1
|
Marletta S, Caliò A, Pierconti F, Harada S, Netto GJ, Antonini P, Segala D, Pedron S, Marcolini L, Stefanizzi L, Martignoni G. SFPQ::TFE3-rearranged PEComa: Differences and analogies with renal cell carcinoma carrying the same translocation. Pathol Res Pract 2025; 270:155963. [PMID: 40239600 DOI: 10.1016/j.prp.2025.155963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Among perivascular epithelioid cell neoplasms (PEComas), some tumors have been found to carry rearrangements of the TFE3 gene. Such tumors can rarely occur in the kidney, closely resembling TFE3-rearranged renal cell carcinoma. This study describes one additional case of TFE3-rearranged PEComa, two TFE3-rearranged renal cell carcinomas, and a detailed literature review. All three tumors were composed of nested clear to eosinophilic cells with peculiar morphological findings in each case. By immunohistochemistry, PEComa expressed cathepsin K, HMB45, and CD68 (PG-M1), while labeling negative for PAX8, Melan-A, S100, smooth muscle actin, desmin, CD10, CD13, and keratins 7 and AE1/AE3. Conversely, both TFE3-rearranged renal cell carcinomas were positive for PAX8, HMB45, and CD10, alongside staining negative for CD68 (PG-M1), Melan-A, CD13, and keratins. One of them expressed cathepsin K. TFE3 gene rearrangement was identified in all three cases by FISH, along with SFPQ::TFE3 fusion by molecular analysis. Our cases, combined with a comprehensive literature review, highlight several key differences and similarities: SFPQ::TFE3-rearranged PEComas lack the pseudorosettes frequently observed in SFPQ::TFE3-rearranged renal cell carcinoma, although both may exhibit nested epithelioid morphology. Both tumor types can be positive for cathepsin K and melanogenesis markers and negative for smooth muscle markers. However, PAX8, keratins, and CD10 were expressed in TFE3-rearranged renal cell carcinoma while CD68(PG-M1) was positive in PEComa. Notably, the SFPQ gene is the most common fusion partner in TFE3-rearranged PEComas, while it is the third most frequent one in TFE3-rearranged renal cell carcinoma. Nevertheless, the exon breakpoints are analogous in both tumor types.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Italy; Division of Pathology, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Anna Caliò
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Italy
| | - Francesco Pierconti
- Division of Anatomic Pathology and Histology, Foundation "A. Gemelli" University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shuko Harada
- Division of Genomic Diagnostics & Bioinformatics, Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - George J Netto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pietro Antonini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Italy
| | - Diego Segala
- Department of Molecular and Translational Medicine, Section of Pathology, University-Spedali Civili of Brescia, Brescia, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Italy
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Guido Martignoni
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Italy; Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| |
Collapse
|
2
|
Montano MM, Yeh I, Ketchart W. cGAS/STING-Independent Induction of Type I Interferon by Inhibitors of the Histone Methylase KDM5B. FASEB J 2025; 39:e70629. [PMID: 40353728 PMCID: PMC12068183 DOI: 10.1096/fj.202500628r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Studies support the role of hexamethylene bis-acetamide [HMBA] induced protein 1 (HEXIM1) as a tumor suppressor. We previously reported that the histone demethylase, KDM5B, inhibits the expression of HEXIM1, and KDM5B inhibitors (KDM5Bi) upregulate HEXIM1 expression. As a consequence, KDM5Bi inhibited cell proliferation, induced differentiation, potentiated sensitivity to cancer chemotherapy, and inhibited breast tumor metastasis. HEXIM1 is crucial for the regulation of triple-negative breast cancer (TNBC) phenotype by KDM5Bi. Type I Interferon (IFN-I) employs the immune system in the tumor microenvironment to restrict tumor growth. Moreover, therapeutic approaches (including mainstay chemotherapy) engage IFN-I signaling. We report herein that HEXIM1 and KDM5Bi induce IFN-I in TNBC. HEXIM1 and KDM5Bi downregulate the expression of polyribonucleotide nucleotidyltransferase 1 (PNPT1) resulting in the release of mitochondrial dsRNA (mt-dsRNA) into the cytoplasm. HEXIM1 also upregulates melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic viral RNA receptor in the innate immune system. MDA5 is required for HEXIM1 and KDM5Bi to induce IFN-I and downstream signaling factors. We observed the augmentation of DNA damage response to Doxorubicin in the presence of KDM5Bi, and this action is a contributing factor in KDM5Bi-induced IFN-I. These actions of HEXIM1 and KDM5Bi occur independently of Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (cGAS/STING), a major DNA sensing pathway and inducer of innate immunity. Via the upregulation of HEXIM1, KDM5Bi represent pharmacologically induced and tumor intrinsic IFN-I production that is cGAS/STING independent. This is critical because cGAS/STING induce an inflammatory response that promotes the survival of cancer cells, and STING is often impaired in malignant cancers.
Collapse
Affiliation(s)
- Monica M. Montano
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - I‐Ju Yeh
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Wannarasmi Ketchart
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
- Department of Pharmacology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
3
|
Liu X, Haugh W, Zhang Z, Huang J. Emerging Role of Long, Non-Coding RNA Nuclear-Enriched Abundant Transcript 1 in Stress- and Immune-Related Diseases. Int J Mol Sci 2025; 26:4413. [PMID: 40362651 PMCID: PMC12072541 DOI: 10.3390/ijms26094413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Long, non-coding RNAs (lncRNAs) are a class of RNAs exceeding 200 nucleotides in length, lacking the ability to be translated into proteins. Over the past few decades, an increasing number of publications have established lncRNAs as potent regulators in a broad spectrum of diseases. They modulate the expression of critical genes by affecting transcription, post-transcription, translation, and protein modification. This regulation frequently involves the interaction of lncRNAs with various molecules, such as proteins, RNA, and DNA. lncRNAs are involved in diseases where stress is a significant factor. In recent years, lncRNAs have been identified as regulators of both innate and adaptive immune responses, playing significant roles in the onset and progression of diseases. Additionally, lncRNAs hold potential as biomarkers or therapeutic targets for numerous stress- and immune-related diseases. lncRNA nuclear-enriched abundant transcript 1 (NEAT1) is a notable example. This review consolidates the latest findings about the role of lncRNA NEAT1 in stress response and immune cell function in non-cancer diseases. It summarizes studies on NEAT1 regulating stress response, both innate and adaptive immunity, and its potential as a biomarker and therapeutic target for stress- and immune-related diseases.
Collapse
Affiliation(s)
- Xingliang Liu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| | - William Haugh
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| | - Ziqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jianguo Huang
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA; (X.L.); (W.H.)
| |
Collapse
|
4
|
Li Y, Tu T, Luo Y, Yao X, Yang Z, Wang Y. Expression Profiles of lncRNAs and mRNAs in the Mouse Brain Infected with Pseudorabies Virus: A Bioinformatic Analysis. Viruses 2025; 17:580. [PMID: 40285022 PMCID: PMC12031243 DOI: 10.3390/v17040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Pseudorabies virus (PRV) is a pathogen that causes severe neurological dysfunction in the host, leading to extensive neuronal damage and inflammation. Despite extensive research on the neuropathogenesis of α-herpesvirus infections, many scientific questions remain unresolved, such as the largely unknown functions of long non-coding RNAs (lncRNAs) in herpesvirus-infected nervous systems. To address these questions, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the brains of mice infected with PRV. Through bioinformatic analysis, we identified 316 differentially expressed lncRNAs and 886 differentially expressed mRNAs. We predicted the biological functions of these differentially expressed lncRNAs and mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the results showed that the differentially expressed transcripts were mainly involved in the innate immune response. Finally, we validated the differential expression trends of lncRNAs and mRNAs using quantitative real-time PCR (q-PCR), which were consistent with the sequencing data. To our knowledge, this is the first report analyzing the lncRNA expression profile in the central nervous system (CNS) of mice infected with PRV. Our findings provide new insights into the roles of lncRNAs and mRNAs during PRV infection of the host CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (T.T.); (Y.L.); (X.Y.); (Z.Y.)
| |
Collapse
|
5
|
Yin A, Xu Y, Su X, Wang R, Zhang Z, Chen Y, Han L, Fu G, Wang W, Wang J. EFTUD2 is a promising diagnostic and prognostic indicator involved in the tumor immune microenvironment and glycolysis of lung adenocarcinoma. Front Oncol 2025; 15:1499217. [PMID: 40236649 PMCID: PMC11996642 DOI: 10.3389/fonc.2025.1499217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Background Elongation Factor Tu GTP Binding Domain Containing 2 (EFTUD2), a conserved spliceosomal GTPase, is involved in craniofacial development and various cancers, but its role in lung adenocarcinoma (LUAD) remains unclear. Methods EFTUD2 expression in LUAD tissues was analyzed using data from TCGA and GEO, and validated by immunohistochemistry, RT-qPCR, and Western blotting. The relationship between EFTUD2 expression and clinical features was examined using Fisher's exact test. Diagnostic and prognostic analyses were performed in R. Hub genes related to EFTUD2 were identified through topological algorithms, and immune infiltration was assessed using CIBERSORT. The cGAS-STING pathway and m6A modification were also analyzed in the TCGA LUAD cohort. Functional assays were conducted to assess EFTUD2's impact on LUAD cell proliferation, cell cycle, invasion, and metastasis, while glycolytic enzyme levels were measured by Western blotting. Results EFTUD2 was upregulated in LUAD tissues and cells, correlating with N classification, visceral pleural invasion, intravascular tumor embolism, and cytokeratin-19 fragment antigen 21-1. Sixteen EFTUD2-related hub genes were identified. Higher EFTUD2 expression was linked to altered immune cell infiltration, with increased TumorPurity scores and decreased StromalScore, ImmuneScore, and ESTIMATEScore values. Gene enrichment analyses highlighted EFTUD2's involvement in cell adhesion, immune response. EFTUD2 was strongly associated with the cGAS-STING pathway and m6A modification. EFTUD2 knockdown inhibited LUAD cell proliferation, migration, and tumorigenicity, causing G0/G1 phase cell cycle arrest, and altered glycolytic enzyme expression. These findings may suggest that EFTUD2 positively regulates the progression of LUAD and modulates the glycolytic activity of tumor cells, making it valuable for LUAD treatment and prognosis. Conclusions EFTUD2 is a potential diagnostic and prognostic marker for LUAD, associated with immune infiltration, the tumor microenvironment, the cGAS-STING pathway, m6A modification, and glycolysis.
Collapse
Affiliation(s)
- Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yufan Xu
- Department of Pathology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiyang Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Runan Wang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lu Han
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang RX, Zhang ZX, Zhao XY, Liu YH, Zhang XM, Han Q, Wang XY. Mechanism of action of lncRNA-NEAT1 in immune diseases. Front Genet 2025; 16:1501115. [PMID: 40110044 PMCID: PMC11919857 DOI: 10.3389/fgene.2025.1501115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
NEAT1, a long non-coding RNA (lncRNA), is involved in assembling nuclear paraspeckles that have been found to impact various immune-related diseases, such as autoimmune diseases, allergic diseases, cancer immunity, sepsis, etc. In immune-related diseases, lncRNA-NEAT1 affects the activation, proliferation, and differentiation process of immune cells by interacting with transcription factors and miRNA (MicroRNA) to regulate an expression level in immune-related genes. It can also regulate the apoptosis and autophagy processes of immune cells by regulating inflammatory responses, interacting with apoptosis-related proteins, or regulating the expression of autophagy-related genes, thereby regulating the development of immune-related diseases. In recent years, a large number of researchers have found that the abnormal expression of lncRNA-NEAT1 has a great impact on the onset and progression of immune diseases, such as innate immunity after viral infection and the humoral immunity of T lymphocytes. In this paper, the specific mechanism of action and the function of lncRNA-NEAT1 in different immune-related diseases are sorted out and analyzed, to furnish a theoretical foundation for the study of the mechanism of action of immune cells.
Collapse
Affiliation(s)
- Ruo-Xuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zi-Xuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiang-Yu Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi-Han Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiao-Meng Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qin Han
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiao-Yu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Hou J, Lu M, Guo J, Wu J, Wang C, Zhou PK, Ma T. DNA-PKcs, a player winding and dancing with RNA metabolism and diseases. Cell Mol Biol Lett 2025; 30:25. [PMID: 40038612 PMCID: PMC11877767 DOI: 10.1186/s11658-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key kinase in the DNA repair process that responds to DNA damage caused by various factors and maintains genomic stability. However, DNA-PKcs is overexpressed in some solid tumors and is frequently associated with poor prognosis. DNA-PKcs was initially identified as a part of the transcription complex. In recent years, many studies have focused on its nonclassical functions, including transcriptional regulation, metabolism, innate immunity, and inflammatory response. Given the pleiotropic roles of DNA-PKcs in tumors, pharmacological inhibition of DNA-PK can exert antitumor effects and may serve as a potential target for tumor therapy in the future. This review summarizes several aspects of DNA-PKcs regulation of RNA metabolism, including its impact on transcriptional machinery, alternative splicing, and interaction with noncoding RNAs, and provides insights into DNA-PKcs beyond its DNA damage repair function.
Collapse
Affiliation(s)
- Jiabao Hou
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jingwei Guo
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Chenyang Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
8
|
Rendo V, Schubert M, Khuu N, Suarez Peredo Rodriguez MF, Whyte D, Ling X, van den Brink A, Huang K, Swift M, He Y, Zerbib J, Smith R, Raaijmakers J, Bandopadhayay P, Guenther LM, Hwang JH, Iniguez A, Moody S, Seo JH, Stover EH, Garraway L, Hahn WC, Stegmaier K, Medema RH, Chowdhury D, Colomé-Tatché M, Ben-David U, Beroukhim R, Foijer F. A compendium of Amplification-Related Gain Of Sensitivity genes in human cancer. Nat Commun 2025; 16:1077. [PMID: 39870664 PMCID: PMC11772776 DOI: 10.1038/s41467-025-56301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed. Combining these approaches, we propose a class of 'Amplification-Related Gain Of Sensitivity' (ARGOS) genes located in commonly amplified regions, yet expressed at lower levels than expected by their copy number, and toxic when overexpressed. We validate RBM14 as an ARGOS gene in lung and breast cancer cells, and suggest a toxicity mechanism involving altered DNA damage response and STING signaling. We additionally observe increased patient survival in a radiation-treated cancer cohort with RBM14 amplification.
Collapse
Affiliation(s)
- Veronica Rendo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany.
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Nicholas Khuu
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Declan Whyte
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao Ling
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Kaimeng Huang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yizhou He
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Zerbib
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonne Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pratiti Bandopadhayay
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lillian M Guenther
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Justin H Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Iniguez
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Moody
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth H Stover
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Levi Garraway
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dipanjan Chowdhury
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
9
|
Tyl MD, Merengwa VU, Cristea IM. Infection-induced lysine lactylation enables herpesvirus immune evasion. SCIENCE ADVANCES 2025; 11:eads6215. [PMID: 39772686 PMCID: PMC11708889 DOI: 10.1126/sciadv.ads6215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Aerobic glycolysis is a hallmark of many viral infections, leading to substantial accumulation of lactate. However, the regulatory roles of lactate during viral infections remain poorly understood. Here, we report that human cytomegalovirus (HCMV) infection leverages lactate to induce widespread protein lactylation and promote viral spread. We establish that lactyllysine is enriched in intrinsically disordered regions, regulating viral protein condensates and immune signaling transduction. Dynamic lactylation of immune factors suppresses immunity, a feature we show to be shared for HCMV and herpes simplex virus 1 infections, through regulation of RNA binding protein 14 and interferon-γ-inducible protein 16 (IFI16). K90 lactylation of the viral DNA sensor IFI16 inhibits recruitment of the DNA damage response kinase DNA-PK, preventing IFI16-driven virus gene repression and cytokine induction. Together, we characterize global protein lactylation dynamics during virus infection, finding that virus-induced lactate contributes to its immune evasion through direct inhibition of immune signaling pathways.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Victoria U. Merengwa
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Ay S, Burlaud-Gaillard J, Gazi A, Tatirovsky Y, Cuche C, Diana JS, Scoca V, Di Santo JP, Roingeard P, Mammano F, Di Nunzio F. In vivo HIV-1 nuclear condensates safeguard against cGAS and license reverse transcription. EMBO J 2025; 44:166-199. [PMID: 39623137 PMCID: PMC11697293 DOI: 10.1038/s44318-024-00316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Entry of viral capsids into the nucleus induces the formation of biomolecular condensates called HIV-1 membraneless organelles (HIV-1-MLOs). Several questions remain about their persistence, in vivo formation, composition, and function. Our study reveals that HIV-1-MLOs persisted for several weeks in infected cells, and their abundance correlated with viral infectivity. Using an appropriate animal model, we show that HIV-1-MLOs were formed in vivo during acute infection. To explore the viral structures present within these biomolecular condensates, we used a combination of double immunogold labeling, electron microscopy and tomography, and unveiled a diverse array of viral core structures. Our functional analyses showed that HIV-1-MLOs remained stable during treatment with a reverse transcriptase inhibitor, maintaining the virus in a dormant state. Drug withdrawal restored reverse transcription, promoting efficient virus replication akin to that observed in latently infected patients on antiretroviral therapy. However, when HIV-1 MLOs were deliberately disassembled by pharmacological treatment, we observed a complete loss of viral infectivity. Our findings show that HIV-1 MLOs shield the final reverse transcription product from host immune detection.
Collapse
Affiliation(s)
- Selen Ay
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Julien Burlaud-Gaillard
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Anastasia Gazi
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Facility, 75015, Paris, France
| | - Yevgeniy Tatirovsky
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
- Vaccine Research Institute, Université Paris Est, Inserm U955, Créteil, France
| | - Celine Cuche
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Jean-Sebastien Diana
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Viviana Scoca
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Fabrizio Mammano
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
| | - Francesca Di Nunzio
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
11
|
Milcamps R, Michiels T. Involvement of paraspeckle components in viral infections. Nucleus 2024; 15:2350178. [PMID: 38717150 PMCID: PMC11086011 DOI: 10.1080/19491034.2024.2350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.
Collapse
Affiliation(s)
- Romane Milcamps
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
12
|
Xiong Z, Wang Y, Li Z, Li C, Tu C, Li Z. A review on the crosstalk between non-coding RNAs and the cGAS-STING signaling pathway. Int J Biol Macromol 2024; 283:137748. [PMID: 39566795 DOI: 10.1016/j.ijbiomac.2024.137748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
In the innate immune system, the cyclic GMP-AMP synthase (cGAS)-interferon gene stimulator (STING) pathway activates the type I interferon (IFN) response and the NF-κB pathway by recognizing double-stranded DNAs, the imbalance of which plays a pivotal role in human diseases, including cancer, autoimmune and inflammatory diseases. Non-coding RNAs (ncRNAs) are a diverse group of transcripts that do not code for proteins but regulate various targets and signaling pathways in physiological and pathological processes. Recently, there has been increasing interest in investigating the interplay between the cGAS-STING pathway and ncRNAs. In this review, we provide a concise overview of the cGAS-STING pathway and ncRNAs. Then, we specifically delve into the regulation of the cGAS-STING pathway by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), the three major classes of ncRNAs, and the influence of the cGAS-STING pathway on the expression of ncRNAs. Furthermore, we introduce the therapeutic applications targeting the cGAS-STING pathway and ncRNA therapy, and propose the utilization of drug delivery systems to deliver ncRNAs that influence the cGAS-STING pathway. Overall, this review highlights the emerging understanding of the intricate relationship between the cGAS-STING pathway and ncRNAs, shedding light on their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yu Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Yang L, Li L, Li P, Chen J, Cai C, Jia Y, Li J, Zou B. Higher Expression of Ku80 and Ku70 Indicates Hotter Tumor Immune Microenvironment in Hepatocellular Carcinoma and Better CTL-Centered Immunotherapy. J Inflamm Res 2024; 17:9511-9525. [PMID: 39600673 PMCID: PMC11590648 DOI: 10.2147/jir.s496123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Both Ku80 and Ku70 are promising drug targets for hepatocellular carcinoma (HCC) and crucial for immune regulation. However, their correlation with HCC immune signatures has not yet been investigated. Therefore, we aimed to investigate the relationship between Ku80, Ku70, and immune signatures in HCC and validate their significance in cytotoxic lymphocyte (CTL) immunotherapy. Patients and Methods Analyses of Ku70, Ku80, and immune signatures in public datasets was performed using R software, an online Kaplan-Meier plotter, g:Profiler, GeneTrail, and Metascape. Uniform manifold approximation and projection, correlation chord diagrams, Pearson's correlation tests, and Spearman correlation tests were used to describe various correlation levels. HCC mRNA sequencing data (n=373 tumor samples and n=50 para-tumor samples) were drawn from The Cancer Genome Atlas (TCGA) public database. Immunofluorescent staining was used to validate Ku70/Ku80 and CD8+CTL expression in 120 HCC patients from our center. Survival analysis was performed using the Kaplan-Meier survival analysis with the Log rank test and was adopted to analyze immunotherapy outcomes correlated with Ku70/Ku80 expression in various solid tumors. Multivariate analysis of HCC patient data from our center was performed using a Cox proportional hazards model. Results Increased Ku70/Ku80 expression positively correlated with more enriched immune microenvironment signatures, indicating increased immune infiltration in HCC. Upregulation of Ku70/Ku80 indicated better anti-PD1 and anti-PDL1 treatment outcomes in various solid tumors. Higher Ku70/Ku80 expression with lower CD8+CTL signatures indicated worse survival outcomes, whereas lower Ku70/Ku80 expression with higher CD8+CTL signatures indicated the best prognosis. Conclusion Higher Ku70/Ku80 expression indicated an immune-hot infiltration signature in HCC. Patients with increased Ku70/Ku80 expression and high CD8+CTL signatures may potentially benefit from CTL-centered immunotherapies.
Collapse
Affiliation(s)
- Lukun Yang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Yingbin Jia
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
| |
Collapse
|
14
|
Liu X, Li D, Gao W, Liu H, Chen P, Zhao Y, Zhao W, Dong G. Shared genetic architecture between COVID-19 and irritable bowel syndrome: a large-scale genome-wide cross-trait analysis. Front Immunol 2024; 15:1442693. [PMID: 39620219 PMCID: PMC11604633 DOI: 10.3389/fimmu.2024.1442693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/30/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND It has been reported that COVID-19 patients have an increased risk of developing IBS; however, the underlying genetic mechanisms of these associations remain largely unknown. The aim of this study was to investigate potential shared SNPs, genes, proteins, and biological pathways between COVID-19 and IBS by assessing pairwise genetic correlations and cross-trait genetic analysis. MATERIALS AND METHODS We assessed the genetic correlation between three COVID-19 phenotypes and IBS using linkage disequilibrium score regression (LDSC) and high-definition likelihood (HDL) methods. Two different sources of IBS data were combined using METAL, and the Multi-trait analysis of GWAS (MTAG) method was applied for multi-trait analysis to enhance statistical robustness and discover new genetic associations. Independent risk loci were examined using genome-wide complex trait analysis (GCTA)-conditional and joint analysis (COJO), multi-marker analysis of genomic annotation (MAGMA), and functional mapping and annotation (FUMA), integrating various QTL information and methods to further identify risk genes and proteins. Gene set variation analysis (GSVA) was employed to compute pleiotropic gene scores, and combined with immune infiltration algorithms, IBS patients were categorized into high and low immune infiltration groups. RESULTS We found a positive genetic correlation between COVID-19 infection, COVID-19 hospitalization, and IBS. Subsequent multi-trait analysis identified nine significantly associated genomic loci. Among these, eight genetic variants were closely related to the comorbidity of IBS and COVID-19. The study also highlighted four genes and 231 proteins associated with the susceptibility to IBS identified through various analytical strategies and a stratification approach for IBS risk populations. CONCLUSIONS Our study reveals a shared genetic architecture between these two diseases, providing new insights into potential biological mechanisms and laying the groundwork for more effective interventions.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Xiao Z, Chen H, Xu N, Chen Y, Wang S, Xu X. MATR3 promotes liver cancer progression by suppressing DHX58-mediated type I interferon response. Cancer Lett 2024; 604:217231. [PMID: 39276912 DOI: 10.1016/j.canlet.2024.217231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
MATR3 is a nuclear matrix protein implicated in various cancers; however, its specific role in tumor progression remains unclear. The study utilized the TCGA database to reveal that MATR3 expression is upregulated in liver cancer and is correlated with poor prognosis. Functionally, MATR3 promoted liver cancer cell proliferation and metastasis. Comprehensive RNA sequencing analysis showed that MATR3 significantly affected the type I IFN signaling pathway and DHX58 is a downstream target of MATR3. Further experiments showed that MATR3 bound to DHX58 mRNA through its RRM structural domain and recruited YTHDF2, an m6A reader, leading to degradation of DHX58 mRNA and suppression of the type I IFN signaling pathway. The knockout of MATR3 in liver cancer cells triggered a natural immune response that stimulated CD8+ T cells to eliminate liver cancer cells. This study demonstrated that MATR3 downregulates type I IFN signaling in liver cancer cells through m6A modification and inhibits immune cell infiltration within tumors. These findings expand our understanding of the role of MATR3 in liver cancer.
Collapse
Affiliation(s)
- Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiyuan Chen
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
16
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
17
|
Velasquez E, Savchenko E, Marmolejo-Martínez-Artesero S, Challuau D, Aebi A, Pomeshchik Y, Lamas NJ, Vihinen M, Rezeli M, Schneider B, Raoul C, Roybon L. TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. Neurobiol Dis 2024; 201:106687. [PMID: 39362568 DOI: 10.1016/j.nbd.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.
Collapse
Affiliation(s)
- Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | | | | | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Nuno Jorge Lamas
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar e Universitário do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal.
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, 22184 Lund, Sweden..
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden; BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden.
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, 34091, Montpellier, France.
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, 49503, MI, USA.
| |
Collapse
|
18
|
Yang Y, Murrali MG, Wang Y, Galvan S, Ajjampore N, Feigon J. HEXIM1 homodimer binds two sites on 7SK RNA to release autoinhibition for P-TEFb inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617642. [PMID: 39416148 PMCID: PMC11482958 DOI: 10.1101/2024.10.10.617642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hexim proteins are RNA-dependent regulators whose main target is 7SK long non-coding RNA, a major regulator of eukaryotic mRNA transcription. 7SK RNPs control available intracellular concentrations of the kinase P-TEFb (Cdk9-CyclinT1/2) by sequestering it in an inactive form. Active P-TEFb phosphorylates NELF, DSIF, and the RNA polymerase II CTD to transition it from promoter-proximal pausing to productive elongation. P-TEFb associates with 7SK RNP via Hexim, which directly binds 7SK RNA. However, free Hexim is in an autoinhibited state that cannot inactivate P-TEFb, and how Hexim autoinhibition is released by 7SK remains unknown. Here, we show that one Hexim1 homodimer binds two sites on linear 7SK RNA in a manner that exposes the Cdk9 binding sites, which are otherwise masked within the autoinhibited dimer. These results provide mechanistic insights into Hexim-RNA specificity and explain how P-TEFb can be effectively regulated to respond to changing levels of transcriptional signaling.
Collapse
|
19
|
Caliò A, Marletta S, Brunelli M, Antonini P, Martelli FM, Marcolini L, Stefanizzi L, Martignoni G. TFE3-Rearranged Tumors of the Kidney: An Emerging Conundrum. Cancers (Basel) 2024; 16:3396. [PMID: 39410016 PMCID: PMC11475521 DOI: 10.3390/cancers16193396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Identical translocations involving the TFE3 gene and various partners have been found in both renal and soft tissue tumors, like alveolar soft part sarcoma (ASPSCR1), ossifying fibromyxoid tumor (PHF1), epithelioid hemangioendothelioma, and the clear cell stromal tumor of the lung (YAP1). Methods: Herein, we review in detail the clinicopathologic and molecular data of TFE3-rearranged renal tumors and propose our perspective, which may shed light on this emerging conundrum. Results: Among the kidney tumors carrying TFE3 translocations, most are morphologically heterogeneous carcinomas labeling for the tubular marker PAX8. The others are mesenchymal neoplasms known as PEComas, characterized by epithelioid cells co-expressing smooth muscle actin, cathepsin-K, melanogenesis markers, and sometimes melanin pigment deposition. Over the past 30 years, numerous TFE3 fusion partners have been identified, with ASPL/ASPSCR1, PRCC, SFPQ/PSF, and NONO being the most frequent. Conclusions: It is not well understood why similar gene fusions can give rise to renal tumors with different morpho-immunophenotypes, which may contribute to the recent disagreement regarding their classification. However, as these two entities, respectively, epithelial and mesenchymal in nature, are widely recognized by the pathology community and their clinicopathologic features well established, we overall believe it is still better to retain the names TFE3-rearranged renal cell carcinoma and TFE3-rearranged PEComa.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Stefano Marletta
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
- Division of Pathology, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Pietro Antonini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Filippo Maria Martelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| | - Lavinia Stefanizzi
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| |
Collapse
|
20
|
Kloet MS, Mukhopadhyay R, Mukherjee R, Misra M, Jeong M, Talavera Ormeño CMP, Moutsiopoulou A, Tjokrodirijo RTN, van Veelen PA, Shin D, Đikić I, Sapmaz A, Kim RQ, van der Heden van Noort GJ. Covalent Probes To Capture Legionella pneumophila Dup Effector Enzymes. J Am Chem Soc 2024; 146:26957-26964. [PMID: 39288007 PMCID: PMC11450808 DOI: 10.1021/jacs.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Upon infection of host cells, Legionella pneumophila releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein. We installed reactive warheads on chemically prepared ribosylated ubiquitin to generate a set of probes targeting these Legionella enzymes. In vitro tests on recombinant DupA revealed that a vinyl sulfonate warhead was most efficient in covalent complex formation. Mutagenesis and X-ray crystallography approaches were used to identify the site of covalent cross-linking to be an allosteric cysteine residue. The subsequent application of this probe highlights the potential to selectively enrich the Dup enzymes from Legionella-infected cell lysates.
Collapse
Affiliation(s)
- Max S. Kloet
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rishov Mukhopadhyay
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rukmini Mukherjee
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Mohit Misra
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Minwoo Jeong
- Department
of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Cami M. P. Talavera Ormeño
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Angeliki Moutsiopoulou
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rayman T. N. Tjokrodirijo
- Centre
for Proteomics and Metabolomics, Leiden
University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Peter A. van Veelen
- Centre
for Proteomics and Metabolomics, Leiden
University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Donghyuk Shin
- Department
of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Ivan Đikić
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Aysegul Sapmaz
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Zhan Z, Chen H, Liao X, Wu S, Lei X, Xu Q, Cao H, Qin Q, Wei J. Singapore grouper iridovirus VP128 inhibits STING-TBK1 mediated signaling to evade antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109774. [PMID: 39019127 DOI: 10.1016/j.fsi.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.
Collapse
Affiliation(s)
- Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xinyu Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, China.
| |
Collapse
|
22
|
Wiench L, Rizzo D, Sinay Z, Nacsa Z, Fuchs NV, König R. Role of PQBP1 in Pathogen Recognition-Impact on Innate Immunity. Viruses 2024; 16:1340. [PMID: 39205314 PMCID: PMC11360342 DOI: 10.3390/v16081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The intrinsically disordered polyglutamine-binding protein 1 (PQBP1) has been linked to various cellular processes including transcription, alternative splicing, translation and innate immunity. Mutations in PQBP1 are causative for neurodevelopmental conditions collectively termed as the Renpenning syndrome spectrum. Intriguingly, cells of Renpenning syndrome patients exhibit a reduced innate immune response against human immunodeficiency virus 1 (HIV-1). PQBP1 is responsible for the initiation of a two-step recognition process of HIV-1 reverse-transcribed DNA products, ensuring a type 1 interferon response. Recent investigations revealed that PQBP1 also binds to the p17 protein of avian reovirus (ARV) and is affected by the ORF52 of Kaposi's sarcoma-associated herpesvirus (KSHV), possibly also playing a role in the innate immune response towards these RNA- and DNA-viruses. Moreover, PQBP1-mediated microglia activation in the context of tauopathies has been reported, highlighting the role of PQBP1 in sensing exogenous pathogenic species and innate immune response in the central nervous system. Its unstructured nature, the promiscuous binding of various proteins and its presence in various tissues indicate the versatile roles of PQBP1 in cellular regulation. Here, we systematically review the available data on the structure of PQBP1 and its cellular functions and interactome, as well as possible implications for innate immune responses and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| |
Collapse
|
23
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
24
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
25
|
Zhang JN, Dong MM, Cao W, Chen HG, Gu HY, Feng YL, Zhang EF, He JS, Liu SC, Xie AY, Cai Z. Disruption of DNA-PKcs-mediated cGAS retention on damaged chromatin potentiates DNA damage-inducing agent-induced anti-multiple myeloma activity. Br J Cancer 2024; 131:430-443. [PMID: 38877108 PMCID: PMC11300664 DOI: 10.1038/s41416-024-02742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.
Collapse
Affiliation(s)
- Jin-Na Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Meng-Meng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao-Guang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui-Yao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Li Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - En-Fan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si-Cheng Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - An-Yong Xie
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Holzer MT, Uruha A, Roos A, Hentschel A, Schänzer A, Weis J, Claeys KG, Schoser B, Montagnese F, Goebel HH, Huber M, Léonard-Louis S, Kötter I, Streichenberger N, Gallay L, Benveniste O, Schneider U, Preusse C, Krusche M, Stenzel W. Anti-Ku + myositis: an acquired inflammatory protein-aggregate myopathy. Acta Neuropathol 2024; 148:6. [PMID: 39012547 PMCID: PMC11252205 DOI: 10.1007/s00401-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Myositis with anti-Ku-autoantibodies is a rare inflammatory myopathy associated with various connective tissue diseases. Histopathological studies have identified inflammatory and necrotizing aspects, but a precise morphological analysis and pathomechanistic disease model are lacking. We therefore aimed to carry out an in-depth morpho-molecular analysis to uncover possible pathomechanisms. Muscle biopsy specimens from 26 patients with anti-Ku-antibodies and unequivocal myositis were analyzed by immunohistochemistry, immunofluorescence, transcriptomics, and proteomics and compared to biopsy specimens of non-disease controls, immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Clinical findings and laboratory parameters were evaluated retrospectively and correlated with morphological and molecular features. Patients were mainly female (92%) with a median age of 56.5 years. Isolated myositis and overlap with systemic sclerosis were reported in 31%, respectively. Isolated myositis presented with higher creatine kinase levels and cardiac involvement (83%), whereas systemic sclerosis-overlap patients often had interstitial lung disease (57%). Histopathology showed a wide spectrum from mild to pronounced myositis with diffuse sarcolemmal MHC-class I (100%) and -II (69%) immunoreactivity, myofiber necrosis (88%), endomysial inflammation (85%), thickened capillaries (84%), and vacuoles (60%). Conspicuous sarcoplasmic protein aggregates were p62, BAG3, myotilin, or immunoproteasomal beta5i-positive. Proteomic and transcriptomic analysis identified prominent up-regulation of autophagy, proteasome, and hnRNP-related cell stress. To conclude, Ku + myositis is morphologically characterized by myofiber necrosis, MHC-class I and II positivity, variable endomysial inflammation, and distinct protein aggregation varying from IBM and IMNM, and it can be placed in the spectrum of scleromyositis and overlap myositis. It features characteristic sarcoplasmic protein aggregation on an acquired basis being functionally associated with altered chaperone, proteasome, and autophagy function indicating that Ku + myositis exhibit aspects of an acquired inflammatory protein-aggregate myopathy.
Collapse
Affiliation(s)
- Marie-Therese Holzer
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Akinori Uruha
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Rheumatology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225, Dusseldorf, Germany
- Brain and Mind Research Institute, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- E.V., Dortmund, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University, Gießen, Germany
| | - Joachim Weis
- Medical Faculty, Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melanie Huber
- Department for Rheumatology, Campus Kerckhoff of Justus-Liebig University Gießen, Bad Nauheim, Germany
| | - Sarah Léonard-Louis
- Reference Center of Neuromuscular Pathology Paris-Est, Pitié-Salpêtrière University Hospital, Paris, France
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nathalie Streichenberger
- Neuropathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5261- INSERM U1315, Lyon, France
| | - Laure Gallay
- Department of Internal Medicine, Edouard Herriot University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Udo Schneider
- Department of Rheumatology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Krusche
- Division of Rheumatology and Systemic Inflammatory Diseases, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité. Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Kweon TH, Jung H, Ko JY, Kang J, Kim W, Kim Y, Kim HB, Yi EC, Ku NO, Cho JW, Yang WH. O-GlcNAcylation of RBM14 contributes to elevated cellular O-GlcNAc through regulation of OGA protein stability. Cell Rep 2024; 43:114163. [PMID: 38678556 DOI: 10.1016/j.celrep.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.
Collapse
Affiliation(s)
- Tae Hyun Kweon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jingu Kang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wonyoung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Byeol Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
29
|
Sha Y, Liu X, Yan W, Wang M, Li H, Jiang S, Wang S, Ren Y, Zhang K, Yin R. Long Non-Coding RNA Analysis: Severe Pathogenicity in Chicken Embryonic Visceral Tissues Infected with Highly Virulent Newcastle Disease Virus-A Comparison to the Avirulent Vaccine Virus. Microorganisms 2024; 12:971. [PMID: 38792800 PMCID: PMC11123907 DOI: 10.3390/microorganisms12050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the specific mechanisms underlying the differences in host pathological responses and symptoms caused by various virulent NDV strains remains limited. Long non-coding RNA (lncRNA) can participate in a range of biological processes and plays a crucial role in viral infection and replication. Therefore, this study employed RNA-Seq to investigate the transcriptional profiles of chicken embryos' visceral tissues (CEVTs) infected with either the virulent NA-1 strain or avirulent LaSota strain at 24 hpi and 36 hpi. Using bioinformatic methods, we obtained a total of 2532 lncRNAs, of which there were 52 and 85 differentially expressed lncRNAs at 24 hpi and 36 hpi, respectively. LncRNA analysis revealed that the severe pathological changes and symptoms induced by virulent NDV infection may be partially attributed to related target genes, regulated by differentially expressed lncRNAs such as MSTRG.1545.5, MSTRG.14601.6, MSTRG.7150.1, and MSTRG.4481.1. Taken together, these findings suggest that virulent NDV infection exploits the host's metabolic resources and exerts an influence on the host's metabolic processes, accompanied by excessive activation of the immune response. This impacts the growth and development of each system of CEVTs, breaches the blood-brain barrier, inflicts severe damage on the nervous system, and induces significant lesions. These observations may be attributed to variations in pathology. Consequently, novel insights were obtained into the intricate regulatory mechanisms governing NDV and host interactions. This will aid in unraveling the molecular mechanisms underlying both virulent and avirulent forms of NDV infection.
Collapse
Affiliation(s)
- Yuxin Sha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Xinxin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Weiwen Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Mengjun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Hongjin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Shanshan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Sijie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Yongning Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Kexin Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| | - Renfu Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.S.); (X.L.); (W.Y.); (M.W.); (H.L.); (S.J.); (S.W.); (Y.R.); (K.Z.)
| |
Collapse
|
30
|
Zhang J, Wu L, Wang C, Xie X, Han Y. Research Progress of Long Non-Coding RNA in Tumor Drug Resistance: A New Paradigm. Drug Des Devel Ther 2024; 18:1385-1398. [PMID: 38689609 PMCID: PMC11060174 DOI: 10.2147/dddt.s448707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
In the past few decades, chemotherapy has been one of the most effective cancer treatment options. Drug resistance is currently one of the greatest obstacles to effective cancer treatment. Even though drug resistance mechanisms have been extensively investigated, they have not been fully elucidated. Recent genome-wide investigations have revealed the existence of a substantial quantity of long non-coding RNAs (lncRNAs) transcribed from the human genome, which actively participate in numerous biological processes, such as transcription, splicing, epigenetics, the cell cycle, cell differentiation, development, pluripotency, immune microenvironment. The abnormal expression of lncRNA is considered a contributing factor to the drug resistance. Furthermore, drug resistance may be influenced by genetic and epigenetic variations, as well as individual differences in patient treatment response, attributable to polymorphisms in metabolic enzyme genes. This review focuses on the mechanism of lncRNAs resistance to target drugs in the study of tumors with high mortality, aiming to establish a theoretical foundation for targeted therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Le Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Chenchen Wang
- Department of Critical Care Medicine, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People’s Republic of China
| | - Xin Xie
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuying Han
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi’an, Shaanxi, People’s Republic of China
- Department of Critical Care Medicine, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People’s Republic of China
- Science and Education Department, Xi’an No. 5 Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
31
|
Du X, Qin W, Yang C, Dai L, San M, Xia Y, Zhou S, Wang M, Wu S, Zhang S, Zhou H, Li F, He F, Tang J, Chen JY, Zhou Y, Xiao R. RBM22 regulates RNA polymerase II 5' pausing, elongation rate, and termination by coordinating 7SK-P-TEFb complex and SPT5. Genome Biol 2024; 25:102. [PMID: 38641822 PMCID: PMC11027413 DOI: 10.1186/s13059-024-03242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.
Collapse
Affiliation(s)
- Xian Du
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenying Qin
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyu Yang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mingkui San
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingdan Xia
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Siyu Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuang Wu
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shaorui Zhang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huiting Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fangshu Li
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fang He
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yu Zhou
- TaiKang Center for Life and Medical Sciences, College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Rui Xiao
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
33
|
Karandashov I, Kachanov A, Dukich M, Ponomareva N, Brezgin S, Lukashev A, Pokrovsky VS, Chulanov V, Kostyusheva A, Kostyushev D. m 6A Methylation in Regulation of Antiviral Innate Immunity. Viruses 2024; 16:601. [PMID: 38675942 PMCID: PMC11054785 DOI: 10.3390/v16040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.
Collapse
Affiliation(s)
- Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Maria Dukich
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Faculty of Virology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Vadim S. Pokrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Blokhin National Medical Research Center of Oncology, 117198 Moscow, Russia
- Faculty of Biochemistry, RUDN University, 117198 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (I.K.); (A.K.); (M.D.); (N.P.); (S.B.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Biotechnologies, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
34
|
Koch B, Filzmayer M, Patyna S, Wetzstein N, Lampe S, Schmid T, Geiger H, Baer PC, Dolnik O. Transcriptomics of Marburg virus-infected primary proximal tubular cells reveals negative correlation of immune response and energy metabolism. Virus Res 2024; 342:199337. [PMID: 38346476 PMCID: PMC10875301 DOI: 10.1016/j.virusres.2024.199337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.
Collapse
Affiliation(s)
- Benjamin Koch
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| | - Maximilian Filzmayer
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main 60596, Germany
| | - Sammy Patyna
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Nils Wetzstein
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, Frankfurt am Main 60596, Germany
| | - Sebastian Lampe
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Tobias Schmid
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Helmut Geiger
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Patrick C Baer
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Olga Dolnik
- Philipps University Marburg, Institute of Virology, Hans-Meerwein-Str. 2, Marburg 35043, Germany.
| |
Collapse
|
35
|
Wang X, Tong W, Yang X, Zhai H, Qin W, Liu C, Zheng H, Yu H, Tong G, Zhang Z, Kong N, Shan T. RBM14 inhibits the replication of porcine epidemic diarrhea virus by recruiting p62 to degrade nucleocapsid protein through the activation of autophagy and interferon pathway. J Virol 2024; 98:e0018224. [PMID: 38411947 PMCID: PMC10949495 DOI: 10.1128/jvi.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Jiangsu University of Science and Technology, Zhenjiang, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huanjie Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhendong Zhang
- Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Wu Y, Sun A, Yang Q, Wang M, Tian B, Yang Q, Jia R, Chen S, Ou X, Huang J, Sun D, Zhu D, Liu M, Zhang S, Zhao XX, He Y, Wu Z, Cheng A. An alpha-herpesvirus employs host HEXIM1 to promote viral transcription. J Virol 2024; 98:e0139223. [PMID: 38363111 PMCID: PMC10949456 DOI: 10.1128/jvi.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anyang Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiqi Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xin-Xin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
37
|
Song X, Ren X, Mei Q, Liu H, Huang H. Advancing In-Depth N-Terminomics Detection with a Cleavable 2-Pyridinecarboxyaldehyde Probe. J Am Chem Soc 2024; 146:6487-6492. [PMID: 38421262 DOI: 10.1021/jacs.4c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Proteolysis, an irreversible post-translational modification catalyzed by proteases, plays a crucial role in various biological processes. Exploring abnormally hydrolyzed proteins in pathological tissues is a valuable approach for elucidating the mechanisms underlying disease development. Herein, we have developed a cleavable 2-pyridinecarboxyaldehyde probe (2PCA-Probe) that enables efficient and in-depth N-terminomics detection, addressing limitations of previous methods. Furthermore, we unexpectedly discovered a new marker capable of identifying N-terminal chemical labeling with the 2PCA-Probe and elucidated the reaction mechanism. Using this probe, we identified 4686 N-terminal peptides in colorectal cancer and adjacent tissues, significantly expanding the depth of the N-terminome and revealing the potential role of abnormal protein hydrolysis in colorectal cancer development.
Collapse
Affiliation(s)
- Xiaohan Song
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cancer Center, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
38
|
Wang W, Liu L, Yang Z, Lu C, Tu P, Zhao R, Zeng K. Anti-psoriasis molecular targets and active components discovery of Optimized Yinxieling Formula via affinity-purified strategy. Chin J Nat Med 2024; 22:127-136. [PMID: 38342565 DOI: 10.1016/s1875-5364(24)60563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Indexed: 02/13/2024]
Abstract
Psoriasis, a prevalent inherited skin condition, involves an inflammatory response as a key pathogenic mechanism. The Optimized Yinxieling Formula (OYF), rooted in traditional Chinese medicine, is extensively utilized in clinical settings to treat psoriasis. Although previous studies have demonstrated OYF's significant anti-inflammatory effects in psoriasis, its potential molecular targets and active components remain unexplored. This study aimed to unveil the anti-psoriasis molecular targets and active components of OYF. Our findings indicated that OYF extract markedly reduced the production of several inflammatory mediators, including IL-23, nitric oxide, TNF-α, and IL-1β, in LPS-induced RAW264.7 cells. We synthesized OYF extract-crosslinked beads to isolate pharmacological targets from RAW264.7 lysates using an affinity purification strategy, known as Target Fishing. The enriched target proteins were subsequently identified via LC-MS/MS, followed by bioinformatics analysis to map the psoriasis-associated pathway-gene network. We identified a total of 76 potential target proteins, which were highly associated with mRNA transcription mechanisms. In particular, pathway-gene network analysis revealed that the IL-23 inflammatory pathway was involved in the anti-psoriasis effect of OYF extract. We further utilized a target protein-based affinity capture strategy, combined with LC-MS and SPR analysis, to globally screen OYF's active components, focusing on the mRNA transcription regulator, fused in sarcoma (FUS). This process led to the identification of umbelliferone, vanillic acid, protocatechuic acid, gentisic acid, and echinacoside as key compounds targeting FUS to inhibit IL-23 expression. Additionally, we formulated a compound cocktail (CpdC), which significantly reduced psoriasis area and severity index (PASI) scores and the expressions of IL-23 and Ki67 in an imiquimod (IMQ)-induced psoriasis mouse model. Collectively, our study elucidates the primary molecular targets and active components of OYF, offering novel insights for psoriasis treatment.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
39
|
Hristova DB, Oliveira M, Wagner E, Melcher A, Harrington KJ, Belot A, Ferguson BJ. DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. iScience 2024; 27:108760. [PMID: 38269102 PMCID: PMC10805666 DOI: 10.1016/j.isci.2023.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
To mount an efficient interferon response to virus infection, intracellular pattern recognition receptors (PRRs) sense viral nucleic acids and activate anti-viral gene transcription. The mechanisms by which intracellular DNA and DNA viruses are sensed are relevant not only to anti-viral innate immunity, but also to autoinflammation and anti-tumour immunity through the initiation of sterile inflammation by self-DNA recognition. The PRRs that directly sense and respond to viral or damaged self-DNA function by signaling to activate interferon regulatory factor (IRF)-dependent type one interferon (IFN-I) transcription. We and others have previously defined DNA-dependent protein kinase (DNA-PK) as an essential component of the DNA-dependent anti-viral innate immune system. Here, we show that DNA-PK is essential for cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-dependent IFN-I responses in human cells during stimulation with exogenous DNA and infection with DNA viruses.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Emma Wagner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alan Melcher
- The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard, Lyon, France
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
40
|
Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A. Casein kinase 2 activity is a host restriction factor for AAV transduction. Mol Ther 2024; 32:84-102. [PMID: 37952087 PMCID: PMC10787142 DOI: 10.1016/j.ymthe.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
So far, the mechanisms that impede AAV transduction, especially in the human heart, are poorly understood, hampering the introduction of new, effective gene therapy strategies. Therefore, the aim of this study was to identify and overcome the main cellular barriers to successful transduction in the heart, using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs), iPSC-derived cardiac fibroblasts (iPSC-CFs), and primary endothelial cells to model vector-host interactions. Through phosphoproteome analysis we established that casein kinase 2 (CK2) signaling is one of the most significantly affected pathways upon AAV exposure. Transient inhibition of CK2 activity substantially enhanced the transduction rate of AAV2, AAV6, and AAV9 in all tested cell types. In particular, CK2 inhibition improved the trafficking of AAVs through the cytoplasm, impaired DNA damage response through destabilization of MRE11, and altered the RNA processing pathways, which were also highly responsive to AAV transduction. Also, it augmented transgene expression in already transduced iPSC-CFs, which retain AAV genomes in a functional, but probably silent form. In summary, the present study provides new insights into the current understanding of the host-AAV vector interaction, identifying CK2 activity as a key barrier to efficient transduction and transgene expression, which may translate to improving the outcome of AAV-based therapies in the future.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Schmidt
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
41
|
Tofigh R, Hosseinpourfeizi M, Safaralizadeh R, Ghoddusifar S, Baradaran B. Serum Levels of Long Non-coding RNAs NEAT1, GAS5, and GAPLINC Altered in Rheumatoid Arthritis. Curr Rheumatol Rev 2024; 20:182-190. [PMID: 37855286 DOI: 10.2174/0115733971251184230921042511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA), an autoimmune joint inflammatory disease, presents a significant challenge due to its prevalence, particularly among women, affecting around 6% of individuals over the age of 65. Novel insights into disease mechanisms are crucial for improved diagnostic and therapeutic approaches. OBJECTIVE Long non-coding RNAs (lncRNAs) have emerged as potential contributors to the pathogenesis of various autoimmune diseases, including RA. This study aims to investigate the unique roles of four lncRNAs-NEAT1, GAS5, TMEVPG1, and GAPLINC-in the etiology of RA. METHODS Leveraging isolated serum samples from RA patients and healthy controls, we comprehensively evaluated the expression profiles of these lncRNAs. RESULTS Notably, our findings unveil a distinctive landscape of lncRNA expressions in RA. Among them, GAPLINC exhibited a significantly elevated average expression in the serum samples of RA patients, suggesting a potential biomarker candidate for disease stratification. Importantly, reduced expression of NEAT1 and GAS5 was observed in RA patients, highlighting their possible roles as diagnostic and prognostic markers. Conversely, TMEVPG1 displayed unaltered expression levels in RA samples. CONCLUSION Our study introduces a novel dimension to RA research by identifying NEAT1, GAS5, and GAPLINC as promising serological biomarkers. These findings hold significant clinical implications, offering potential avenues for improved diagnosis, disease monitoring, and therapeutic interventions in RA.
Collapse
Affiliation(s)
- Roghayeh Tofigh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sepideh Ghoddusifar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Ma M, Chen S, Zhang X, Yang R, Zhang L, Guo K, Wang J, Jia H, You Y, Han B. Identification and functional analysis of circulating small extracellular vesicle lncRNA signatures in children with fulminant myocarditis. J Cell Mol Med 2024; 28:e18034. [PMID: 37942713 PMCID: PMC10826448 DOI: 10.1111/jcmm.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Fulminant myocarditis (FM) is the most serious type of myocarditis. However, the molecular mechanism underlying the pathogenesis of FM has not been fully elucidated. Small extracellular vesicles (sEVs) play important roles in many diseases, but any potential role in paediatric FM has not been reported. Here, the differential signatures of lncRNAs in plasma sEVs were studied in FM children and healthy children using transcriptome sequencing followed by functional analysis. Then immune-related lncRNAs were screened to study their role in immune mechanisms, the levels and clinical relevance of core immune-related lncRNAs were verified by qRT-PCR in a large sample size. Sixty-eight lncRNAs had increased levels of plasma sEVs in children with FM and 11 had decreased levels. Functional analysis showed that the sEVs-lncRNAs with different levels were mainly related to immunity, apoptosis and protein efflux. Seventeen core immune-related sEVs-lncRNAs were screened, functional enrichment analysis showed that these lncRNAs were closely related to immune activation, immune cell migration and cytokine pathway signal transduction. The results of the study show that sEVs-lncRNAs may play an important role in the pathogenesis of fulminant myocarditis in children, especially in the mechanism of immune regulation.
Collapse
Affiliation(s)
- Mengjie Ma
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsThe Second Affiliated Hospital of Shandong First Medical UniversityTaianShandongChina
| | - Siyu Chen
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xinyue Zhang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Rulin Yang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Li Zhang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Kaiyin Guo
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jing Wang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Hailin Jia
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yingnan You
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Bo Han
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
43
|
Ding X, Liu J, Sun Y, Chen X. Triptolide alleviates the development of inflammation in ankylosing spondylitis via the NONHSAT227927.1/JAK2/STAT3 pathway. Exp Ther Med 2024; 27:17. [PMID: 38223328 PMCID: PMC10785042 DOI: 10.3892/etm.2023.12305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/29/2023] [Indexed: 01/16/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that can destroy the affected joints. Triptolide (TPL), a key active ingredient of the traditional Chinese medicine Tripterygium wilfordii exhibits promising efficacy in rheumatic immune disease with its anti-inflammatory effects. The present study aimed to elucidate the mechanism of TPL in treatment of AS by regulating the long non-coding RNA (lncRNA) NONHSAT227927.1. The role and underlying mechanisms of TPL in the development of inflammation in AS were assessed. In vivo, the expression of NONHSAT227927.1 in AS was detected by reverse transcription-quantitative (RT-q)PCR. Correlation analysis and binary logistic regression were performed between immune and inflammatory indicators, perception scale scores of patients and NONHSAT227927.1. In vitro, Cell Counting Kit-8 was used to evaluate the activity of AS-fibroblast-like synoviocytes (FLSs) following TPL exposure. AS-FLS inflammation was assessed by qPCR and ELISA. The interaction between TPL and JAK2 and STAT3 was verified by molecular docking and the JAK2/STAT3 pathway components were detected by western blotting. NONHSAT227927.1 was knocked down by small interfering RNA to determine its role. NONHSAT227927.1 was highly expressed in vivo and positively correlated with disease duration, disease duration, Body mass index (BMI), C-reactive protein (CRP), Visual analog scale (VAS), Visual analog scale (VAS), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Bath Ankylosing Spondylitis Metrology Index, among which ESR and VAS and BASDAI score were risk factors for NONHSAT227927.1. TPL downregulated pro-inflammatory factors in AS-FLSs and inhibited the JAK2/STAT3 pathway via NONHSAT227927.1. TPL inhibited inflammatory factors in AS-FLSs and alleviated inflammatory responses via the NONHSAT227927.1/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Xiang Ding
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yanqiu Sun
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Xiaolu Chen
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
44
|
Li Z, Liao Y, Tang C, Xu L, Peng B, Xu X. RBM14 promotes DNA end resection during homologous recombination repair. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1864-1873. [PMID: 37559455 PMCID: PMC10753362 DOI: 10.3724/abbs.2023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zheng Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Yanting Liao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Chen Tang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100091China
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM)Dehua HospitalDehua362500China
| | - Linli Xu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| |
Collapse
|
45
|
Thenin-Houssier S, Machida S, Jahan C, Bonnet-Madin L, Abbou S, Chen HC, Tesfaye R, Cuvier O, Benkirane M. POLE3 is a repressor of unintegrated HIV-1 DNA required for efficient virus integration and escape from innate immune sensing. SCIENCE ADVANCES 2023; 9:eadh3642. [PMID: 37922361 PMCID: PMC10624344 DOI: 10.1126/sciadv.adh3642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.
Collapse
Affiliation(s)
- Suzie Thenin-Houssier
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Shinichi Machida
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Cyprien Jahan
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Lucie Bonnet-Madin
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Scarlette Abbou
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Heng-Chang Chen
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Robel Tesfaye
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Cuvier
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Monsef Benkirane
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| |
Collapse
|
46
|
Qin X, Long Y, Bai X, Cao L, Yan H, Zhang K, Wang B, Wu X. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. J Biol Chem 2023; 299:105071. [PMID: 37474102 PMCID: PMC10457456 DOI: 10.1016/j.jbc.2023.105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.
Collapse
Affiliation(s)
- Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yan Long
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Lei Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Han Yan
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
47
|
Li X, Wang Y, Min Q, Zhang W, Teng H, Li C, Zhang K, Shi L, Wang B, Zhan Q. Comparative transcriptome characterization of esophageal squamous cell carcinoma and adenocarcinoma. Comput Struct Biotechnol J 2023; 21:3841-3853. [PMID: 37564101 PMCID: PMC10410469 DOI: 10.1016/j.csbj.2023.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Background Esophageal cancers are primarily categorized as esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). While various (epi) genomic alterations associated with tumor development in ESCC and EAC have been documented, a comprehensive comparison of the transcriptomes in these two cancer subtypes remains lacking. Methods We collected 551 gene expression profiles from publicly available sources, including normal, ESCC, and EAC tissues or cell lines. Subsequently, we conducted a systematic analysis to compare the transcriptomes of these samples at various levels, including gene expression, promoter activity, alternative splicing (AS), alternative polyadenylation (APA), and gene fusion. Results Seven distinct cluster gene expression patterns were identified among the differentially expressed genes in normal, ESCC, and EAC tissues. These patterns were enriched in the PI3K-Akt signaling pathway and the activation of extracellular matrix organization and exhibited repression of epidermal development. Notably, we observed additional genes or unique expression levels enriched in these shared pathways and biological processes related to tumor development and immune activation. In addition to the differentially expressed genes, there was an enrichment of lncRNA co-expression networks and downregulation of promoter activity associated with the repression of epidermal development in both ESCC and EAC. This indicates a common feature between these two cancer subtypes. Furthermore, differential AS and APA patterns in ESCC and EAC appear to partially affect the expression of host genes associated with bacterial or viral infections in these subtypes. No gene fusions were observed between ESCC and EAC, thus highlighting the distinct molecular mechanisms underlying these two cancer subtypes. Conclusions We conducted a comprehensive comparison of ESCC and EAC transcriptomes and uncovered shared and distinct transcriptomic signatures at multiple levels. These findings suggest that ESCC and EAC may exhibit common and unique mechanisms involved in tumorigenesis.
Collapse
Affiliation(s)
- Xianfeng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing 400042, People's Republic of China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qingjie Min
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weimin Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huajing Teng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chao Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Kun Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Leisheng Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing 400042, People's Republic of China
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
48
|
Taffoni C, Schüssler M, Vila IK, Laguette N. Harnessing the cooperation between DNA-PK and cGAS in cancer therapies: The cooperation between DNA-PK and cGAS shapes tumour immunogenicity. Bioessays 2023; 45:e2300045. [PMID: 37147791 DOI: 10.1002/bies.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is central for the initiation of anti-tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS-STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA-dependent protein kinase (DNA-PK) complex, that recently emerged as an activator of inflammatory responses in tumour cells. We propose that stratification analyses on cGAS and DNA-PK expression/activation status should be carried out to predict treatment efficacy. We herein also provide insights into non-canonical functions borne by cGAS and cGAMP, highlighting how they may influence tumourigenesis. All these parameters should be taken into consideration concertedly to choose strategies aiming to effectively boost tumour immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
49
|
Zhang XL, Chen XH, Xu B, Chen M, Zhu S, Meng N, Wang JZ, Zhu H, Chen D, Liu JB, Yan GR. K235 acetylation couples with PSPC1 to regulate the m 6A demethylation activity of ALKBH5 and tumorigenesis. Nat Commun 2023; 14:3815. [PMID: 37369679 DOI: 10.1038/s41467-023-39414-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.
Collapse
Affiliation(s)
- Xiao-Lan Zhang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Binwu Xu
- Blood Transfusion Department, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Min Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Nan Meng
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ji-Zhong Wang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - De Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jin-Bao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
50
|
Wang K, Gong M, Zhao S, Lai C, Zhao L, Cheng S, Xia M, Li Y, Wang K, Sun H, Zhu P, Zhou Y, Ao Q, Deng X. A novel lncRNA DFRV plays a dual function in influenza A virus infection. Front Microbiol 2023; 14:1171423. [PMID: 37303776 PMCID: PMC10248499 DOI: 10.3389/fmicb.2023.1171423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been associated with a variety of biological activities, including immune responses. However, the function of lncRNAs in antiviral innate immune responses are not fully understood. Here, we identified a novel lncRNA, termed dual function regulating influenza virus (DFRV), elevating in a dose- and time-dependent manner during influenza A virus (IAV) infection, which was dependent on the NFκB signaling pathway. Meanwhile, DFRV was spliced into two transcripts post IAV infection, in which DFRV long suppress the viral replication while DFRV short plays the opposite role. Moreover, DFRV regulates IL-1β and TNF-α via activating several pro-inflammatory signaling cascades, including NFκB, STAT3, PI3K, AKT, ERK1/2 and p38. Besides, DFRV short can inhibit DFRV long expression in a dose-dependent manner. Collectively, our studies reveal that DFRV may act as a potential dual-regulator to preserve innate immune homeostasis in IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meiliang Gong
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sumin Zhao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingna Zhao
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Sijie Cheng
- Center for Disease Prevention and Control, Changde, Hunan, China
| | - Min Xia
- Department of Vascular Cell Biology, Max Plank Institute for Molecular Biomedicine, Münster, Germany
| | - Yuru Li
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Wang
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Heqiang Sun
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Zhou
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiangguo Ao
- Department of Nephrology, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinli Deng
- Department of Clinical Laboratory, National Clinical Research Center for Geriatric Diseases, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|