug screens also enable detailed mapping of proteins' conformational landscapes.
Collapse
Affiliation(s)
- Ammaar A. Saeed
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
13
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
14
|
Zhuang C, Yang S, Gonzalez CG, Ainsworth RI, Li S, Kobayashi MT, Wierzbicki I, Rossitto LAM, Wen Y, Peti W, Stanford SM, Gonzalez DJ, Murali R, Santelli E, Bottini N. A novel gain-of-function phosphorylation site modulates PTPN22 inhibition of TCR signaling. J Biol Chem 2024; 300:107393. [PMID: 38777143 PMCID: PMC11237943 DOI: 10.1016/j.jbc.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.
Collapse
Affiliation(s)
- Chuling Zhuang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Richard I Ainsworth
- Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, California, USA
| | - Masumi Takayama Kobayashi
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Igor Wierzbicki
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Leigh-Ana M Rossitto
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Yutao Wen
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Stephanie M Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
15
|
Brookner DE, Hekstra DR. MatchMaps: non-isomorphous difference maps for X-ray crystallography. J Appl Crystallogr 2024; 57:885-895. [PMID: 38846758 PMCID: PMC11151677 DOI: 10.1107/s1600576724003510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands and time. A popular method for detecting structural differences between crystallographic data sets is the isomorphous difference map. These maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even modest changes in unit-cell properties can render isomorphous difference maps useless. This is unnecessary. Described here is a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. This procedure is implemented in an open-source Python package, MatchMaps, that can be run in any software environment supporting PHENIX [Liebschner et al. (2019). Acta Cryst. D75, 861-877] and CCP4 [Agirre et al. (2023). Acta Cryst. D79, 449-461]. Worked examples show that MatchMaps 'rescues' observed difference electron-density maps for poorly isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit or across altogether different crystal forms.
Collapse
Affiliation(s)
- Dennis E. Brookner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Woods VA, Abzalimov RR, Keedy DA. Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Protein Sci 2024; 33:e5024. [PMID: 38801229 PMCID: PMC11129624 DOI: 10.1002/pro.5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Virgil A. Woods
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Rinat R. Abzalimov
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Daniel A. Keedy
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, & ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| |
Collapse
|
17
|
Welsh CL, Madan LK. Protein Tyrosine Phosphatase regulation by Reactive Oxygen Species. Adv Cancer Res 2024; 162:45-74. [PMID: 39069369 DOI: 10.1016/bs.acr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Protein Tyrosine Phosphatases (PTPs) help to maintain the balance of protein phosphorylation signals that drive cell division, proliferation, and differentiation. These enzymes are also well-suited to redox-dependent signaling and oxidative stress response due to their cysteine-based catalytic mechanism, which requires a deprotonated thiol group at the active site. This review focuses on PTP structural characteristics, active site chemical properties, and vulnerability to change by reactive oxygen species (ROS). PTPs can be oxidized and inactivated by H2O2 through three non-exclusive mechanisms. These pathways are dependent on the coordinated actions of other H2O2-sensitive proteins, such as peroxidases like Peroxiredoxins (Prx) and Thioredoxins (Trx). PTPs undergo reversible oxidation by converting their active site cysteine from thiol to sulfenic acid. This sulfenic acid can then react with adjacent cysteines to form disulfide bonds or with nearby amides to form sulfenyl-amide linkages. Further oxidation of the sulfenic acid form to the sulfonic or sulfinic acid forms causes irreversible deactivation. Understanding the structural changes involved in both reversible and irreversible PTP oxidation can help with their chemical manipulation for therapeutic intervention. Nonetheless, more information remains unidentified than is presently known about the precise dynamics of proteins participating in oxidation events, as well as the specific oxidation states that can be targeted for PTPs. This review summarizes current information on PTP-specific oxidation patterns and explains how ROS-mediated signal transmission interacts with phosphorylation-based signaling machinery controlled by growth factor receptors and PTPs.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
18
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
19
|
Welsh CL, Madan LK. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics. J Chem Inf Model 2024; 64:1331-1346. [PMID: 38346324 PMCID: PMC11144062 DOI: 10.1021/acs.jcim.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
| | - Lalima K. Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC-29425, USA
| |
Collapse
|
20
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Mehlman T(S, Ginn HM, Keedy DA. An expanded view of ligandability in the allosteric enzyme PTP1B from computational reanalysis of large-scale crystallographic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574428. [PMID: 38260327 PMCID: PMC10802458 DOI: 10.1101/2024.01.05.574428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The recent advent of crystallographic small-molecule fragment screening presents the opportunity to obtain unprecedented numbers of ligand-bound protein crystal structures from a single high-throughput experiment, mapping ligandability across protein surfaces and identifying useful chemical footholds for structure-based drug design. However, due to the low binding affinities of most fragments, detecting bound fragments from crystallographic datasets has been a challenge. Here we report a trove of 65 new fragment hits across 59 new liganded crystal structures for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (~50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that validates another new binding site recently identified by simulations, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses via a previously unreported intramolecular conduit. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.
Collapse
Affiliation(s)
- Tamar (Skaist) Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Helen M. Ginn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
- Division of Life Sciences, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
22
|
Brookner DE, Hekstra DR. MatchMaps: Non-isomorphous difference maps for X-ray crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555333. [PMID: 37732267 PMCID: PMC10508726 DOI: 10.1101/2023.09.01.555333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands, and time. The isomorphous difference map remains the gold standard for detecting structural differences between datasets. Isomorphous difference maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even minute changes in unit cell properties can render isomorphous difference maps useless. This is unnecessary. Here we describe a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. We have implemented this procedure in an open-source python package, MatchMaps, that can be run in any software environment supporting PHENIX and CCP4. Through examples, we show that MatchMaps "rescues" observed difference electron density maps for poorly-isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit, or across altogether different crystal forms.
Collapse
Affiliation(s)
- Dennis E Brookner
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Doeke R Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Sharma S, Skaist Mehlman T, Sagabala RS, Boivin B, Keedy DA. High-resolution double vision of the allosteric phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2024; 80:1-12. [PMID: 38133579 PMCID: PMC10833341 DOI: 10.1107/s2053230x23010749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Tamar Skaist Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Reddy Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
24
|
Aguilar-Ramírez E, Reyes-Pérez V, Fajardo-Hernández CA, Quezada-Suaste CD, Carreón-Escalante M, Merlin-Lucas V, Quiroz-García B, Granados-Soto V, Rivera-Chávez J. Harnessing the Reactivity of Duclauxin toward Obtaining hPTP1B 1-400 Inhibitors. J Med Chem 2023; 66:16222-16234. [PMID: 38051546 DOI: 10.1021/acs.jmedchem.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Duclauxin (1) from Talaromyces sp. IQ-313 was reported as a putative allosteric modulator of human recombinant protein tyrosine phosphatase 1B (400 amino acids) (hPTP1B1-400), a validated target for the treatment of type II diabetes. Based on these findings, a one-strain-many-compound (OSMAC) experiment on the IQ-313 strain generated derivatives 5a, 6, and 7. Moreover, a one-/two-step semisynthetic approach guided by docking toward hPTP1B1-400 produced 38 analogs, a series (A) incorporating a lactam functionalization at C-1 (8a-15a, 36a, and 37a) and a series (B) containing a lactam at C-1 and an extra unsaturation between C-7 and C-8 (5b, 11b-37b). In vitro evaluation and structure-activity relationship (SAR) analysis revealed that analogs from the B series are up to 10-fold more active than 1 and derivatives from the A series. Furthermore, duclauxin (1) and 36b were assessed for their potential acute toxicity, estimating their LD50 to be higher than 300 mg/kg. Moreover, 36b significantly reduced glycemia in an insulin tolerance test in mice, suggesting that its mechanism of action is through the PTP1B inhibition.
Collapse
Affiliation(s)
- Enrique Aguilar-Ramírez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Valeria Reyes-Pérez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos A Fajardo-Hernández
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos D Quezada-Suaste
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mario Carreón-Escalante
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verenice Merlin-Lucas
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Beatriz Quiroz-García
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Pharmacobiology Department, Centro de Investigación y de Estudios Avanzados, Sede Sur, Mexico City 14330, Mexico
| | - José Rivera-Chávez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
25
|
Woods VA, Abzalimov RR, Keedy DA. Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548582. [PMID: 37503000 PMCID: PMC10369962 DOI: 10.1101/2023.07.12.548582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and buriedness. We demonstrate that our HDX rate data obtained in solution adds value to predictions of dynamics derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site vs. allosteric small-molecule inhibitors. These maps reveal distinct, dramatic, and widespread effects on protein dynamics relative to the apo form, including changes to dynamics in locations distal (>35 Å) from the respective ligand binding sites. These results help shed light on the allosteric nature of PTP1B and the surprisingly far-reaching consequences of inhibitor binding in this important protein. Overall, our work showcases the potential of HDX-MS for elucidating protein conformational dynamics and allosteric effects of small-molecule ligands, and highlights the potential of integrating HDX-MS alongside other complementary methods to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| |
Collapse
|
26
|
Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. J Phys Chem B 2023; 127:8305-8316. [PMID: 37729547 PMCID: PMC10694825 DOI: 10.1021/acs.jpcb.3c03791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including cancer, autoimmunity, and neurological disorders. A high degree of structural similarity between their catalytic domains, however, has hindered the development of selective pharmacological agents. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over T-cell PTP (TCPTP), two PTPs with high sequence conservation. Here, we use molecular modeling, with supporting experimental validation, to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations suggest that PTP1B and TCPTP share a h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically essential WPD loop, which it links to the L-11 loop and neighboring α3 and α7 helices on the other side of the catalytic domain. Terpenoid binding to either of two proximal C-terminal sites─an α site and a β site─can disrupt the allosteric network; however, binding to the α site forms a stable complex only in PTP1B. In TCPTP, two charged residues disfavor binding at the α site in favor of binding at the β site, which is conserved between the two proteins. Our findings thus indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate more broadly how minor differences in the conservation of neighboring─yet functionally similar─allosteric sites can affect the selectivity of inhibitory scaffolds (e.g., fragments).
Collapse
Affiliation(s)
- Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hannah M Padgette
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gregory W Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
27
|
Afshinpour M, Smith LA, Chakravarty S. AQcalc: A web server that identifies weak molecular interactions in protein structures. Protein Sci 2023; 32:e4762. [PMID: 37596782 PMCID: PMC10503417 DOI: 10.1002/pro.4762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Weak molecular interactions play an important role in protein structure and function. Computational tools that identify weak molecular interactions are, therefore, valuable for the study of proteins. Here, we present AQcalc, a web server (https://aqcalcbiocomputing.com/) that can be used to identify anion-quadrupole (AQ) interactions, which are weak interactions involving aromatic residue (Trp, Tyr, and Phe) ring edges and anions (Asp, Glu, and phosphate ion) both within proteins and at their interfaces (protein-protein, protein-nucleic acids, and protein-lipid bilayer). AQcalc identifies AQ interactions as well as clusters involving AQ, cation-π, and salt bridges, among others. Utilizing AQcalc we analyzed weak interactions in protein models, even in the absence of experimental structures, to understand the contributions of weak interactions to deleterious structural changes, including those associated with oncogenic and germline disease variants. We identified several deleterious variants with disrupted AQ interactions (comparable in frequency to cation-π disruptions). Amyloid fibrils utilize AQ to bury anions at frequencies that far exceed those observed for globular proteins. AQ interactions were detected three and five times more frequently than the hydrogen-bonded AQ (HBAQ) in fibril structures and protein-lipid bilayer interfaces, respectively. By contrast, AQ and HBAQ interactions were detected with similar frequencies in globular proteins. Collectively, these findings suggest AQcalc will be effective in facilitating fine structural analysis. As other web utilities designed to identify protein residue interaction networks do not report AQ interactions, wide use of AQcalc will enrich our understanding of residue interaction networks and facilitate hypothesis testing by identifying and experimentally characterizing these comparably weak but important interactions.
Collapse
Affiliation(s)
- Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Logan A. Smith
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
28
|
Welsh CL, Madan LK. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550226. [PMID: 37547015 PMCID: PMC10402003 DOI: 10.1101/2023.07.23.550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study we employ this paradigm to answer a basic question: in enzyme superfamilies where the catalytic mechanism, active sites and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as the representatives of the conserved Protein Tyrosine Phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Collapse
|
29
|
Elias RD, Zhu Y, Su Q, Ghirlando R, Zhang J, Deshmukh L. Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation. SCIENCE ADVANCES 2023; 9:eadg3913. [PMID: 37450591 PMCID: PMC10348681 DOI: 10.1126/sciadv.adg3913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Cytokinetic abscission, the last step of cell division, is regulated by the ESCRT machinery. In response to mitotic errors, ESCRT proteins, namely, ALIX, CHMP4B, and CHMP4C, accumulate in the cytosolic compartments termed "abscission checkpoint bodies" (ACBs) to delay abscission and prevent tumorigenesis. ALIX contributes to the biogenesis and stability of ACBs via an unknown mechanism. We show that ALIX phase separates into nondynamic condensates in vitro and in vivo, mediated by the amyloidogenic portion of its proline-rich domain. ALIX condensates confined CHMP4 paralogs in vitro. These condensates dissolved and reformed upon reversible tyrosine phosphorylation of ALIX, mediated by Src kinase and PTP1B, and sequestration of CHMP4C altered their Src-mediated dissolution. NMR analysis revealed how ALIX triggers the activation of CHMP4 proteins, which is required for successful abscission. These results implicate ALIX's phase separation in the modulation of ACBs. This study also highlights how posttranslational modifications can control protein phase separation.
Collapse
Affiliation(s)
- Ruben D. Elias
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingqi Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qi Su
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Yeh CY, Izaguirre JA, Greisman JB, Willmore L, Maragakis P, Shaw DE. A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis. J Chem Inf Model 2023. [PMID: 37378552 DOI: 10.1021/acs.jcim.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin signaling pathways, making it a highly attractive target for the treatment of type II diabetes. For PTP1B to perform its enzymatic function, a loop referred to as the "WPD loop" must transition between open (catalytically incompetent) and closed (catalytically competent) conformations, which have both been resolved by X-ray crystallography. Although prior studies have established this transition as the rate-limiting step for catalysis, the transition mechanism for PTP1B and other PTPs has been unclear. Here we present an atomically detailed model of WPD loop transitions in PTP1B based on unbiased, long-timescale molecular dynamics simulations and weighted ensemble simulations. We found that a specific WPD loop region─the PDFG motif─acted as the key conformational switch, with structural changes to the motif being necessary and sufficient for transitions between long-lived open and closed states of the loop. Simulations starting from the closed state repeatedly visited open states of the loop that quickly closed again unless the infrequent conformational switching of the motif stabilized the open state. The functional importance of the PDFG motif is supported by the fact that it is well conserved across PTPs. Bioinformatic analysis shows that the PDFG motif is also conserved, and adopts two distinct conformations, in deiminases, and the related DFG motif is known to function as a conformational switch in many kinases, suggesting that PDFG-like motifs may control transitions between structurally distinct, long-lived conformational states in multiple protein families.
Collapse
Affiliation(s)
- Christine Y Yeh
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - Jack B Greisman
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - Paul Maragakis
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
31
|
Hardie A, Cossins BP, Lovera S, Michel J. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Commun Chem 2023; 6:125. [PMID: 37322137 PMCID: PMC10272186 DOI: 10.1038/s42004-023-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Fragment-based drug discovery is an established methodology for finding hit molecules that can be elaborated into lead compounds. However it is currently challenging to predict whether fragment hits that do not bind to an orthosteric site could be elaborated into allosteric modulators, as in these cases binding does not necessarily translate into a functional effect. We propose a workflow using Markov State Models (MSMs) with steered molecular dynamics (sMD) to assess the allosteric potential of known binders. sMD simulations are employed to sample protein conformational space inaccessible to routine equilibrium MD timescales. Protein conformations sampled by sMD provide starting points for seeded MD simulations, which are combined into MSMs. The methodology is demonstrated on a dataset of protein tyrosine phosphatase 1B ligands. Experimentally confirmed allosteric inhibitors are correctly classified as inhibitors, whereas the deconstructed analogues show reduced inhibitory activity. Analysis of the MSMs provide insights into preferred protein-ligand arrangements that correlate with functional outcomes. The present methodology may find applications for progressing fragments towards lead molecules in FBDD campaigns.
Collapse
Affiliation(s)
- Adele Hardie
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Benjamin P Cossins
- UCB Pharma, 216 Bath Road, Slough, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, UK
| | - Silvia Lovera
- UCB Pharma, Chemin du Foriest 1, 1420, Braine-l'Alleud, Belgium
| | - Julien Michel
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
32
|
Yang JB, Yang CS, Li J, Su GZ, Tian JY, Wang Y, Liu Y, Wei F, Li Y, Ye F, Ma SC. Dianthrone derivatives from Polygonum multiflorum Thunb: Anti-diabetic activity, structure-activity relationships (SARs), and mode of action. Bioorg Chem 2023; 135:106491. [PMID: 37011521 DOI: 10.1016/j.bioorg.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PTP1B plays an important role as a key negative regulator of tyrosine phosphorylation associated with insulin receptor signaling in the therapy for diabetes and obesity. In this study, the anti-diabetic activity of dianthrone derivatives from Polygonum multiflorum Thunb., as well as the structure-activity relationships, mechanism, and molecular docking were explored. Among these analogs, trans-emodin dianthrone (compound 1) enhances insulin sensitivity by upregulating the insulin signaling pathway in HepG2 cells and displays considerable anti-diabetic activity in db/db mice. By using photoaffinity labeling and mass spectrometry-based proteomics, we discovered that trans-emodin dianthrone (compound 1) may bind to PTP1B allosteric pocket at helix α6/α7, which provides fresh insight into the identification of novel anti-diabetic agents.
Collapse
Affiliation(s)
- Jian-Bo Yang
- National Institutes for Food and Drug Control, Beijing 100050, China; Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi 830054, China
| | - Cheng-Shuo Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Ying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
33
|
Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Chembiochem 2023; 24:e202200706. [PMID: 36893077 PMCID: PMC10192133 DOI: 10.1002/cbic.202200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/10/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are an important class of enzymes that modulate essential cellular processes through protein dephosphorylation and are dysregulated in various disease states. There is demand for new compounds that target the active sites of these enzymes, for use as chemical tools to dissect their biological roles or as leads for the development of new therapeutics. In this study, we explore an array of electrophiles and fragment scaffolds to investigate the required chemical parameters for covalent inhibition of tyrosine phosphatases. Our analysis juxtaposes the intrinsic electrophilicity of these compounds with their potency against several classical PTPs, revealing chemotypes that inhibit tyrosine phosphatases while minimizing excessive, potentially non-specific reactivity. We also assess sequence divergence at key residues in PTPs to explain their differential susceptibility to covalent inhibition. We anticipate that our study will inspire new strategies to develop covalent probes and inhibitors for tyrosine phosphatases.
Collapse
Affiliation(s)
- Suk ho Hong
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Sarah Y. Xi
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Andrew C. Johns
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Allyson Li
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Madeleine N. Hum
- Department of Chemistry, Columbia University, New York, NY 10027
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
34
|
Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. A biophysical rationale for the selective inhibition of PTP1B over TCPTP by nonpolar terpenoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537234. [PMID: 37131728 PMCID: PMC10153121 DOI: 10.1101/2023.04.17.537234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including type 2 diabetes, obesity, and cancer. However, a high degree of structural similarity between the catalytic domains of these enzymes has made the development of selective pharmacological inhibitors an enormous challenge. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over TCPTP, two PTPs with high sequence conservation. Here, we use molecular modeling with experimental validation to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations indicate that PTP1B and TCPTP contain a conserved h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically influential WPD loop, which it links to the L-11 loop and α 3 and α 7 helices-the C-terminal side of the catalytic domain. Terpenoid binding to either of two proximal allosteric sites-an α site and a β site-can disrupt the allosteric network. Interestingly, binding to the α site forms a stable complex with only PTP1B; in TCPTP, where two charged residues disfavor binding at the α site, the terpenoids bind to the β site, which is conserved between the two proteins. Our findings indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate, more broadly, how minor differences in the conservation of neighboring-yet functionally similar-allosteric sites can have very different implications for inhibitor selectivity.
Collapse
Affiliation(s)
- Anika J Friedman
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Hannah M Padgette
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Levi Kramer
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Evan T Liechty
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory W Donovan
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jerome M Fox
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Michael R Shirts
- University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
35
|
Kovács D, Bodor A. The influence of random-coil chemical shifts on the assessment of structural propensities in folded proteins and IDPs. RSC Adv 2023; 13:10182-10203. [PMID: 37006359 PMCID: PMC10065145 DOI: 10.1039/d3ra00977g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
In studying secondary structural propensities of proteins by nuclear magnetic resonance (NMR) spectroscopy, secondary chemical shifts (SCSs) serve as the primary atomic scale observables. For SCS calculation, the selection of an appropriate random coil chemical shift (RCCS) dataset is a crucial step, especially when investigating intrinsically disordered proteins (IDPs). The scientific literature is abundant in such datasets, however, the effect of choosing one over all the others in a concrete application has not yet been studied thoroughly and systematically. Hereby, we review the available RCCS prediction methods and to compare them, we conduct statistical inference by means of the nonparametric sum of ranking differences and comparison of ranks to random numbers (SRD-CRRN) method. We try to find the RCCS predictors best representing the general consensus regarding secondary structural propensities. The existence and the magnitude of resulting differences on secondary structure determination under varying sample conditions (temperature, pH) are demonstrated and discussed for globular proteins and especially IDPs.
Collapse
Affiliation(s)
- Dániel Kovács
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
- Eötvös Loránd University, Hevesy György PhD School of Chemistry Pázmány Péter sétány 1/A Budapest 1117 Hungary
| | - Andrea Bodor
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
| |
Collapse
|
36
|
Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. eLife 2023; 12:84632. [PMID: 36881464 PMCID: PMC9991056 DOI: 10.7554/elife.84632] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly - but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.
Collapse
Affiliation(s)
- Tamar Skaist Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- PhD Program in Biochemistry, CUNY Graduate CenterNew YorkUnited States
| | - Justin T Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Syeda Maryam Azeem
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | | | - Sakib Hossain
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Louise Dunnett
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | - Alice Douangamath
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | | | - Helen Orins
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Frank von Delft
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Biochemistry, University of JohannesburgJohannesburgSouth Africa
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Department of Chemistry and Biochemistry, City College of New YorkNew YorkUnited States
- PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate CenterNew YorkUnited States
| |
Collapse
|
37
|
Brickel S, Demkiv AO, Crean RM, Pinto GP, Kamerlin SCL. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations. J Mol Graph Model 2023; 119:108402. [PMID: 36610324 DOI: 10.1016/j.jmgm.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The exploration of chemical systems occurs on complex energy landscapes. Comprehensively sampling rugged energy landscapes with many local minima is a common problem for molecular dynamics simulations. These multiple local minima trap the dynamic system, preventing efficient sampling. This is a particular challenge for large biochemical systems with many degrees of freedom. Replica exchange molecular dynamics (REMD) is an approach that accelerates the exploration of the conformational space of a system, and thus can be used to enhance the sampling of complex biomolecular processes. In parallel, the empirical valence bond (EVB) approach is a powerful approach for modeling chemical reactivity in biomolecular systems. Here, we present an open-source Python-based tool that interfaces with the Q simulation package, and increases the sampling efficiency of the EVB free energy perturbation/umbrella sampling approach by means of REMD. This approach, Q-RepEx, both decreases the computational cost of the associated REMD-EVB simulations, and opens the door to more efficient studies of biochemical reactivity in systems with significant conformational fluctuations along the chemical reaction coordinate.
Collapse
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Rory M Crean
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
38
|
Zhang C, Yang X, Meng X, Wu L, Liu X, Gao J, Liu S, Wu J, Huang D, Wang Z, Su X. Discovery of Novel PTP1B Inhibitors with Once-Weekly Therapeutic Potential for Type 2 Diabetes: Design, Synthesis, and In Vitro and In Vivo Investigations of BimBH3 Peptide Analogues. J Med Chem 2023; 66:3030-3044. [PMID: 36749220 DOI: 10.1021/acs.jmedchem.2c02003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poor medication adherence in patients with type 2 diabetes mellitus has become one of the main causes of suboptimal glycemic control. Once-weekly drugs can markedly improve the convenience, adherence, and quality of life of T2DM patients; thus, they are clinically needed and preferred. PTP1B plays a negative role in both insulin and leptin signaling pathways, which makes it an important target for diabetes. Herein, we design and synthesize 35 analogues of core BimBH3 peptide via lipidation/acylation strategy based on our previous work and evaluate their PTP1B inhibitory activity, obtaining the primary structure-activity relationship. Five compounds with good PPT1B inhibitory activity, target selectivity, and significantly improved stability were selected for molecular docking study and searching candidate molecules with long-acting antidiabetic potential. The in vivo anti-T2DM evaluation validated the once-weekly therapeutic potential of analogues 19, 26, 27, 31, and 33, which were comparable with semaglutide and therefore presented as promising drug candidates.
Collapse
Affiliation(s)
- Chuanliang Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianmin Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinjia Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Xiaochun Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Jiangming Gao
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Shan Liu
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Juan Wu
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Dingmin Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenwei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianbin Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
39
|
Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2023; 9:1070328. [PMID: 36710877 PMCID: PMC9877542 DOI: 10.3389/fmolb.2022.1070328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.
Collapse
Affiliation(s)
- Rajiv Gandhi Govindaraj
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States,*Correspondence: Rajiv Gandhi Govindaraj,
| | | | - Michael Schauperl
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| | | | - David J. Diller
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| |
Collapse
|
40
|
Sharma S, Ebrahim A, Keedy DA. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2023; 79:23-30. [PMID: 36598353 PMCID: PMC9813971 DOI: 10.1107/s2053230x22011645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Room-temperature X-ray crystallography provides unique insights into protein conformational heterogeneity, but obtaining sufficiently large protein crystals is a common hurdle. Serial synchrotron crystallography (SSX) helps to address this hurdle by allowing the use of many medium- to small-sized crystals. Here, a recently introduced serial sample-support chip system has been used to obtain the first SSX structure of a human phosphatase, specifically protein tyrosine phosphatase 1B (PTP1B) in the unliganded (apo) state. In previous apo room-temperature structures, the active site and allosteric sites adopted alternate conformations, including open and closed conformations of the active-site WPD loop and of a distal allosteric site. By contrast, in our SSX structure the active site is best fitted with a single conformation, but the distal allosteric site is best fitted with alternate conformations. This observation argues for additional nuance in interpreting the nature of allosteric coupling in this protein. Overall, our results illustrate the promise of serial methods for room-temperature crystallography, as well as future avant-garde crystallography experiments, for PTP1B and other proteins.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
41
|
Strom A, Shah R, Dolot R, Rogers MS, Tong CL, Wang D, Xia Y, Lipscomb JD, Wagner CR. Dynamic Long-Range Interactions Influence Substrate Binding and Catalysis by Human Histidine Triad Nucleotide-Binding Proteins (HINTs), Key Regulators of Multiple Cellular Processes and Activators of Antiviral ProTides. Biochemistry 2022; 61:2648-2661. [PMID: 36398895 PMCID: PMC9854251 DOI: 10.1021/acs.biochem.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human histidine triad nucleotide-binding (hHINT) proteins catalyze nucleotide phosphoramidase and acyl-phosphatase reactions that are essential for the activation of antiviral proTides, such as Sofosbuvir and Remdesivir. hHINT1 and hHINT2 are highly homologous but exhibit disparate roles as regulators of opioid tolerance (hHINT1) and mitochondrial activity (hHINT2). NMR studies of hHINT1 reveal a pair of dynamic surface residues (Q62, E100), which gate a conserved water channel leading to the active site 13 Å away. hHINT2 crystal structures identify analogous residues (R99, D137) and water channel. hHINT1 Q62 variants significantly alter the steady-state kcat and Km for turnover of the fluorescent substrate (TpAd), while stopped-flow kinetics indicate that KD also changes. hHINT2, like hHINT1, exhibits a burst phase of adenylation, monitored by fluorescent tryptamine release, prior to rate-limiting hydrolysis and nucleotide release. hHINT2 exhibits a much smaller burst-phase amplitude than hHINT1, which is further diminished in hHINT2 R99Q. Kinetic simulations suggest that amplitude variations can be accounted for by a variable fluorescent yield of the E·S complex from changes in the environment of bound TpAd. Isothermal titration calorimetry measurements of inhibitor binding show that these hHINT variants also alter the thermodynamic binding profile. We propose that these altered surface residues engender long-range dynamic changes that affect the orientation of bound ligands, altering the thermodynamic and kinetic characteristics of hHINT active site function. Thus, studies of the cellular roles and proTide activation potential by hHINTs should consider the importance of long-range interactions and possible protein binding surfaces far from the active site.
Collapse
Affiliation(s)
- Alexander Strom
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rachit Shah
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455,United States
| | - Cher-Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David Wang
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Youlin Xia
- Department of Structural Biology, St. Jude’s Research Hospital, Memphis, Tennessee 38105, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455,United States
| | - Carston R. Wagner
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States,Address correspondence to: Carston R. Wagner, University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street S.E., Cancer & Cardiovascular Research Building, Minneapolis, Minnesota 55455, USA,
| |
Collapse
|
42
|
Shen R, Crean RM, Olsen KJ, Corbella M, Calixto AR, Richan T, Brandão TAS, Berry RD, Tolman A, Loria JP, Johnson SJ, Kamerlin SCL, Hengge AC. Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases. Chem Sci 2022; 13:13524-13540. [PMID: 36507179 PMCID: PMC9682893 DOI: 10.1039/d2sc04135a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) possess a conserved mobile catalytic loop, the WPD-loop, which brings an aspartic acid into the active site where it acts as an acid/base catalyst. Prior experimental and computational studies, focused on the human enzyme PTP1B and the PTP from Yersinia pestis, YopH, suggested that loop conformational dynamics are important in regulating both catalysis and evolvability. We have generated a chimeric protein in which the WPD-loop of YopH is transposed into PTP1B, and eight chimeras that systematically restored the loop sequence back to native PTP1B. Of these, four chimeras were soluble and were subjected to detailed biochemical and structural characterization, and a computational analysis of their WPD-loop dynamics. The chimeras maintain backbone structural integrity, with somewhat slower rates than either wild-type parent, and show differences in the pH dependency of catalysis, and changes in the effect of Mg2+. The chimeric proteins' WPD-loops differ significantly in their relative stability and rigidity. The time required for interconversion, coupled with electrostatic effects revealed by simulations, likely accounts for the activity differences between chimeras, and relative to the native enzymes. Our results further the understanding of connections between enzyme activity and the dynamics of catalytically important groups, particularly the effects of non-catalytic residues on key conformational equilibria.
Collapse
Affiliation(s)
- Ruidan Shen
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Rory M Crean
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Marina Corbella
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Ana R Calixto
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
| | - Teisha Richan
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Tiago A S Brandão
- Departamento de Química, ICEX, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais 31270-901 Brazil
| | - Ryan D Berry
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Alex Tolman
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - J Patrick Loria
- Department of Chemistry, Yale University 225 Prospect Street New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry, Yale University 266 Whitney Avenue New Haven CT 06520 USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry - BMC, Uppsala University, BMC Box 576 S-751 23 Uppsala Sweden
- School of Chemistry and Biochemistry, Georgia Institute of Technology 901 Atlantic Drive NW Atlanta, GA 30332-0400 USA
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University Logan Utah 84322-0300 USA
| |
Collapse
|
43
|
Macromolecular crowding amplifies allosteric regulation of T-cell protein tyrosine phosphatase. J Biol Chem 2022; 298:102655. [PMID: 36328244 PMCID: PMC9720572 DOI: 10.1016/j.jbc.2022.102655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of T-cell receptor and oncogenic receptor tyrosine kinase signaling and implicated in cancer and autoimmune disease. TC-PTP activity is modulated by an intrinsically disordered C-terminal region (IDR) and suppressed in cells under basal conditions. In vitro structural studies have shown that the dynamic reorganization of IDR around the catalytic domain, driven by electrostatic interactions, can lead to TC-PTP activity inhibition; however, the process has not been studied in cells. Here, by assessing a mutant (378KRKRPR383 mutated into 378EAAAPE383, called TC45E/A) with impaired tail-PTP domain interaction, we obtained evidence that the downmodulation of TC-PTP enzymatic activity by the IDR occurs in cells. However, we found that the regulation of TC-PTP by the IDR is only recapitulated in vitro when crowding polymers that mimic the intracellular environment are present in kinetic assays using a physiological phosphopeptide. Our FRET-based assays in vitro and in cells confirmed that the effect of the mutant correlates with an impairment of the intramolecular inhibitory remodeling of TC-PTP by the IDR. This work presents an early example of the allosteric regulation of a protein tyrosine phosphatase being controlled by the cellular environment and provides a framework for future studies and targeting of TC-PTP function.
Collapse
|
44
|
Friedman AJ, Liechty ET, Kramer L, Sarkar A, Fox JM, Shirts MR. Allosteric Inhibition of PTP1B by a Nonpolar Terpenoid. J Phys Chem B 2022; 126:8427-8438. [PMID: 36223525 PMCID: PMC10040085 DOI: 10.1021/acs.jpcb.2c05423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are promising drug targets for treating a wide range of diseases such as diabetes, cancer, and neurological disorders, but their conserved active sites have complicated the design of selective therapeutics. This study examines the allosteric inhibition of PTP1B by amorphadiene (AD), a terpenoid hydrocarbon that is an unusually selective inhibitor. Molecular dynamics (MD) simulations carried out in this study suggest that AD can stably sample multiple neighboring sites on the allosterically influential C-terminus of the catalytic domain. Binding to these sites requires a disordered α7 helix, which stabilizes the PTP1B-AD complex and may contribute to the selectivity of AD for PTP1B over TCPTP. Intriguingly, the binding mode of AD differs from that of the most well-studied allosteric inhibitor of PTP1B. Indeed, biophysical measurements and MD simulations indicate that the two molecules can bind simultaneously. Upon binding, both inhibitors destabilize the α7 helix by disrupting interactions at the α3-α7 interface and prevent the formation of hydrogen bonds that facilitate closure of the catalytically essential WPD loop. These findings indicate that AD is a promising scaffold for building allosteric inhibitors of PTP1B and illustrate, more broadly, how unfunctionalized terpenoids can engage in specific interactions with protein surfaces.
Collapse
Affiliation(s)
- Anika J Friedman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
45
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
46
|
Netto LES, Machado LESF. Preferential redox regulation of cysteine‐based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 2022; 289:5480-5504. [DOI: 10.1111/febs.16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Luís Eduardo S. Netto
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo Brazil
| | | |
Collapse
|
47
|
Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Conserved conformational dynamics determine enzyme activity. SCIENCE ADVANCES 2022; 8:eabo5546. [PMID: 35921420 PMCID: PMC9348788 DOI: 10.1126/sciadv.abo5546] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Homologous enzymes often exhibit different catalytic rates despite a fully conserved active site. The canonical view is that an enzyme sequence defines its structure and function and, more recently, that intrinsic protein dynamics at different time scales enable and/or promote catalytic activity. Here, we show that, using the protein tyrosine phosphatase PTP1B, residues surrounding the PTP1B active site promote dynamically coordinated chemistry necessary for PTP1B function. However, residues distant to the active site also undergo distinct intermediate time scale dynamics and these dynamics are correlated with its catalytic activity and thus allow for different catalytic rates in this enzyme family. We identify these previously undetected motions using coevolutionary coupling analysis and nuclear magnetic resonance spectroscopy. Our findings strongly indicate that conserved dynamics drives the enzymatic activity of the PTP family. Characterization of these conserved dynamics allows for the identification of novel regulatory elements (therapeutic binding pockets) that can be leveraged for the control of enzymes.
Collapse
Affiliation(s)
- Kristiane R. Torgeson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Michael W. Clarkson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Daniele Granata
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
48
|
Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Native SAD phasing at room temperature. Acta Crystallogr D Struct Biol 2022; 78:986-996. [PMID: 35916223 PMCID: PMC9344477 DOI: 10.1107/s2059798322006799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, a strategy is presented to obtain high-quality data from room-temperature, single-crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Candice J. Sheehan
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Margaret A. Klureza
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, USA
| | - Igor Kurinov
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, 9700 South Cass Avenue, Argonne, Illinois, USA
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| |
Collapse
|
49
|
Bolik-Coulon N, Ferrage F. Explicit models of motions to analyze NMR relaxation data in proteins. J Chem Phys 2022; 157:125102. [DOI: 10.1063/5.0095910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a tool of choice to characterize molecular motions. In biological macromolecules, pico- to nano-second motions, in particular, can be probed by nuclear spin relaxation rates which depend on the time fluctuations of the orientations of spin interaction frames. For the past 40 years, relaxation rates have been successfully analyzed using the Model Free (MF) approach which makes no assumption on the nature of motions and reports on the effective amplitude and time-scale of the motions. However, obtaining a mechanistic picture of motions from this type of analysis is difficult at best, unless complemented with molecular dynamics (MD) simulations. In spite of their limited accuracy, such simulations can be used to obtain the information necessary to build explicit models of motions designed to analyze NMR relaxation data. Here, we present how to build such models, suited in particular to describe motions of methyl-bearing protein side-chains and compare them with the MF approach. We show on synthetic data that explicit models of motions are more robust in the presence of rotamer jumps which dominate the relaxation in methyl groups of protein side-chains. We expect this work to motivate the use of explicit models of motion to analyze MD and NMR data.
Collapse
Affiliation(s)
| | - Fabien Ferrage
- Departement de chimie, Ecole Normale Superieure Departement de Chimie, France
| |
Collapse
|
50
|
Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int J Mol Sci 2022; 23:ijms23137027. [PMID: 35806030 PMCID: PMC9266911 DOI: 10.3390/ijms23137027] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation is an essential process in biological events and is considered critical for biological functions. In tissues, protein phosphorylation mainly occurs on tyrosine (Tyr), serine (Ser) and threonine (Thr) residues. The balance between phosphorylation and dephosphorylation is under the control of two super enzyme families, protein kinases (PKs) and protein phosphatases (PPs), respectively. Although there are many selective and effective drugs targeting phosphokinases, developing drugs targeting phosphatases is challenging. PTP1B, one of the most central protein tyrosine phosphatases (PTPs), is a key player in several human diseases and disorders, such as diabetes, obesity, and hematopoietic malignancies, through modulation of different signaling pathways. However, due to high conservation among PTPs, most PTP1B inhibitors lack specificity, raising the need to develop new strategies targeting this enzyme. In this mini-review, we summarize three classes of PTP1B inhibitors with different mechanisms: (1) targeting multiple aryl-phosphorylation sites including the catalytic site of PTP1B; (2) targeting allosteric sites of PTP1B; (3) targeting specific mRNA sequence of PTP1B. All three types of PTP1B inhibitors present good specificity over other PTPs and are promising for the development of efficient small molecules targeting this enzyme.
Collapse
Affiliation(s)
- Rongxing Liu
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | | | - Jérémy Berthelet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Centre Epigénétique et Destin Cellulaire, Université Paris Cité, CNRS, F-75013 Paris, France
| | - Wenchao Zhang
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Marie Dupret
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | - Fernando Rodrigues Lima
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Correspondence:
| |
Collapse
|