1
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
2
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Hao P, Li Q, Zhao H. Mucin 1 expression is regulated by hsa_circ_0055054/microRNA‑122‑5p and promotes hepatocellular carcinoma development. Oncol Lett 2024; 28:404. [PMID: 38983125 PMCID: PMC11228922 DOI: 10.3892/ol.2024.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
The abnormal expression of mucin 1 (MUC1) is a major cause of poor prognosis in patients with hepatocellular carcinoma (HCC). Competitive endogenous RNA demonstrates a novel regulatory mechanism that can affect the biological behavior of tumors. In the present study, the regulatory functions of hsa_circ_0055054 as well as those of microRNA (miR/miRNA) 122-5p on MUC1 expression and its role in HCC cell proliferation, migration and invasion, were evaluated. MUC1 expression was assessed using western blotting and reverse transcription-quantitative PCR. The phenotypic functions of the HCC cell lines were evaluated following MUC1 knockdown using Cell Counting Kit-8, wound healing and Transwell assays. Bioinformatics tools were used to identify specific miRNAs and circular (circ)RNAs that interact with and can regulate MUC1. The stability of circRNAs was assessed using a Ribonuclease R assay. The binding of circRNA/miRNA/MUC1 was assessed using dual-luciferase reporter assays and cellular function tests. Finally, in vivo experiments were performed using animal models. The results demonstrated that in MHCC97L cells, MUC1 and hsa_circ_0055054 were expressed at high levels while miR-122-5p was downregulated. The proliferation, migration and invasion of MHCC97L cells were suppressed by low MUC1 expression. hsa_circ_0055054 knockdown or miR-122-5p overexpression both led to a decrease in MUC1 expression. In MHCC97L cells with a low MUC1 expression caused by hsa_circ_0055054 knockdown, miR-122-5p inhibition resulted in the increased proliferation, migration and invasion of MHCC97L cells. In combination, the results of the present study indicate that hsa_circ_0055054 knockdown in MHCC97L cells leads to an increased expression of miR-122-5p and decreased expression of MUC1, which results in the inhibition of MHCC97L cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Pengfei Hao
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Qi Li
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Haoliang Zhao
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
4
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
5
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
6
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-protein interactions with subcellular resolution using colocalization CLIP. RNA (NEW YORK, N.Y.) 2024; 30:920-937. [PMID: 38658162 PMCID: PMC11182006 DOI: 10.1261/rna.079890.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
Affiliation(s)
- Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shashi S Singh
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Joseph M Luna
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
7
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
8
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
9
|
Rykova EY, Ershov NI, Degtyareva AO, Bryzgalov LO, Lushnikova EL. The Search for and Functional Analysis of Genetic Variants in microRNA-Binding Sites using Massively Parallel Reporter Assay. Bull Exp Biol Med 2024; 176:595-598. [PMID: 38724816 DOI: 10.1007/s10517-024-06074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 05/18/2024]
Abstract
A large-scale search for the genetic variants with a bias in the representation of alleles in transcriptome data (AE SNPs) and the binding sites in microRNA 3'-UTRs was performed and their functional significance was assessed using massively parallel reporter assay (MPRA). Of the 629,559 associated "SNP-gene" pairs (eQTLs) discovered in the human liver tissue according to the GTEx Analysis V8 data, 4394 polymorphic positions in the 3'-UTRs of the genes, which represent the eQTLs for these genes were selected. The TargetScanHuman 7.0 algorithm and PolymiRTS database were searched for the potential microRNA-binding sites. Of the predicted microRNA sites affected by eQTL-SNPs, we selected 51 sites with the best evidence of functionality according to Ago2-CLIP-seq, CLEAR-CLIP, and eCLIP-seq for RNA-binding proteins. For MPRA, a library of the plasmids carrying the main and alternative alleles for each AE SNP (in total, 102 constructs) was created. Allele-specific expression for 6 SNPs was detected by transfection of the HepG2 cell line with the constructed plasmid library and sequencing of target DNA and RNA sequences using the Illumina (MiSeq) platform.
Collapse
Affiliation(s)
- E Yu Rykova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - N I Ershov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A O Degtyareva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L O Bryzgalov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E L Lushnikova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
10
|
Chen Y, Xie Y, Bi L, Ci H, Li W, Liu D. A novel serum m 7G-harboring microRNA signature for cancer detection. Front Genet 2024; 15:1270302. [PMID: 38384713 PMCID: PMC10879580 DOI: 10.3389/fgene.2024.1270302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Emerging evidence points to the exceptional importance and value of m7G alteration in the diagnosis and prognosis of cancers. Nonetheless, a biomarker for precise screening of various cancer types has not yet been developed based on serum m7G-harboring miRNAs. Methods: A total of 20,702 serum samples, covering 12 cancer types and consisting of 7,768 cancer samples and 12,934 cancer-free samples were used in this study. A m7G target miRNA diagnostic signature (m7G-miRDS) was established through the least absolute shrinkage and selection operator (LASSO) analyses in a training dataset (n = 10,351), and validated in a validation dataset (n = 10,351). Results: The m7G-miRDS model, a 12 m7G-target-miRNAs signature, demonstrated high accuracy and was qualified for cancer detection. In the training and validation cohort, the area under the curve (AUC) reached 0.974 (95% CI 0.971-0.977) and 0.972 (95% CI 0.969-0.975), respectively. The m7G-miRDS showed superior sensitivity in each cancer type and had a satisfactory AUC in identifying bladder cancer, lung cancer and esophageal cancer. Additionally, the diagnostic performance of m7G-miRDS was not interfered by the gender, age and benign disease. Conclusion: Our results greatly extended the value of serum circulating miRNAs and m7G in cancer detection, and provided a new direction and strategy for the development of novel biomarkers with high accuracy, low cost and less invasiveness for mass cancer screening, such as ncRNA modification.
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Xie
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Jiujiang First People’s Hospital, Jiujiang, Jiangxi, China
| | - Liyun Bi
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Ci
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
12
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
13
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-Protein Interactions with Subcellular Resolution Using Colocalization CLIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563984. [PMID: 37961159 PMCID: PMC10634835 DOI: 10.1101/2023.10.26.563984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP, a method that combines CrossLinking and ImmunoPrecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the well-studied RNA-binding protein HuR. Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule compartments. We uncover HuR's unique binding preferences within stress granules during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP:RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
|
14
|
Petrashen AP, Verdesca AD, Kreiling JA, Sedivy JM. Regulation of the somatotropic axis by MYC-mediated miRNA repression. Front Cell Dev Biol 2023; 11:1269860. [PMID: 37908640 PMCID: PMC10615138 DOI: 10.3389/fcell.2023.1269860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
The transcription factor MYC is overexpressed in many human cancers and has a significant causal role in tumor incidence and progression. In contrast, Myc +/- heterozygous mice, which have decreased MYC expression, exhibit a 10-20% increase in lifespan and a decreased incidence or progression of several age-related diseases. Myc heterozygous mice were also reported to have decreased mTOR and IGF1 signaling, two pathways whose reduced activity is associated with longevity in diverse species. Given MYC's downstream role in these pathways, the downregulation of mTOR and IGF1 signaling in Myc heterozygotes suggests the presence of feedback loops within this regulatory network. In this communication we provide further evidence that the reduction of Myc expression in Myc +/- heterozygous mice provokes a female-specific decrease in circulating IGF1 as well as a reduction of IGF1 protein in the liver. In particular, reduced Myc expression led to upregulation of miRNAs that target the Igf1 transcript, thereby inhibiting its translation and leading to decreased IGF1 protein levels. Using Argonaute (AGO)-CLIP-sequencing we found enrichment of AGO binding in the Igf1 transcript at the target sites of let-7, miR-122, and miR-29 in female, but not male Myc heterozygotes. Upregulation of the liver-specific miR-122 in primary hepatocytes in culture and in vivo in mice resulted in significant downregulation of IGF1 protein, but not mRNA. Reduced levels of IGF1 increased GH production in the pituitary through a well-documented negative-feedback relationship. In line with this, we found that IGF1 levels in bone (where miR-122 is not expressed) were unchanged, consistent with the decreased incidence of osteoporosis in female Myc heterozygotes, despite decreased circulating IGF1.
Collapse
Affiliation(s)
| | | | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Eom S, Peak J, Park J, Ahn SH, Cho YK, Jeong Y, Lee HS, Lee J, Ignatova E, Lee SE, Hong Y, Gu D, Kim GWD, Lee DC, Hahm JY, Jeong J, Choi D, Jang ES, Chi SW. Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development. Nat Cell Biol 2023; 25:1369-1383. [PMID: 37696949 DOI: 10.1038/s41556-023-01209-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.
Collapse
Affiliation(s)
- Sangkyeong Eom
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongjin Peak
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongyeun Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yeahji Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | | | - Sung Eun Lee
- Department of Life Sciences, Korea University, Seoul, Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yunji Hong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Dowoon Gu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Geun-Woo D Kim
- Department of Life Sciences, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Dong Chan Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| |
Collapse
|
16
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
17
|
Chen F, Li Y, Aye L, Wu Y, Dong L, Yang Z, Gao Q, Zhang S. FUT8 is regulated by miR-122-5p and promotes malignancies in intrahepatic cholangiocarcinoma via PI3K/AKT signaling. Cell Oncol (Dordr) 2023; 46:79-91. [PMID: 36348252 DOI: 10.1007/s13402-022-00736-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is the second-most lethal primary liver cancer and its prognosis remains dismal. N-glycosylation, which is biosynthesized by a number of glycosyltransferases, plays an important role in a variety of biological processes and is associated with cancer development and progression. METHODS Based on our previous proteogenomic resources from an iCCA cohort of 262 patients, fucosyltransferases 8 (FUT8) showed significant prognosis relevance in iCCA. Tumor tissues from iCCA patients were used to evaluate the correlation between its expression and clinical information. Gain/loss-of-function experiments in iCCA cell lines were performed to elucidate the biological function of FUT8. In addition, its downstream pathways and post-transcriptional regulators were inferred and verified. RESULTS Elevated FUT8 expression was clinically associated with worse overall survival in iCCA patients. Its overexpression promoted migration, invasion and proliferation ability of iCCA cells. In addition, miR-122-5p was found to act as a post-transcriptional regulator of FUT8 and proved to inhibit FUT8 expression and then suppress the proliferation and migration ability of iCCA cell lines. Furthermore, FUT8 was observed to promote iCCA development through PI3K/AKT signaling pathway. CONCLUSIONS These findings demonstrated that FUT8, regulated by miR-122-5p, could be a tumor promoter of iCCA through PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling Aye
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yingcheng Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Liangqing Dong
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Zijian Yang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Protective effect of hepatocyte-enriched lncRNA-Mir122hg by promoting hepatocyte proliferation in acute liver injury. Exp Mol Med 2022; 54:2022-2035. [PMID: 36424455 PMCID: PMC9722683 DOI: 10.1038/s12276-022-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs), which harbor microRNAs in their gene sequence and are also known as microRNA host gene derived lncRNAs (lnc-MIRHGs), play a dominant role alongside miRNAs, or both perform biological functions synergistically or independently. However, only a small number of lnc-MIRHGs have been identified. Here, multiple liver injury datasets were analyzed to screen and identify the target lncRNA Mir122hg. Mir122hg was mainly enriched in liver tissues with human-mouse homology. In both CCl4-induced acute liver injury and Dgal/LPS-induced fulminant liver failure in mice, Mir122hg was sharply downregulated at the early stage, while a subsequent significant increase was only found in the CCl4 group with liver recovery. Overexpression and silencing assays confirmed that Mir122hg played a protective role in acute injury by promoting hepatocyte proliferation in vivo and in vitro. Consistent with the results of gene enrichment analysis, Mir122hg binding to C/EBPα affected its transcriptional repression, promoted gene transcription of downstream chemokines, Cxcl2, Cxcl3, and Cxcl5, and exerted pro-proliferative effects on hepatocytes through activation of the AKT/GSK-3β/p27 signaling pathway by CXC/CXCR2 complexes. This study identifies a novel lncRNA with protective effects in acute liver injury and demonstrates that the binding of Mir122hg-C/EBPα promotes hepatocyte proliferation via upregulation of CXC chemokine and activation of AKT signaling.
Collapse
|
19
|
Singh S, Shyamal S, Panda AC. Detecting RNA-RNA interactome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1715. [PMID: 35132791 DOI: 10.1002/wrna.1715] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The last decade has seen a robust increase in various types of novel RNA molecules and their complexity in gene regulation. RNA molecules play a critical role in cellular events by interacting with other biomolecules, including protein, DNA, and RNA. It has been established that RNA-RNA interactions play a critical role in several biological processes by regulating the biogenesis and function of RNA molecules. Interestingly, RNA-RNA interactions regulate the biogenesis of diverse RNA molecules, including mRNAs, microRNAs, tRNAs, and circRNAs, through splicing or backsplicing. Structured RNAs like rRNA, tRNA, and snRNAs achieve their functional conformation by intramolecular RNA-RNA interactions. In addition, functional consequences of many intermolecular RNA-RNA interactions have been extensively studied in the regulation of gene expression. Hence, it is essential to understand the mechanism and functions of RNA-RNA interactions in eukaryotes. Conventionally, RNA-RNA interactions have been identified through diverse biochemical methods for decades. The advent of high-throughput RNA-sequencing technologies has revolutionized the identification of global RNA-RNA interactome in cells and their importance in RNA structure and function in gene expression regulation. Although these technologies revealed tens of thousands of intramolecular and intermolecular RNA-RNA interactions, we further look forward to future unbiased and quantitative high-throughput technologies for detecting transcriptome-wide RNA-RNA interactions. With the ability to detect RNA-RNA interactome, we expect that future studies will reveal the higher-order structures of RNA molecules and multi-RNA hybrids impacting human health and diseases. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center for Biotechnology, Faridabad, India
| | | | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| |
Collapse
|
20
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
21
|
Yang F, Ruan H, Li S, Hou W, Qiu Y, Deng L, Su S, Chen P, Pang L, Lai K. Analysis of circRNAs and circRNA-associated competing endogenous RNA networks in β-thalassemia. Sci Rep 2022; 12:8071. [PMID: 35577924 PMCID: PMC9110710 DOI: 10.1038/s41598-022-12002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
The involvement of circRNAs in β-thalassemia and their actions on fetal hemoglobin (HbF) is unclear. Here, the circRNAs in β-thalassemia carriers with high HbF levels were comprehensively analyzed and compared with those of healthy individuals. Differential expression of 2183 circRNAs was observed and their correlations with hematological parameters were investigated. Down-regulated hsa-circRNA-100466 had a strong negative correlation with HbF and HbA2. Bioinformatics was employed to construct a hsa-circRNA-100466‑associated competing endogenous RNA (ceRNA) network to identify hub genes and associated miRNAs. The hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified using both present and previously published data. The ceRNA network was verified by qRT-PCR analysis of β-thalassemia samples, RNA immunoprecipitation of K562 cell lysates, and dual-luciferase reporter analysis. qRT-PCR confirmed that hsa-circRNA-100466 and SOX6 were significantly down-regulated, while miR-19b-3p was up-regulated. Hsa-circRNA-100466, miR-19b-3p, and SOX6 were co-immunoprecipitated by anti-argonaute antibodies, indicating involvement with HbF induction. A further dual-luciferase reporter assay verified that miR-19b-3p interacted directly with hsa-circRNA-100466 and SOX6. Furthermore, spearman correlation coefficients revealed their significant correlations with HbF. In conclusion, a novel hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified, providing insight into HbF induction and suggesting targets β-thalassemia treatment.
Collapse
Affiliation(s)
- Fang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Heyun Ruan
- Department of Obstetrics and Gynecology, Minzu Hospital of Guangxi, Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuquan Li
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Hou
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Qiu
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingjie Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sha Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Chen
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Lihong Pang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Ketong Lai
- NHC Key Laboratory of Thalassemia Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Key Laboratory of Thalassemia Medicine, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Guangxi Key Laboratory of Thalassemia Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Dori M, Caroli J, Forcato M. Circr, a Computational Tool to Identify miRNA:circRNA Associations. FRONTIERS IN BIOINFORMATICS 2022; 2:852834. [PMID: 36304313 PMCID: PMC9580875 DOI: 10.3389/fbinf.2022.852834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 08/21/2023] Open
Abstract
Circular RNAs (circRNAs) are known to act as important regulators of the microRNA (miRNA) activity. Yet, computational resources to identify miRNA:circRNA interactions are mostly limited to already annotated circRNAs or affected by high rates of false positive predictions. To overcome these limitations, we developed Circr, a computational tool for the prediction of associations between circRNAs and miRNAs. Circr combines three publicly available algorithms for de novo prediction of miRNA binding sites on target sequences (miRanda, RNAhybrid, and TargetScan) and annotates each identified miRNA:target pairs with experimentally validated miRNA:RNA interactions and binding sites for Argonaute proteins derived from either ChIPseq or CLIPseq data. The combination of multiple tools for the identification of a single miRNA recognition site with experimental data allows to efficiently prioritize candidate miRNA:circRNA interactions for functional studies in different organisms. Circr can use its internal annotation database or custom annotation tables to enhance the identification of novel and not previously annotated miRNA:circRNA sites in virtually any species. Circr is written in Python 3.6 and is released under the GNU GPL3.0 License at https://github.com/bicciatolab/Circr.
Collapse
Affiliation(s)
- Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| |
Collapse
|
23
|
Li D, Chen M, Hong H, Tong W, Ning B. Integrative approaches for studying the role of noncoding RNAs in influencing drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2022; 18:151-163. [PMID: 35296201 PMCID: PMC9117541 DOI: 10.1080/17425255.2022.2054802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drug efficacy and toxicity are important factors for evaluation in drug development. Drug metabolizing enzymes and transporters (DMETs) play an essential role in drug efficacy and toxicity. Noncoding RNAs (ncRNAs) have been implicated to influence inter-individual variations in drug efficacy and safety by regulating DMETs. An efficient strategy is urgently needed to identify and functionally characterize ncRNAs that mediate drug efficacy and toxicity through regulating DMETs. AREAS COVERED We outline an integrative strategy to identify ncRNAs that modulate DMETs. We include reliable tools and databases for computational prediction of ncRNA targets with regard to their advantages and limitations. Various biochemical, molecular, and cellular assays are discussed for in vitro experimental verification of the regulatory function of ncRNAs. In vivo approaches for association of ncRNAs with drug treatment and toxicity are also reviewed. EXPERT OPINION A streamlined integration of computational prediction and wet-lab validation is important to elucidate mechanisms of ncRNAs in the regulation of DMETs related to drug efficacy and safety. Bioinformatic analyses using open-access tools and databases serve as a powerful booster for ncRNA Research in toxicology. Further refinement of computational algorithms and experimental technologies is needed to improve accuracy and efficiency in ncRNA target identification and characterization.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Minjun Chen
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Huixiao Hong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Weida Tong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| |
Collapse
|
24
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Zhang Y, Tan YY, Chen PP, Xu H, Xie SJ, Xu SJ, Li B, Li JH, Liu S, Yang JH, Zhou H, Qu LH. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 2021; 12:1161. [PMID: 34907157 PMCID: PMC8671590 DOI: 10.1038/s41419-021-04436-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Liver development is a highly complex process that is regulated by the orchestrated interplay of epigenetic regulators, transcription factors, and microRNAs (miRNAs). Owing to the lack of global in vivo targets of all miRNAs during liver development, the mechanisms underlying the dynamic control of hepatocyte differentiation by miRNAs remain elusive. Here, using Argonaute (Ago) high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse liver at different developmental stages, we characterized massive Ago-binding RNAs and obtained a genome-wide map of liver miRNA-mRNA interactions. The dynamic changes of five clusters of miRNAs and their potential targets were identified to be differentially involved at specific stages, a dozen of high abundant miRNAs and their epigenetic regulation by super-enhancer were found during liver development. Remarkably, miR-122, a liver-specific and most abundant miRNA in newborn and adult livers, was found by its targetome and pathway reporter analyses to regulate the Hippo pathway, which is crucial for liver size control and homeostasis. Mechanistically, we further demonstrated that miR-122 negatively regulates the outcomes of the Hippo pathway transcription factor TEAD by directly targeting a number of hippo pathway regulators, including the coactivator TAZ and a key factor of the phosphatase complex PPP1CC, which contributes to the dephosphorylation of YAP, another coactivator downstream of the Hippo pathway. This study identifies for the first time the genome-wide miRNA targetomes during mouse liver development and demonstrates a novel mechanism of terminal differentiation of hepatocytes regulated by the miR-122/Hippo pathway in a coordinated manner. As the Hippo pathway plays important roles in cell proliferation and liver pathological processes like inflammation, fibrosis, and hepatocellular carcinoma (HCC), our study could also provide a new insight into the function of miR-122 in liver pathology.
Collapse
Affiliation(s)
- Yin Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ye-Ya Tan
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Pei-Pei Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.413402.00000 0004 6068 0570Guangdong Province Hospital of Chinese Medicine, AMI Key Laboratory of Chinese Medicine in Guangzhou, , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006 China
| | - Hui Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shu-Juan Xie
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shi-Jun Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Bin Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jun-Hao Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jian-Hua Yang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Hui Zhou
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
26
|
Wang N, Hao F, Shi Y, Wang J. The Controversial Role of Polyploidy in Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:5335-5344. [PMID: 34866913 PMCID: PMC8636953 DOI: 10.2147/ott.s340435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Polyploidy, a physiological phenomenon in which cells contain more than two sets of homologous chromosomes, commonly exists in plants, fish, and amphibians but is rare in mammals. In humans, polyploid cells are detected commonly in specific organs or tissues including the heart, marrow, and liver. As the largest solid organ in the body, the liver is responsible for a myriad of functions, most of which are closely related to polyploid hepatocytes. It has been confirmed that polyploid hepatocytes are related to liver regeneration, homeostasis, terminal differentiation, and aging. Polyploid hepatocytes accumulate during the aging process as well as in chronically injured livers. The relationship between polyploid hepatocytes and hepatocellular carcinoma, the endpoint of most chronic liver diseases, is not yet fully understood. Recently, accumulated evidence has revealed that polyploid involves in the process of tumorigenesis and development. The study of the correlation and relationship between polyploidy hepatocytes and the development of hepatocellular carcinoma can potentially promote the prevention, early diagnosis, and treatment of hepatocellular carcinoma. In this review, we conclude the potential mechanisms of polyploid hepatocytes formation, focusing on the specific biological significance of polyploid hepatocytes. In addition, we examine recent discoveries that have begun to clarify the relevance between polyploid hepatocytes and hepatocellular carcinoma and discuss recent excellent findings that reveal the role of polyploid hepatocytes as resisters of hepatocellular carcinoma or as promoters of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, Saxena M, Valenta T, Hausmann G, Cantù C, Basler K, Christofori G. The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene 2021; 40:6195-6209. [PMID: 34545187 PMCID: PMC8553620 DOI: 10.1038/s41388-021-02016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Canonical Wnt/β-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of β-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with β-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of β-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the β-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFβ treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the “just-right” hypothesis of Wnt-driven tumor progression.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - David Buechel
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lorenzo Bazzani
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
28
|
Abstract
Genomic and transcriptomic analyses have well established that the major fraction of the mammalian genome is transcribed into different classes of RNAs ranging in size from a few nucleotides to hundreds of thousands of nucleotides, which do not encode any protein. Some of these noncoding RNAs (ncRNAs) are directly or indirectly linked to the regulation of expression or functions of 25,000 proteins coded by <2% of the human genome. Among these regulatory RNAs, microRNAs are small (2125 nucleotides) RNAs that are processed from precursor RNAs that have stemloop structure, whereas noncoding RNAs >200 nucleotides are termed long noncoding RNAs (lncRNAs). Circular RNAs (circRNAs) are newly identified lncRNA members that are generated by back-splicing of primary transcripts. The functions of ncRNAs in modulating liver toxicity of xenobiotics are emerging only recently. Acetaminophen (N-acetyl-para-aminophenol, paracetamol or APAP) is a safe analgesic and antipyretic drug at the therapeutic dose. However, it can cause severe liver toxicity that may lead to liver failure if overdosed or combined with alcohol, herbs, or other xenobiotics. This review discusses the role of ncRNAs in acetaminophen metabolism, toxicity, and liver regeneration after APAP-induced liver injury (AILI).
Collapse
Affiliation(s)
- Vivek Chowdhary
- *Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
- †Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Pipasha Biswas
- †Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kalpana Ghoshal
- *Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
- †Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
O'Connor S, Murphy EA, Szwed SK, Kanke M, Marchildon F, Sethupathy P, Darnell RB, Cohen P. AGO HITS-CLIP reveals distinct miRNA regulation of white and brown adipose tissue identity. Genes Dev 2021; 35:771-781. [PMID: 33832988 PMCID: PMC8091975 DOI: 10.1101/gad.345447.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that associate with Argonaute (AGO) to influence mRNA stability and translation, thereby regulating cellular determination and phenotype. While several individual miRNAs have been shown to control adipocyte function, including energy storage in white fat and energy dissipation in brown fat, a comprehensive analysis of miRNA activity in these tissues has not been performed. We used high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to comprehensively characterize the network of high-confidence, in vivo mRNA:miRNA interactions across white and brown fat, revealing >20,000 unique AGO binding sites. When coupled with miRNA and mRNA sequencing, we found an inverse correlation between depot-enriched miRNAs and their targets. To illustrate the functionality of our HITS-CLIP data set in identifying specific miRNA:mRNA interactions, we show that miR-29 is a novel regulator of leptin, an adipocyte-derived hormone that coordinates food intake and energy homeostasis. Two independent miR-29 binding sites in the leptin 3' UTR were validated using luciferase assays, and miR-29 gain and loss of function modulated leptin mRNA and protein secretion in primary adipocytes. This work represents the only experimentally generated miRNA targetome in adipose tissue and identifies multiple regulatory pathways that may specify the unique identities of white and brown fat.
Collapse
Affiliation(s)
- Sean O'Connor
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Elisabeth A Murphy
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA
| | - Sarah K Szwed
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA.,Weill-Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
30
|
Rozen-Gagnon K, Gu M, Luna JM, Luo JD, Yi S, Novack S, Jacobson E, Wang W, Paul MR, Scheel TKH, Carroll T, Rice CM. Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses. Cell Host Microbe 2021; 29:834-848.e13. [PMID: 33794184 DOI: 10.1016/j.chom.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Argonaute (AGO) proteins bind small RNAs to silence complementary RNA transcripts, and they are central to RNA interference (RNAi). RNAi is critical for regulation of gene expression and antiviral defense in Aedes aegypti mosquitoes, which transmit Zika, chikungunya, dengue, and yellow fever viruses. In mosquitoes, AGO1 mediates miRNA interactions, while AGO2 mediates siRNA interactions. We applied AGO-crosslinking immunoprecipitation (AGO-CLIP) for both AGO1 and AGO2, and we developed a universal software package for CLIP analysis (CLIPflexR), identifying 230 small RNAs and 5,447 small RNA targets that comprise a comprehensive RNAi network map in mosquitoes. RNAi network maps predicted expression levels of small RNA targets in specific tissues. Additionally, this resource identified unexpected, context-dependent AGO2 target preferences, including endogenous viral elements and 3'UTRs. Finally, contrary to current thinking, mosquito AGO2 repressed imperfect targets. These findings expand our understanding of small RNA networks and have broad implications for the study of antiviral RNAi.
Collapse
Affiliation(s)
- Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.
| | - Meigang Gu
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Sasha Novack
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Wei Wang
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Troels K H Scheel
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thomas Carroll
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Zeng J, Luo Z, Dong S, Xie X, Liang X, Yan Y, Liang Q, Zhao Z. Functional Mapping of AGO-Associated Zika Virus-Derived Small Interfering RNAs in Neural Stem Cells. Front Cell Infect Microbiol 2021; 11:628887. [PMID: 33718276 PMCID: PMC7946837 DOI: 10.3389/fcimb.2021.628887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Viral interfering RNA (viRNA) has been identified from several viral genomes via directly deep RNA sequencing of the virus-infected cells, including zika virus (ZIKV). Once produced by endoribonuclease Dicer, viRNAs are loaded onto the Argonaute (AGO) family proteins of the RNA-induced silencing complexes (RISCs) to pair with their RNA targets and initiate the cleavage of target genes. However, the identities of functional ZIKV viRNAs and their viral RNA targets remain largely unknown. Our recent study has shown that ZIKV capsid protein interacted with Dicer and antagonized its endoribonuclease activity, which requires its histidine residue at the 41st amino acid. Accordingly, the engineered ZIKV-H41R loss-of-function (LOF) mutant virus no longer suppresses Dicer enzymatic activity nor inhibits miRNA biogenesis in NSCs. By combining AGO-associated RNA sequencing, deep sequencing analysis in ZIKV-infected human neural stem cells (NSCs), and miRanda target scanning, we defined 29 ZIKV derived viRNA profiles in NSCs, and established a complex interaction network between the viRNAs and their viral targets. More importantly, we found that viRNA production from the ZIKV mRNA is dependent on Dicer function and is a limiting factor for ZIKV virulence in NSCs. As a result, much higher levels of viRNAs generated from the ZIKV-H41R virus-infected NSCs. Therefore, our mapping of viRNAs to their RNA targets paves a way to further investigate how viRNAs play the role in anti-viral mechanisms, and perhaps other unknown biological functions.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Zhifei Luo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shupeng Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China.,Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Xinyan Liang
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Youzhen Yan
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Qiming Liang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China.,Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
32
|
Ma R, Zhao M, Zou X, Zhou J, Bai Z. MicroRNA polymorphism: A target for diagnosis and prognosis of hepatocellular carcinoma? Oncol Lett 2021; 21:324. [PMID: 33692856 DOI: 10.3892/ol.2021.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a life-threatening cancer of the digestive system, with complex pathogenesis affected by a broad spectrum of genetic and epigenetic factors. Among several factors, microRNAs (miRNAs), which are considered regulators of the post-transcriptional gene expression, play important roles in determining the malignant phenotype of HCC. In recent years, the advances in molecular genetics have resulted in the characterization of complex genetic factors and in the identification of epigenetic mechanisms of diseases. Accumulating data have suggested that miRNA polymorphisms are involved in tumorigenesis and prognosis, suggesting that the miRNAs may serve as a target for HCC with regard to pathogenesis and prognosis. In the present review, a comprehensive and detailed literature search was conducted and the role of miRNA polymorphisms in the pathogenesis and prognosis of HCC is summarized. The data proposed the use of miRNAs as targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ruixia Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Maomao Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Zou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianye Zhou
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
33
|
Liu D, Ma X. MiR-508-3p promotes proliferation and inhibits apoptosis of middle ear cholesteatoma cells by targeting PTEN/PI3K/AKT pathway. Int J Med Sci 2021; 18:3224-3235. [PMID: 34400892 PMCID: PMC8364443 DOI: 10.7150/ijms.60907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesteatoma of the middle ear is a common disease in otolaryngology, which can lead to serious intracranial and extracranial complications. Recent studies showed that the dysregulation of microRNA may be involved in the formation of middle ear cholesteatoma. This study aimed to explore the regulatory effect of micro ribonucleic acid 508-3p (miR-508-3p) on proliferation and apoptosis of middle ear cholesteatoma cells and excavate its underlying regulatory mechanism. We found miR-508-3p expression was upregulated in tissues and cells of cholesteatoma which was inversely related to the expression of hsa_circ_0000007. Overexpression of miR-508-3p could notably facilitate cholesteatoma cell proliferation. Luciferase reporter assay showed that miR-508-3p bound the 3'-untranslated region of its downstream mRNA PTEN. Gain and loss of functions of miR-508-3p were performed to identify their roles in the biological behaviors of cholesteatoma cells, including proliferation and apoptosis. Rescue assays confirmed that PTEN could reverse the effect of miR-508-3p overexpression on cell proliferation. In a word, this study validated that the development of cholesteatoma may regulated by hsa_circ_0000007/miR-508-3p/ PTEN/ PI3K/Akt axis.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Liaoning 110004, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Liaoning 110004, China
| |
Collapse
|
34
|
Pea A, Jamieson NB, Braconi C. Biology and Clinical Application of Regulatory RNAs in Hepatocellular Carcinoma. Hepatology 2021; 73 Suppl 1:38-48. [PMID: 32160335 DOI: 10.1002/hep.31225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Most of the human genome consists of DNA genes that are translated into RNAs but not into proteins. These RNA molecules are named noncoding RNAs (ncRNA). While in the past it was thought that ncRNAs would be redundant without relevant functions, it is now well established that ncRNAs identify a class of regulatory molecules that finely tune cell homeostasis and are deregulated in disease states, including hepatocellular carcinoma (HCC). Of note, the number of ncRNAs within a cell increases progressively, with the complexity of the species indicating their essential role in the maintenance of regulatory networks that affect the intricacy of the organism. ncRNAs have been demonstrated to mediate HCC development and progression by affecting intrinsic cancer cell signaling and crosstalk between malignant cells and the microenvironment. Moreover, ncRNAs hold promise as clinical biomarkers, but further evidence is warranted before their translation and integration within clinical practice.
Collapse
Affiliation(s)
- Antonio Pea
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Nigel B Jamieson
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| |
Collapse
|
35
|
Wu L, Xiong L, Li J, Peng Z, Zhang L, Shi P, Gong Y, Xiao H. Circ-Tulp4 promotes β-cell adaptation to lipotoxicity by regulating soat1 expression. J Mol Endocrinol 2020; 65:149-161. [PMID: 33064661 PMCID: PMC7576671 DOI: 10.1530/jme-20-0079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to identify circular RNAs differentially expressed in the islets of type 2 diabetes (T2DM) models and clarify their roles in the control of β-cell functions. Circular RNAs dysregulated in the islets of diabetic db/db mice were identified by high-throughput RNA sequencing. Then, the expression level of the selected circular RNA circ-Tulp4 was confirmed by real-time PCR in the islets of diabetic models and Min6 cells. MTS, EdU, western blot, flow cytometric analysis, and luciferase assay were performed to investigate the impact of circ-Tulp4 on β-cell functions. This study identified thousands of circular RNAs in mouse pancreatic islets. The circ-Tulp4 level significantly decreased in the diabetic models and altered in the Min6 cells under lipotoxic condition. The modulation of circ-Tulp4 level in Min6 cells regulated cell proliferation. Furthermore, an interaction was demonstrated between circ-Tulp4 and miR-7222-3p, which suppressed the expression of cholesterol esterification-related gene, sterol O-acyltransferase 1 (SOAT1). The accumulation of soat1 activated cyclin D1 expression, thus promoting cell cycle progression. These findings showed that circ-Tulp4 regulated β-cell proliferation via miR-7222-3p/soat1/cyclin D1 signaling. Our research suggested that circ-Tulp4 might be a potential therapeutic intervention for T2DM. Besides, soat1 might be important for β-cell adaptation to lipotoxicity.
Collapse
Affiliation(s)
- Liting Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zishan Peng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luyao Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peijie Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence should be addressed to Y Gong or H Xiao: or
| | - Haipeng Xiao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence should be addressed to Y Gong or H Xiao: or
| |
Collapse
|
36
|
Patel RK, West JD, Jiang Y, Fogarty EA, Grimson A. Robust partitioning of microRNA targets from downstream regulatory changes. Nucleic Acids Res 2020; 48:9724-9746. [PMID: 32821933 PMCID: PMC7515711 DOI: 10.1093/nar/gkaa687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/19/2020] [Accepted: 08/08/2020] [Indexed: 11/14/2022] Open
Abstract
The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. Here, we present an experimental and computational framework to deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a miRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from downstream changes, while greatly reducing false positives. We validate our approach using Argonaute eCLIP-seq and ribosome profiling, demonstrating that CARP defines a comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of target sites within the open reading frame. Additionally, we show that CARP facilitates the dissection of complex changes in gene regulatory networks triggered by miRNAs and identification of transcription factors that mediate downstream regulatory changes. Given the robustness of the approach, CARP would be particularly suitable for dissecting miRNA regulatory networks in vivo.
Collapse
Affiliation(s)
- Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Jessica D West
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ya Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- To whom correspondence should be addressed. Tel: +1 607 254 1307; Fax: +1 607 254 1307;
| |
Collapse
|
37
|
Yan Y, Wang R, Hu X, Wang S, Zhang L, Hou C, Zhang L. MiR-126 Regulates Properties of SOX9 + Liver Progenitor Cells during Liver Repair by Targeting Hoxb6. Stem Cell Reports 2020; 15:706-720. [PMID: 32763157 PMCID: PMC7486193 DOI: 10.1016/j.stemcr.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Liver progenitor cells (LPCs) have a remarkable contribution to the hepatocytes and ductal cells when normal hepatocyte proliferation is severely impaired. As a biomarker for LPCs, Sry-box 9 (Sox9) plays critical roles in liver homeostasis and repair in response to injury. However, the regulation mechanism of Sox9 in liver physiological and pathological state remains unknown. In this study, we found that miR-126 positively regulated the expression of Sox9, the proliferation and differentiation of SOX9+ LPCs by suppressing the translation of homeobox b6 (Hoxb6). As a transcription factor, HOXB6 directly binds to the promoter of Sox9 to inhibit Sox9 expression, resulting in the destruction of the properties of SOX9+ LPCs in CCl4-induced liver injury. These findings revealed the role of miR-126 in regulating SOX9+ LPCs fate by targeting Hoxb6 in liver injury repair. Our findings suggest the potential role of miR-126 as a nucleic acid therapy drug target for liver failure.
Collapse
Affiliation(s)
- Yi Yan
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiongji Hu
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shichao Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liang Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chenjiao Hou
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
38
|
Chai C, Cox B, Yaish D, Gross D, Rosenberg N, Amblard F, Shemuelian Z, Gefen M, Korach A, Tirosh O, Lanton T, Link H, Tam J, Permyakova A, Ozhan G, Citrin J, Liao H, Tannous M, Hahn M, Axelrod J, Arretxe E, Alonso C, Martinez-Arranz I, Betés PO, Safadi R, Salhab A, Amer J, Tber Z, Mengshetti S, Giladi H, Schinazi RF, Galun E. Agonist of RORA Attenuates Nonalcoholic Fatty Liver Progression in Mice via Up-regulation of MicroRNA 122. Gastroenterology 2020; 159:999-1014.e9. [PMID: 32450149 PMCID: PMC7722250 DOI: 10.1053/j.gastro.2020.05.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced β-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.
Collapse
Affiliation(s)
- Chofit Chai
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Bryan Cox
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Dayana Yaish
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Devora Gross
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Nofar Rosenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Franck Amblard
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Zohar Shemuelian
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Maytal Gefen
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amit Korach
- Cardiothoracic Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Lanton
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Henrike Link
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Multidisciplinary Center for Cannabinoid Research, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Multidisciplinary Center for Cannabinoid Research, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Jonathan Citrin
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Haixing Liao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mirna Tannous
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Michal Hahn
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Rifaat Safadi
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ahmad Salhab
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Johnny Amer
- Liver Unit, Gastroenterology Institute, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Zahira Tber
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Seema Mengshetti
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Hilla Giladi
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Raymond F. Schinazi
- Laboratory of Biochemical Pharmacology Emory University, Department of Pediatrics, Atlanta, Georgia
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
39
|
Yao B, Niu Y, Li Y, Chen T, Wei X, Liu Q. High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J Cancer 2020; 11:6188-6203. [PMID: 33033502 PMCID: PMC7532500 DOI: 10.7150/jca.45998] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with malignant behaviors related to death causes distant metastasis and is the fourth primary cancer in the whole world, which has taken millions lives in Asian countries such as China. The novel miR-3682-3p involving high-expression-related poor prognosis in HCC tissues and cell lines indicate oncogenesis functions in vitro and in vivo. According to TCGA database, our group find several none-coding RNAs showing abnormal expression including miR-3682-3p, thus we originally confirmed the inhibition of proliferation and acceleration of apoptosis are enhanced in miR-3682-3p knock-down cell lines. Then, in nude mice transplantation assays, we found the suppressor behaviors, smaller nodules and lower speed of tumor expansion in model of injection of cell cultured and transfected shRNA-miR-3682-3p. A combination of databases (Starbase, Targetscan and MiRgator) illustrates miR-3682-3p targets PHLDA1, which shows negative correlation demonstrated by dual-luciferase reporter system. To make functional verification of PHLDA1, we upregulate the gene and rescue tests are established to confirm that miR-3682-3p suppresses PHLDA1 to promotion of cell growth. Rescue experiments finish making confirmation of relation of miR-3682-3p and PHLDA1 subsequently. Cirrhotic tissues illustrate strong correlation to higher miR-3682-3p and clinical features make the hint that high-extracellular-matrix-stiffness environment promotes such miRNA. Functional tests on different stiffness provide the proof of underlying mechanism. In conclusion, the overexpression of miR-3682-3p mediates PHLDA1 inhibition could impede apoptosis and elevate proliferation of HCC through high-extracellular-matrix-stiffness environment potentially.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yazhao Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Xinyu Wei
- Medicine college, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| |
Collapse
|
40
|
Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol 2020; 10:1271. [PMID: 32850386 PMCID: PMC7399632 DOI: 10.3389/fonc.2020.01271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
41
|
Biswas J, Rahman R, Gupta V, Rosbash M, Singer RH. MS2-TRIBE Evaluates Both Protein-RNA Interactions and Nuclear Organization of Transcription by RNA Editing. iScience 2020; 23:101318. [PMID: 32674054 PMCID: PMC7363692 DOI: 10.1016/j.isci.2020.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Both UV-cross-linking and immunoprecipitation (CLIP) and RNA editing (TRIBE) can identify the targets of RNA-binding proteins. To evaluate false-positives of CLIP and TRIBE, endogenous β-actin mRNA was tagged with MS2 stem loops, making it the only bona fide target mRNA for the MS2 capsid protein (MCP). CLIP and TRIBE detected β-actin, albeit with false-positives. False-positive CLIP signals were attributed to nonspecific antibody interactions. In contrast, putative false-positive TRIBE targets were genes spatially proximal to the β-actin gene. MCP-ADAR edited nearby nascent transcripts consistent with interchromosomal contacts observed in Hi-C. The identification of nascent contacts implies RNA regulatory proteins (e.g., splicing factors) associated with multiple nascent transcripts, forming domains of post-transcriptional activity. Repeating these results with an integrated inducible MS2 reporter indicated that MS2-TRIBE can be applied to a broad array of cells and transcripts to study spatial organization and nuclear RNA regulation.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA.
| |
Collapse
|
42
|
Cui J, Shu J. Circulating microRNA trafficking and regulation: computational principles and practice. Brief Bioinform 2020; 21:1313-1326. [PMID: 31504144 PMCID: PMC7412956 DOI: 10.1093/bib/bbz079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023] Open
Abstract
Rapid advances in genomics discovery tools and a growing realization of microRNA's implication in intercellular communication have led to a proliferation of studies of circulating microRNA sorting and regulation across cells and different species. Although sometimes, reaching controversial scientific discoveries and conclusions, these studies have yielded new insights in the functional roles of circulating microRNA and a plethora of analytical methods and tools. Here, we consider this body of work in light of key computational principles underpinning discovery of circulating microRNAs in terms of their sorting and targeting, with the goal of providing practical guidance for applications that is focused on the design and analysis of circulating microRNAs and their context-dependent regulation. We survey a broad range of informatics methods and tools that are available to the researcher, discuss their key features, applications and various unsolved problems and close this review with prospects and broader implication of this field.
Collapse
Affiliation(s)
- Juan Cui
- Systems Biology and Biomedical Informatics Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiang Shu
- Systems Biology and Biomedical Informatics Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
43
|
Teng KY, Barajas JM, Hu P, Jacob ST, Ghoshal K. Role of B Cell Lymphoma 2 in the Regulation of Liver Fibrosis in miR-122 Knockout Mice. BIOLOGY 2020; 9:biology9070157. [PMID: 32650615 PMCID: PMC7408427 DOI: 10.3390/biology9070157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA-122 (miR-122) has been identified as a marker of various liver injuries, including hepatitis- virus-infection-, alcoholic-, and non-alcoholic steatohepatitis (NASH)-induced liver fibrosis. Here, we report that the extracellular miR-122 from hepatic cells can be delivered to hepatic stellate cells (HSCs) to modulate their proliferation and gene expression. Our published Argonaute crosslinking immunoprecipitation (Ago-CLIP) data identified several pro-fibrotic genes, including Ctgf, as miR-122 targets in mice livers. However, treating Ctgf as a therapeutic target failed to rescue the fibrosis developed in the miR-122 knockout livers. Alternatively, we compared the published datasets of human cirrhotic livers and miR-122 KO livers, which revealed upregulation of BCL2, suggesting its potential role in regulating fibrosis. Notably, ectopic miR-122 expression inhibited BCL2 expression in human HSC (LX-2) cells). Publicly available ChIP-seq data in human hepatocellular cancer (HepG2) cells and mice livers suggested miR-122 could regulate BCL2 expression indirectly through c-MYC, which was confirmed by siRNA-mediated depletion of c-MYC in Hepatocellular Carcinoma (HCC) cell lines. Importantly, Venetoclax, a potent BCL2 inhibitor approved for the treatment of leukemia, showed promising anti-fibrotic effects in miR-122 knockout mice. Collectively, our data demonstrate that miR-122 suppresses liver fibrosis and implicates anti-fibrotic potential of Venetoclax.
Collapse
Affiliation(s)
- Kun-Yu Teng
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (J.M.B.); (S.T.J.)
- Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Juan M. Barajas
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (J.M.B.); (S.T.J.)
- Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Peng Hu
- Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Samson T. Jacob
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (J.M.B.); (S.T.J.)
- Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (J.M.B.); (S.T.J.)
- Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
- Correspondence: ; Tel.: +614-292-8865; Fax: +614-688-4245
| |
Collapse
|
44
|
Molecular Mechanisms Regulating Obesity-Associated Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051290. [PMID: 32443737 PMCID: PMC7281233 DOI: 10.3390/cancers12051290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global, intractable issue, altering inflammatory and stress response pathways, and promoting tissue adiposity and tumorigenesis. Visceral fat accumulation is correlated with primary tumor recurrence, poor prognosis and chemotherapeutic resistance. Accumulating evidence highlights a close association between obesity and an increased incidence of hepatocellular carcinoma (HCC). Obesity drives HCC, and obesity-associated tumorigenesis develops via nonalcoholic fatty liver (NAFL), progressing to nonalcoholic steatohepatitis (NASH) and ultimately to HCC. The better molecular elucidation and proteogenomic characterization of obesity-associated HCC might eventually open up potential therapeutic avenues. The mechanisms relating obesity and HCC are correlated with adipose tissue remodeling, alteration in the gut microbiome, genetic factors, ER stress, oxidative stress and epigenetic changes. During obesity-related hepatocarcinogenesis, adipokine secretion is dysregulated and the nuclear factor erythroid 2 related factor 1 (Nrf-1), nuclear factor kappa B (NF-κB), mammalian target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways are activated. This review captures the present trends allied with the molecular mechanisms involved in obesity-associated hepatic tumorigenesis, showcasing next generation molecular therapeutic strategies and their mechanisms for the successful treatment of HCC.
Collapse
|
45
|
Non-Coding RNAs: Regulating Disease Progression and Therapy Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051243. [PMID: 32429062 PMCID: PMC7281199 DOI: 10.3390/cancers12051243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process. Non-coding RNAs (ncRNAs) are an abundant group of versatile RNA transcripts that do not translate into proteins, rather serve as potentially functional RNAs. The role of ncRNAs in regulating diverse aspects of the carcinogenesis process are gradually being elucidated. Recent advances in RNA sequencing technology have identified a plethora of ncRNAs regulating all aspects of hepatocarcinogenesis process and serving as potential prognostic or diagnostic biomarkers. The present review provides a comprehensive description of the biological roles of ncRNAs in disease process and therapy resistance, and potential clinical application of these ncRNAs in HCC.
Collapse
|
46
|
Takahashi A, Suzuki T, Soeda S, Takaoka S, Kobori S, Yamaguchi T, Mohamed HMA, Yanagiya A, Abe T, Shigeta M, Furuta Y, Kuba K, Yamamoto T. The CCR4-NOT complex maintains liver homeostasis through mRNA deadenylation. Life Sci Alliance 2020; 3:3/5/e201900494. [PMID: 32238456 PMCID: PMC7119370 DOI: 10.26508/lsa.201900494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
The biological significance of deadenylation in global gene expression is not fully understood. Here, we show that the CCR4-NOT deadenylase complex maintains expression of mRNAs, such as those encoding transcription factors, cell cycle regulators, DNA damage response-related proteins, and metabolic enzymes, at appropriate levels in the liver. Liver-specific disruption of Cnot1, encoding a scaffold subunit of the CCR4-NOT complex, leads to increased levels of mRNAs for transcription factors, cell cycle regulators, and DNA damage response-related proteins because of reduced deadenylation and stabilization of these mRNAs. CNOT1 suppression also results in an increase of immature, unspliced mRNAs (pre-mRNAs) for apoptosis-related and inflammation-related genes and promotes RNA polymerase II loading on their promoter regions. In contrast, mRNAs encoding metabolic enzymes become less abundant, concomitant with decreased levels of these pre-mRNAs. Lethal hepatitis develops concomitantly with abnormal mRNA expression. Mechanistically, the CCR4-NOT complex targets and destabilizes mRNAs mainly through its association with Argonaute 2 (AGO2) and butyrate response factor 1 (BRF1) in the liver. Therefore, the CCR4-NOT complex contributes to liver homeostasis by modulating the liver transcriptome through mRNA deadenylation.
Collapse
Affiliation(s)
- Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| | - Shou Soeda
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shohei Takaoka
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shungo Kobori
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan .,Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| |
Collapse
|
47
|
Fu X, Zhang J, He X, Yan X, Wei J, Huang M, Liu Y, Lin J, Hu H, Liu L. Circular RNA MAN2B2 promotes cell proliferation of hepatocellular carcinoma cells via the miRNA-217/MAPK1 axis. J Cancer 2020; 11:3318-3326. [PMID: 32231737 PMCID: PMC7097945 DOI: 10.7150/jca.36500] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/19/2020] [Indexed: 12/25/2022] Open
Abstract
The increasing incidence of hepatocellular carcinoma (HCC) is a major challenge worldwide. In the past few years, an increasing number of studies have suggested that circular RNAs (circRNAs) play an important role in the development of human tumors, including HCC, but our understanding of their function is still limited. In this study, we investigated differences in the expression of circRNA MAN2B2 (circMAN2B2) in hepatocellular tissues and paired normal tissues. We found that knockdown of circMAN2B2 expression in the HCC cell lines Hep-G2 and Huh-7 significantly inhibited cell proliferation by sponging (miRNA) miR-217 and inhibiting its function. Through a series of experiments, we also demonstrated that miR-217 functioned as a tumor suppressor molecule in HCC cells and regulated the expression of mitogen-activated protein kinase 1 (MAPK1). Restoration of MAPK1 rescued repression of cell proliferation induced by circMAN2B2 knockdown. In summary, our study indicated that circMAN2B2 acted as an onco-miRNA in HCC by sponging miRNA-217 to promote MAPK1 expression.
Collapse
Affiliation(s)
- Xiaoying Fu
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology.,Shenzhen University
| | - Juanjuan Zhang
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Xing He
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Xu Yan
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Jian Wei
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Min Huang
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Yaya Liu
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Jianwei Lin
- Shenzhen People's Hospital. Shenzhen 518039, China
| | - Hongxing Hu
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| | - Lei Liu
- Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology
| |
Collapse
|
48
|
Li H, Zhang X, Jin Z, Yin T, Duan C, Sun J, Xiong R, Li Z. MiR-122 Promotes the Development of Colon Cancer by Targeting ALDOA In Vitro. Technol Cancer Res Treat 2020; 18:1533033819871300. [PMID: 31564215 PMCID: PMC6767722 DOI: 10.1177/1533033819871300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNAs, originally considered junk gene products, have taken center
stage in view of their significant involvement in a spectrum of biological
processes during human development, thereby offering novel therapeutic targets
for improvement of treatment options. Accumulating evidence has demonstrated
non-coding RNA dysfunction across various human cancers. In particular,
microRNAs have emerged as key regulatory molecules in cancer biology. MicroRNAs
are noninvasive, readily accessible biomarkers that can be effectively applied
for diagnosis and prognosis of different tumor types, including colon cancer. In
this study, we reanalyzed the available data with bioinformatics tools to
identify differentially expressed microRNAs in colon cancer cells. The top 3
upregulated microRNAs (miR-10, miR-199, and miR-122) in colon cancer cells were
further validated in tissues of clinical patients via reverse
transcription-quantitative polymerase chain reaction. Our results showed that
miR-122 significantly promotes the proliferation and invasion ability of SW480
and SW620 cells through inhibition of Aldolase, Fructose-Bisphosphate A
(ALDOA) expression. We further summarized recent advances
in our understanding of the functional relevance of microRNAs in cancer
development and discussed the possible implications of specific microRNAs in
colon cancer. This study extends our knowledge of microRNA involvement in colon
cancer biology and presents novel candidates for the development of attractive
therapeutic strategies.
Collapse
Affiliation(s)
- Hong Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Xinhua Zhang
- Hubei Cancer Hospital, Wuhan, Hubei, China.,Xinhua Zhang is the co-first author
| | - Zhao Jin
- Zhongnan Hospital of Wuhan University
| | - Tao Yin
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | | | - Junwei Sun
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Rui Xiong
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Zilin Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| |
Collapse
|
49
|
Ni X, Lin Z, Dai S, Chen H, Chen J, Zheng C, Wu B, Ao J, Shi K, Sun H. Screening and verification of microRNA promoter methylation sites in hepatocellular carcinoma. J Cell Biochem 2020; 121:3626-3641. [PMID: 32065423 DOI: 10.1002/jcb.29656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The promoter methylation mode of microribonucleic acid (miRNA) plays a crucial role in the process of hepatocellular carcinoma (HCC). Therefore, the primary purpose of this study was to screen and verify the miRNA methylation sites associated with the overall survival (OS) and clinical characteristics of HCC patients. Methylation-related data were from the Cancer Genome Atlas (TCGA). R software was utilized to screen the methylation sites. The least absolute shrinkage and selection operator algorithm was utilized to develop the miRNA promoter methylation models. Then, methylation-specific polymerase chain reaction was performed with 146 HCC tissues to verify the accuracy of the vascular infiltration-related model. Additionally, we verified the functions of vascular infiltration-related miRNA by utilizing cells transfected with miR-199a-3p mimic. The model for predicting OS of HCC patients contained eight methylation sites. The Kaplan-Meier analysis suggested that the model could divide HCC patients into high- and low-risk groups (P < .0001). COX regression analysis suggested that the model (P < .001; 95% CI, 1.264-2.709) and T category (P < .001; 95% CI, 1.472-3.119) were independent risk factors for affecting OS of HCC patients. The model for predicting vascular infiltration, pathological grade, and clinical stage contained 7, 10, and 9 methylation sites respectively, with their area under the receiver operating characteristic curve (AUC) values 0.667, 0.745, and 0.725, respectively. The functional analysis suggested that miRNA methylation is involved in various biological processes such as WNT, MAPK, and mTOR signaling pathways. The accuracy of the vascular infiltration-related model was consistent with our previous bioinformatics assay. And upregulation of miR-199a-3p decreased migration and invasion abilities. The screened miRNA promoter methylation sites can be served as biomarkers for judging OS, vascular infiltration, pathology grade, and clinical stage. It can also provide new targets for improving the treatment and prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Wenzhou Key Laboratory of Hepatology, Wenzhou, Zhejiang, China.,Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
Sengupta D, Cassel T, Teng KY, Aljuhani M, Chowdhary VK, Hu P, Zhang X, Fan TWM, Ghoshal K. Regulation of hepatic glutamine metabolism by miR-122. Mol Metab 2020; 34:174-186. [PMID: 32180557 PMCID: PMC7044666 DOI: 10.1016/j.molmet.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/17/2023] Open
Abstract
Objective It is well established that the liver-specific miR-122, a bona fide tumor suppressor, plays a critical role in lipid homeostasis. However, its role, if any, in amino acid metabolism has not been explored. Since glutamine (Gln) is a critical energy and anaplerotic source for mammalian cells, we assessed Gln metabolism in control wild type (WT) mice and miR-122 knockout (KO) mice by stable isotope resolved metabolomics (SIRM) studies. Methods Six-to eight-week-old WT and KO mice and 12- to 15-month-old liver tumor-bearing mice were injected with [U–13C5,15N2]-L-Gln, and polar metabolites from the liver tissues were analyzed by nuclear magnetic resonance (NMR) imaging and ion chromatography-mass spectrometry (IC-MS). Gln-metabolism was also assessed in a Gln-dependent hepatocellular carcinoma (HCC) cell line (EC4). Expressions of glutaminases (Gls and Gls2) were analyzed in mouse livers and human primary HCC samples. Results The results showed that loss of miR-122 promoted glutaminolysis but suppressed gluconeogenesis in mouse livers as evident from the buildup of 13C- and/or 15N-Glu and decrease in glucose-6-phosphate (G6P) levels, respectively, in KO livers. Enhanced glutaminolysis is consistent with the upregulation of expressions of Gls (kidney-type glutaminase) and Slc1a5, a neutral amino acid transporter in KO livers. Both Gls and Slc1a5 were confirmed as direct miR-122 targets by the respective 3′-UTR-driven luciferase assays. Importantly, expressions of Gls and Slc1a5 as well as glutaminase activity were suppressed in a Gln-dependent HCC (EC4) cell line transfected with miR-122 mimic that resulted in decreased 13C-Gln, 13C-á-ketoglutarate, 13C-isocitrate, and 13C-citrate levels. In contrast, 13C-phosphoenolpyruvate and 13C-G6P levels were elevated in cells expressing ectopic miR-122, suggesting enhanced gluconeogenesis. Finally, The Cancer Genome Atlas—Liver Hepatocellular Carcinoma (TCGA-LIHC) database analysis showed that expression of GLS is negatively correlated with miR-122 in primary human HCCs, and the upregulation of GLS RNA is associated with higher tumor grade. More importantly, patients with higher expressions of GLS or SLC1A5 in tumors exhibited poor survival compared with those expressing lower levels of these proteins. Conclusions Collectively, these results show that miR-122 modulates Gln metabolism both in vitro and in vivo, implicating the therapeutic potential of miR-122 in HCCs that exhibit relatively high GLS levels. miR-122, the most abundant liver specific microRNA and a potent tumor suppressor, regulates glutamine metabolism. SIRM analysis showed enhanced glutaminolysis and impeded gluconeogenesis in the livers of miR-122 KO mice. Gls, a key enzyme involved in glutaminolysis and a miR-122 target is upregulated in miR-122 KO livers. Ectopic miR-122 expression suppressed glutaminolysis but enhanced gluconeogenesis in a glutamine dependent HCC cell line. Expression of MIR-122 negatively correlated with that of GLS in human primary HCCs.
Collapse
Affiliation(s)
- Dipanwita Sengupta
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Teresa Cassel
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Kun-Yu Teng
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Mona Aljuhani
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Vivek K Chowdhary
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Peng Hu
- Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry (CESB)/Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Dept. Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|