1
|
Wang H, Liu Q, Cheng S, Li L, Shen W, Ge W. Single-Cell Transcriptomic Analysis of the Potential Mechanisms of Follicular Development in Stra8-Deficient Mice. Int J Mol Sci 2025; 26:3734. [PMID: 40332359 PMCID: PMC12027774 DOI: 10.3390/ijms26083734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Follicle development is a critical process in mammalian reproduction, with significant implications for ovarian reserve and fertility. Stra8 is a known key factor regulating the initiation of meiosis; however, oocyte-like cells still appear in Stra8-deficient mice. Nevertheless, the underlying mechanism remains unclear and requires further investigation. Therefore, we used single-cell RNA sequencing to construct a comprehensive transcriptional atlas of ovarian cells from both wild-type and Stra8-deficient mice at embryonic stages E14.5 and E16.5. With stringent quality control, we obtained a total of 14,755 single cells of six major cell types. A further fine-scale analysis of the germ cell clusters revealed notable heterogeneity between wild-type and Stra8-deficient mice. Compared to the wild-type mice, the deficiency in Stra8 led to the downregulation of meiosis-related genes (e.g., Pigp, Tex12, and Sycp3), and the upregulation of apoptosis-related genes (e.g., Fos, Jun, and Actb), thereby hindering the meiotic process. Notably, we observed that, following Stra8 deficiency, the expression levels of Sub1 and Stk31 remained elevated at this stage. Furthermore, an RNA interference analysis confirmed the potential role of these genes as regulatory factors in the formation of primordial follicle-like cells. Additionally, Stra8 deficiency disrupted the signaling between germ cells and pregranulosa cells that is mediated by Mdk-Sdc1, leading to the abnormal expression of the PI3K/AKT signaling pathway. Together, these results shed light on the molecular processes governing germ cell differentiation and folliculogenesis, emphasizing the complex role of Stra8 in ovarian function.
Collapse
Affiliation(s)
| | | | | | | | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Q.L.); (S.C.); (L.L.)
| |
Collapse
|
2
|
Jiao X, Liang Z, Li J, Bai L, Xu J, Liu Y, Lu LY. Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination. Nat Commun 2025; 16:2260. [PMID: 40050306 PMCID: PMC11885488 DOI: 10.1038/s41467-025-57702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Chromosome synapsis is an evolutionarily conserved process essential for meiotic recombination. HORMAD1 and HORMAD2, which monitor chromosome asynapsis by localizing to unsynapsed chromosome axes, are removed from synapsed chromosome axes by TRIP13, though the biological significance of this process remains unclear. We show that when HORMAD1 and HORMAD2 are retained on synapsed chromosome axes, they recruit BRCA1, activate chromosome asynapsis checkpoint, and trigger oocyte elimination. Unexpectedly, N-terminal tagging retains HORMAD1 and HORMAD2 on synapsed chromosome axes without triggering oocyte elimination due to defective BRCA1 recruitment. Mechanistically, HORMAD1 co-immunoprecipitates with BRCA1 readily, not through the canonical closure motif-binding mode but via an interface on its HORMA domain near the N-terminus. HORMAD2 co-immunoprecipitates with BRCA1 weakly but also regulates its recruitment. Collectively, the TRIP13-dependent removal of HORMAD1 and HORMAD2 from synapsed chromosome axes is essential for female fertility, preventing aberrant chromosome asynapsis checkpoint activation and unintended oocyte elimination.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiwei Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xu
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Genetics and Metabolism Department, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yidan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Kogo H, Iizuka-Kogo A, Yamamoto H, Ikezawa M, Tajika Y, Matsuzaki T. A simple immunohistochemical method for perinatal mammalian ovaries revealed different kinetics of oocyte apoptosis caused by DNA damage and asynapsis. Histochem Cell Biol 2025; 163:32. [PMID: 39961811 DOI: 10.1007/s00418-025-02358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 05/09/2025]
Abstract
Oocytes with meiotic defects are assumed to be eliminated by apoptosis in the perinatal period. However, oocyte apoptosis caused by meiotic defects has not been well analyzed, partly because of the great technical demands of tissue sectioning perinatal ovaries. In the present study, we applied a squash method for immunohistochemical analysis of perinatal mouse ovaries as a substitute for tissue sectioning. As a result, we could show different kinetics of apoptosis caused by DMC1- and SPO11-deficiencies, indicating that DNA damage-induced apoptosis precedes asynapsis-induced apoptosis in mouse oocytes. Double-mutant analysis revealed that only asynapsis-induced apoptosis was significantly dependent on HORMAD2. The present method is simple, easy, and able to analyze a sufficient number of oocytes to detect infrequent events in a single specimen, accelerating detailed immunohistochemical analyses of mammalian ovaries during the fetal and perinatal periods.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Hanako Yamamoto
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Maiko Ikezawa
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Yukiko Tajika
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
4
|
Abt KM, Bartholomew MA, Nixon A, Richman HE, Gura MA, Seymour KA, Freiman RN. Transcriptional Integration of Meiotic Prophase I Progression and Early Oocyte Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631470. [PMID: 39829852 PMCID: PMC11741336 DOI: 10.1101/2025.01.06.631470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Female reproductive senescence results from the regulated depletion of a finite pool of oocytes called the ovarian reserve. This pool of oocytes is initially established during fetal development, but the oocytes that comprise it must remain quiescent for decades until they are activated during maturation in adulthood. In order for developmentally competent oocytes to populate the ovarian reserve they must successfully initiate both meiosis and oogenesis. As the factors that regulate the timing and fidelity of these early events remain elusive, we assessed the precise function and timing of the transcriptional regulator TAF4b during meiotic prophase I progression in mouse fetal oocytes. Compared to matched controls, E14.5 Taf4b-deficient oocytes enter meiosis I in a timely manner however, their subsequent progression through the pachytene-to-diplotene transition of meiotic prophase I is compromised. Moreover, this disruption of meiotic progression is associated with the reduced ability of Taf4b-deficient oocytes to repair double-strand DNA breaks. Transcriptional profiling of Taf4b-deficient oocytes reveals that between E16.5 and E18.5 these oocytes fail to coordinate the reduction of meiotic gene expression and the induction of oocyte differentiation genes. These studies reveal that TAF4b promotes the formation of the ovarian reserve in part by orchestrating the timely transition to meiosis I arrest and oocyte differentiation, which are often perceived as separate events.
Collapse
Affiliation(s)
- Kimberly M. Abt
- MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Myles A. Bartholomew
- MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Anna Nixon
- MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Hanna E. Richman
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Megan A. Gura
- MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Kimberly A. Seymour
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| | - Richard N. Freiman
- MCB Graduate Program, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship St., Box G-E4, Providence, RI 02903, USA
| |
Collapse
|
5
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2025; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
6
|
Ma C, Hu K, Zhang X, Yu Y, Xu Z, Ma T, Ruan H, Zhang Y, Wang J, Yue X, Liang C, Xiang H, Guo R, Cao Y, Ding Z. Gestational exposure to arsenic reduces female offspring fertility by impairing the repair of DNA double-strand breaks and synapsis formation in oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117478. [PMID: 39642648 DOI: 10.1016/j.ecoenv.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Arsenic is a pollutant that can cross the placenta; however, research on the effects of arsenic exposure during pregnancy on the fertility of female offspring is limited. To address this gap, we developed a mouse model to investigate the relationship between arsenic exposure during pregnancy and fertility in female offspring. Our fertility assessment revealed that gestational exposure to 1 mg/kg arsenic or higher (10 mg/kg) resulted in reduction in litter size, ovarian volume, and multistage-follicle number in female offspring. By assessing the in vitro developmental capacity of oocytes and zygotes, we confirmed that the reduced fertility was due not to impaired oocyte quality but rather to a reduction in oocyte quantity. Arsenic exposure impedes synapsis formation in MPI and compromises homologous recombination-mediated repair of double-strand breaks, resulting in fewer crossovers. This disruption activates the pachytene-checkpoint, hindering the progression of the MPI and resulting in the elimination of defective oocytes through p-Chk2 activation. Our study reveals for the first time the detrimental effects of arsenic exposure during pregnancy on the fertility of female offspring, underscoring the urgent need to prevent such exposure to safeguard reproductive health.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Kaiqin Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Yaru Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Tian Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yingying Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Xinyu Yue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Chunmei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China.
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
7
|
Rezaei M, Liang M, Yalcin Z, Martin JH, Kazemi P, Bareke E, Ge ZJ, Fardaei M, Benadiva C, Hemida R, Hassan A, Maher GJ, Abdalla E, Buckett W, Bolze PA, Sandhu I, Duman O, Agrawal S, Qian J, Vallian Broojeni J, Bhati L, Miron P, Allias F, Selim A, Fisher RA, Seckl MJ, Sauthier P, Touitou I, Tan SL, Majewski J, Taketo T, Slim R. Defects in meiosis I contribute to the genesis of androgenetic hydatidiform moles. J Clin Invest 2024; 134:e170669. [PMID: 39545410 PMCID: PMC11563684 DOI: 10.1172/jci170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency. Advanced maternal age is the strongest risk factor for sporadic androgenetic HM, which affects 1 in every 600 pregnancies. We studied Hfm1-/- female mice and found that these mice lost all their oocytes before puberty but retained some at younger ages. Oocytes from Hfm1-/- mice initiated meiotic maturation and extruded the first polar bodies in culture; however, their meiotic spindles were often positioned parallel, instead of perpendicular, to the ooplasmic membrane at telophase I, and some oocytes extruded the entire spindle with all the chromosomes into the polar bodies at metaphase II, a mechanism we previously reported in Mei1-/- oocytes. The occurrence of a common mechanism in two mouse models argues in favor of its plausibility at the origin of androgenetic HM formation in humans.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Parinaz Kazemi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Claudio Benadiva
- Center for Advanced Reproductive Services, Farmington, Connecticut, USA
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Adnan Hassan
- Department of Obstetrics and Gynecology, Jordan Hospital, Amman, Jordan
| | - Geoffrey J. Maher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Adrien Bolze
- Université Lyon 1, Service de Chirurgie Gynécologique et Ontologique, Obstétrique, Centre Français de Référence des Maladies Trophoblastiques, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Iqbaljit Sandhu
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Onur Duman
- Security Research Center, Concordia University, Montreal, Quebec, Canada
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - JianHua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lavi Bhati
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Miron
- Centre d’Aide Médicale à la Procréation Fertilys, Laval, Quebec, Canada
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre, Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Amal Selim
- Department of Medical Biochemistry and Molecular Biology, Mansoura University, Mansoura, Egypt
| | - Rosemary A. Fisher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J. Seckl
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, Quebec, Canada
| | - Isabelle Touitou
- Department of Genetics CHU of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Yu W, Peng X, Cai X, Xu H, Wang C, Liu F, Luo D, Tang S, Wang Y, Du X, Gao Y, Tian T, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. Transcriptome analysis of porcine oocytes during postovulatory aging. Theriogenology 2024; 226:387-399. [PMID: 38821784 DOI: 10.1016/j.theriogenology.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Fengjiao Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Shuhan Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yue Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoxue Du
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
9
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. eLife 2024; 12:RP92195. [PMID: 39207914 PMCID: PMC11361706 DOI: 10.7554/elife.92195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Isabella G Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- College of Life Sciences, Capital Normal UniversityBeijingChina
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
10
|
Soygur B, Gaylord EA, Foecke MH, Cincotta SA, Horan TS, Wood A, Cohen PE, Laird DJ. Sustained fertility from first-wave follicle oocytes that pause their growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609995. [PMID: 39253445 PMCID: PMC11383281 DOI: 10.1101/2024.08.27.609995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve 1-4. However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring. This small subset of genetically-labeled fetal oocytes, labeled with Sycp3-CreERT2, is distinguished by earlier entry and slower dynamics of meiotic prophase I. While labeled oocytes were initially found in both primordial follicles and growing follicles of the first wave, they disappeared from primordial follicles by puberty. Unexpectedly, these first-wave labeled growing oocytes persisted throughout reproductive lifespan and contributed to offspring at a steady rate beyond 12 months of age, suggesting that follicles can pause mid-growth for extended periods then successfully resume. These results challenge the conclusion from lineage tracing of granulosa cells that first-wave follicles make a limited contribution to fertility5 and furthermore suggest that growth-paused oocytes comprise a second and previously unrecognized ovarian reserve.
Collapse
Affiliation(s)
- Bikem Soygur
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Mariko H. Foecke
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Steven A. Cincotta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tegan S. Horan
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Anna Wood
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
11
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
12
|
Kogo H, Kikuchi-Kokubo Y, Tajika Y, Iizuka-Kogo A, Yamamoto H, Ikezawa M, Kurahashi H, Matsuzaki T. Differential phosphorylation of two serine clusters in mouse HORMAD1 during meiotic prophase I progression. Exp Cell Res 2024; 440:114133. [PMID: 38897409 DOI: 10.1016/j.yexcr.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Mouse HORMAD1 is a phospho-protein involved in multiple functions during meiotic prophase I. To obtain insight into the significance of its phosphorylation, we generated phospho-specific antibodies against two serine residues, Ser307 and Ser378, representing each of two serine clusters in mouse HORMAD1. The Ser307 phosphorylation is detectable from early leptotene substage in both wild-type and Spo11-/- spermatocytes, indicating that Ser307 is a primary and SPO11-independent phosphorylation site. In contrast, the Ser378 phosphorylation is negligible at earlier substages in wild-type and Spo11-/- spermatocytes. After mid-zygotene substage, the Ser378 phosphorylation is abundant on unsynapsed chromosome axes in wild-type spermatocytes and is detected only in a part of unsynapsed chromosome axes in Spo11-/- spermatocytes. We also generated a non-phosphorylated Ser307-specific antibody and found that Ser307 is phosphorylated on sex chromosome axes but is almost entirely unphosphorylated on desynapsed chromosome axes in diplotene spermatocytes. These results demonstrated a substage-specific phosphorylation status of mouse HORMAD1, which might be associated with multiple substage-specific functions.
Collapse
Affiliation(s)
- Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yuka Kikuchi-Kokubo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukiko Tajika
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hanako Yamamoto
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Maiko Ikezawa
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
13
|
Condezo YB, Sainz-Urruela R, Gomez-H L, Salas-Lloret D, Felipe-Medina N, Bradley R, Wolff ID, Tanis S, Barbero JL, Sánchez-Martín M, de Rooij D, Hendriks IA, Nielsen ML, Gonzalez-Prieto R, Cohen PE, Pendas AM, Llano E. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc Natl Acad Sci U S A 2024; 121:e2320995121. [PMID: 38865271 PMCID: PMC11194559 DOI: 10.1073/pnas.2320995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Collapse
Affiliation(s)
- Yazmine B. Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Laura Gomez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Department of Totipotency, Max Planck Institute of Biochemistry, 82152Martinsried, Germany
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Rachel Bradley
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Ian D. Wolff
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Stephanie Tanis
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Jose Luis Barbero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040Madrid, Spain
| | | | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht3584CM, The Netherlands
| | - Ivo A. Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Michael L. Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Román Gonzalez-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative MedicineCentro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad-Pablo de Olavide, 41092Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012Sevilla, Spain
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Alberto M. Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Departamento de Fisiología, Universidad de Salamanca, 37007Salamanca, Spain
| |
Collapse
|
14
|
Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, Liang Z, Liu Y, Zhu Y, Lu LY. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci U S A 2024; 121:e2401386121. [PMID: 38696471 PMCID: PMC11087798 DOI: 10.1073/pnas.2401386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yu Xiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Yidan Liu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Zhejiang University Cancer Center, Hangzhou310029, China
| |
Collapse
|
15
|
Cossu IG, Leu NA, Guan Y, Wang PJ. The N-terminal modification of HORMAD2 causes its ectopic persistence on synapsed chromosomes without meiotic blockade. Reproduction 2024; 167:e230330. [PMID: 38401263 PMCID: PMC10993814 DOI: 10.1530/rep-23-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
In brief The dissociation of HORMA domain protein 2 (HORMAD2) from the synaptonemal complex is tightly regulated. This study reveals that the N-terminal region of HORMAD2 is critical for its dissociation from synapsed meiotic chromosomes. Abstract During meiosis, homologous chromosomes undergo synapsis and recombination. HORMA domain proteins regulate key processes in meiosis. Mammalian HORMAD1 and HORMAD2 localize to unsynapsed chromosome axes but are removed upon synapsis by the TRIP13 AAA+ ATPase. TRIP13 engages the N-terminal region of HORMA domain proteins to induce an open conformation, resulting in the disassembly of protein complexes. Here, we report introduction of a 3×FLAG-HA tag to the N-terminus of HORMAD2 in mice. Coimmunoprecipitation coupled with mass spectrometry identified HORMAD1 and SYCP2 as HORMAD2-associated proteins in the testis. Unexpectedly, the N-terminal tagging of HORMAD2 resulted in its abnormal persistence along synapsed regions in pachynema and ectopic localization to telomeres in diplonema. Super-resolution microscopy revealed that 3×FLAG-HA-HORMAD2 was distributed along the central region of the synaptonemal complex, whereas wild-type HORMAD1 persisted along the lateral elements in 3×FLAG-HA-HORMAD2 meiocytes. Although homozygous mice completed meiosis and were fertile, homozygous males exhibited a significant reduction in sperm count. Collectively, these results suggest that the N-terminus of HORMAD2 is important for its timely removal from meiotic chromosome axes.
Collapse
Affiliation(s)
- Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
17
|
Walsh PT, Martínez-Marchal A, Brieño-Enríquez MA. Culture of the Intact Postnatal Naked Mole-Rat Ovary: From Meiotic Prophase to Single-Cell RNASeq. Methods Mol Biol 2024; 2818:179-194. [PMID: 39126475 DOI: 10.1007/978-1-0716-3906-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the primordial germ cells (PGCs), and the initiation of the meiotic program occurs postnatally. This is opposite to almost all other mammals, including humans and mice, whose reproductive cycle begins very early in development. In both mouse and human, the ovaries become populated with PGCs in utero; these PGCs will later generate the oogonia. After mitotic proliferation, these cells will trigger the meiotic program and initiate meiotic prophase I. Given that all these processes happen in utero, their analysis has been very challenging; so the ability to study them postnatally and to manipulate them with inhibitors or other substances, in the naked mole-rat, opens new possibilities in the field. In this chapter, we present a comprehensive collection of protocols that permit the culture of whole naked mole-rat ovaries, followed by analysis of germ cells, from PGCs to oocytes, in meiotic prophase I, as well the obtention of single-cell suspension or single-nuclei suspension for RNASeq.
Collapse
Affiliation(s)
- Patrick T Walsh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Martínez-Marchal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559355. [PMID: 37808842 PMCID: PMC10557606 DOI: 10.1101/2023.09.25.559355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. The AAA+ ATPase TRIP13 and its orthologue Pch2 are instrumental in remodeling HORMA domain proteins. Meiosis-specific HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed chromosome homologues. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. Trip13 heterozygous (Trip13+/-) mice also exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. The N- or C-terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres in knockin mice. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon chromosome synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y. Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
20
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
21
|
Miao X, Guo R, Williams A, Lee C, Ma J, Wang PJ, Cui W. Replication Protein A1 is essential for DNA damage repair during mammalian oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547725. [PMID: 37461444 PMCID: PMC10349974 DOI: 10.1101/2023.07.04.547725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Persistence of unrepaired DNA damage in oocytes is detrimental and may cause genetic aberrations, miscarriage, and infertility. RPA, an ssDNA-binding complex, is essential for various DNA-related processes. Here we report that RPA plays a novel role in DNA damage repair during postnatal oocyte development after meiotic recombination. To investigate the role of RPA during oogenesis, we inactivated RPA1 (replication protein A1), the largest subunit of the heterotrimeric RPA complex, specifically in oocytes using two germline-specific Cre drivers (Ddx4-Cre and Zp3-Cre). We find that depletion of RPA1 leads to the disassembly of the RPA complex, as evidenced by the absence of RPA2 and RPA3 in RPA1-deficient oocytes. Strikingly, severe DNA damage occurs in RPA1-deficient GV-stage oocytes. Loss of RPA in oocytes triggered the canonical DNA damage response mechanisms and pathways, such as activation of ATM, ATR, DNA-PK, and p53. In addition, the RPA deficiency causes chromosome misalignment at metaphase I and metaphase II stages of oocytes, which is consistent with altered transcript levels of genes involved in cytoskeleton organization in RPA1-deficient oocytes. Absence of the RPA complex in oocytes severely impairs folliculogenesis and leads to a significant reduction in oocyte number and female infertility. Our results demonstrate that RPA plays an unexpected role in DNA damage repair during mammalian folliculogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Catherine Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
22
|
Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, Cao Y, Tong X, Qin W, Zhu X, Bao J. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun 2023; 14:3729. [PMID: 37349316 PMCID: PMC10287700 DOI: 10.1038/s41467-023-39256-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development. We provide genetic evidence that Nat10 is essential for oocyte meiotic prophase I progression, oocyte growth and maturation by sculpting the maternal transcriptome through timely degradation of poly(A) tail mRNAs. This is achieved through the ac4C deposition on the key CCR4-NOT complex transcripts. Importantly, we devise a method for examining the poly(A) tail length (PAT), termed Hairpin Adaptor-poly(A) tail length (HA-PAT), which outperforms conventional methods in terms of cost, sensitivity, and efficiency. In summary, these findings provide genetic evidence that unveils the indispensable role of maternal Nat10 in oocyte development.
Collapse
Affiliation(s)
- Xue Jiang
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yu Cheng
- School of Information Science and Technology, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhang Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Caoling Xu
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Qiaodan Li
- Laboratory animal center, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xuemei Xing
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Wenqing Li
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Lan Meng
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Muhammad Azhar
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhu Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), 510600, Guangzhou, China.
| | - Xiaoli Zhu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| |
Collapse
|
23
|
Gantchev J, Messina-Pacheco J, Martínez Villarreal A, Ramchatesingh B, Lefrançois P, Xie P, Amar L, Xu HH, Raveendra K, Sikorski D, Guerra Ordaz DJ, Gill RPK, Lambert M, Litvinov IV. Ectopically Expressed Meiosis-Specific Cancer Testis Antigen HORMAD1 Promotes Genomic Instability in Squamous Cell Carcinomas. Cells 2023; 12:1627. [PMID: 37371097 DOI: 10.3390/cells12121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Genomic instability is a prominent hallmark of cancer, however the mechanisms that drive and sustain this process remain elusive. Research demonstrates that numerous cancers with increased levels of genomic instability ectopically express meiosis-specific genes and undergo meiomitosis, the clash of mitotic and meiotic processes. These meiotic genes may represent novel therapeutic targets for the treatment of cancer. We studied the relationship between the expression of the meiosis protein HORMAD1 and genomic instability in squamous cell carcinomas (SCCs). First, we assessed markers of DNA damage and genomic instability following knockdown and overexpression of HORMAD1 in different cell lines representing SCCs and epithelial cancers. shRNA-mediated depletion of HORMAD1 expression resulted in increased genomic instability, DNA damage, increased sensitivity to etoposide, and decreased expression of DNA damage response/repair genes. Conversely, overexpression of HORMAD1 exhibited protective effects leading to decreased DNA damage, enhanced survival and decreased sensitivity to etoposide. Furthermore, we identified a meiotic molecular pathway that regulates HORMAD1 expression by targeting the upstream meiosis transcription factor STRA8. Our results highlight a specific relationship between HORMAD1 and genomic instability in SCCs, suggesting that selectively inhibiting HORMAD1, possibly, through STRA8 signaling, may provide a new paradigm of treatment options for HORMAD1-expressing SCCs.
Collapse
Affiliation(s)
- Jennifer Gantchev
- Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Julia Messina-Pacheco
- Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montreal, QC H4A 3J1, Canada
| | | | | | - Philippe Lefrançois
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Pingxing Xie
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Laetitia Amar
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Hong Hao Xu
- Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | - Daniel Sikorski
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | - Marine Lambert
- Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan V Litvinov
- Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
24
|
Ma Y, Mu X, Gao R, Zhang Y, Geng Y, Chen X, Yin X, Li F, He J. Maternal exposure to dibutyl phthalate regulates MSH6 crotonylation to impair homologous recombination in fetal oocytes. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131540. [PMID: 37167869 DOI: 10.1016/j.jhazmat.2023.131540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Homologous recombination (HR) during early oogenesis repairs programmed double-strand breaks (DSBs) to ensure female fertility and offspring health. The exposure of fetal ovaries to endocrine disrupting chemicals (EDCs) can cause reproductive disorders in the adulthood. The EDC dibutyl phthalate (DBP) is widely distributed in flexible plastic products, leading to ubiquitous human exposure. Here, we report that maternal exposure to DBP caused gross aberrations in meiotic prophase I of fetal oocytes, including delayed progression, impaired DNA damage response, uncoupled localization of DMC1 and RAD51, and decreased HR. However, programmed DSBs were efficiently repaired. DBP exposure negatively regulated lysine crotonylation (Kcr) of MSH6. Similar meiotic defects were observed in fetal ovaries with targeted disruption of Msh6, and mutation of K544cr of MSH6 impaired its association with Ku70, thereby promoting non-homologous end joining (NHEJ) and inhibiting HR. Unlike mature F1 females, F2 female mice exhibited premature follicular activation, precocious puberty, and anxiety-like behaviors. Therefore, DBP can influence early meiotic events, and Kcr of MSH6 may regulate preferential induction of HR or NHEJ for DNA repair during meiosis.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
25
|
Baran V, Mayer A. Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo. Int J Mol Sci 2023; 24:ijms24076778. [PMID: 37047751 PMCID: PMC10095474 DOI: 10.3390/ijms24076778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.
Collapse
Affiliation(s)
- Vladimír Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4, 040 00 Košice, Slovakia
| | - Alexandra Mayer
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, 12000 Prague, Czech Republic
| |
Collapse
|
26
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Li J, Li Q, Zhang L, Zhang S, Dai Y. Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function. Biomed Pharmacother 2023; 157:114028. [PMID: 36410122 DOI: 10.1016/j.biopha.2022.114028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Poly-ADP-ribose polymerase (PARP) plays an important role in DNA damage detection and repair. PARP inhibitors (PARPi) are a novel class of targeted agents used widely in the treatment of female cancer patients with BRCA mutations, including younger patients. However, the impact of PARPi on ovarian function remains a considerable problem in clinical practice. In this review article, we summarize the current understanding of PARPi's effects on the function of ovary and discuss their potential underlying mechanisms, highlighting the significance of further investigation on the criterion for ovarian failure and its preventive approaches during PARPi treatment.
Collapse
Affiliation(s)
- Jiajia Li
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyi Zhang
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China; Gynecology and Obstetrics Department, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
28
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
29
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
30
|
The programmed death of fetal oocytes and the correlated surveillance mechanisms. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Transcription-replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability. Proc Natl Acad Sci U S A 2022; 119:e2203208119. [PMID: 35969748 PMCID: PMC9407672 DOI: 10.1073/pnas.2203208119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Germ cells are capable of preserving their genetic information with high fidelity. We report that rapidly dividing mouse primordial germ cells (PGCs) are faced with high levels of endogenous replication stress due to frequent occurrence of transcription–replication conflicts (TRCs). Thus, PGCs have an increased requirement for the replication-coupled Fanconi anemia (FA) pathway to counteract TRC-induced replication stress, enabling their rapid proliferation to establish a sufficient reproductive reserve. This work provides insights into the unique genome feature of developing PGCs and helps to explain the reproductive defects in FA individuals. Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription–replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.
Collapse
|
32
|
Multi-color dSTORM microscopy in Hormad1-/- spermatocytes reveals alterations in meiotic recombination intermediates and synaptonemal complex structure. PLoS Genet 2022; 18:e1010046. [PMID: 35857787 PMCID: PMC9342782 DOI: 10.1371/journal.pgen.1010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/01/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced. In order to correctly pair homologous chromosomes in the first meiotic prophase, repair of programmed double strand breaks (DSBs) is essential. By unravelling molecular details of the protein assemblies at single DSBs, using super-resolution microscopy, we aim to understand the dynamics of repair intermediates and their functions. We investigated the localization of the two recombinases RAD51 and DMC1 in wild type and HORMAD1-deficient cells. HORMAD1 is involved in multiple aspects of homologous chromosome association: it regulates formation and repair of DSBs, and it stimulates formation of the synaptonemal complex (SC), the macromolecular protein assembly that connects paired chromosomes. RAD51 and DMC1 enable chromosome pairing by promoting the invasions of the intact chromatids by single-stranded DNA ends that result from DSBs. We found that in absence of HORMAD1, RAD51 and DMC1 showed small but significant morphological and positional changes, combined with altered kinetics of specific RAD51/DMC1 configurations. We also determined that there is a generally preferred distance of ~900 nm between meiotic DSBs along the SC. Finally, we observed changes in the structure of the SC in Hormad1-/- spermatocytes. This study contributes to a better understanding of the molecular details of meiotic homologous recombination and the role of HORMAD1 in meiotic prophase.
Collapse
|
33
|
Mouse oocytes carrying metacentric Robertsonian chromosomes have fewer crossover sites and higher aneuploidy rates than oocytes carrying acrocentric chromosomes alone. Sci Rep 2022; 12:12028. [PMID: 35835815 PMCID: PMC9283534 DOI: 10.1038/s41598-022-16175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Meiotic homologous recombination during fetal development dictates proper chromosome segregation in adult mammalian oocytes. Successful homologous synapsis and recombination during Meiotic Prophase I (MPI) depends on telomere-led chromosome movement along the nuclear envelope. In mice, all chromosomes are acrocentric, while other mammalian species carry a mixture of acrocentric and metacentric chromosomes. Such differences in telomeric structures may explain the exceptionally low aneuploidy rates in mice. Here, we tested whether the presence of metacentric chromosomes carrying Robertsonian translocations (RbT) affects the rate of homologous recombination or aneuploidy. We found a delay in MPI progression in RbT-carrier vs. wild-type (WT) fetal ovaries. Furthermore, resolution of distal telomere clusters, associated with synapsis initiation, was delayed and centromeric telomere clusters persisted until later MPI substages in RbT-carrier oocytes compared to WT oocytes. When chromosomes fully synapsed, higher percentages of RbT-carrier oocytes harbored at least one chromosome pair lacking MLH1 foci, which indicate crossover sites, compared to WT oocytes. Aneuploidy rates in ovulated eggs were also higher in RbT-carrier females than in WT females. In conclusion, the presence of metacentric chromosomes among acrocentric chromosomes in mouse oocytes delays MPI progression and reduces the efficiency of homologous crossover, resulting in a higher frequency of aneuploidy.
Collapse
|
34
|
Wang Y, Gao W, Wang L, Wang R, Yang Z, Luo F, He Y, Wang Z, Wang F, Sun Q, Li J, Zhang D. FBXW24 controls female meiotic prophase progression by regulating SYCP3 ubiquitination. Clin Transl Med 2022; 12:e891. [PMID: 35858239 PMCID: PMC9299759 DOI: 10.1002/ctm2.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND An impeccable female meiotic prophase is critical for producing a high-quality oocyte and, ultimately, a healthy newborn. SYCP3 is a key component of the synaptonemal complex regulating meiotic homologous recombination. However, what regulates SYCP3 stability is unknown. METHODS Fertility assays, follicle counting, meiotic prophase stage (leptotene, zygotene, pachytene and diplotene) analysis and live imaging were employed to examine how FBXW24 knockout (KO) affect female fertility, follicle reserve, oocyte quality, meiotic prophase progression of female germ cells, and meiosis of oocytes. Western blot and immunostaining were used to examined the levels & signals (intensity, foci) of SYCP3 and multiple key DSB indicators & repair proteins (γH2AX, RPA2, p-CHK2, RAD51, MLH1, HORMAD1, TRIP13) after FBXW24 KO. Co-IP and immuno-EM were used to examined the interaction between FBXW24 and SYCP3; Mass spec was used to characterize the ubiquitination sites in SYCP3; In vivo & in vitro ubiquitination assays were utilized to determine the key sites in SYCP3 & FBXW24 for ubiquitination. RESULTS Fbxw24-knockout (KO) female mice were infertile due to massive oocyte death upon meiosis entry. Fbxw24-KO oocytes were defective due to elevated DNA double-strand breaks (DSBs) and inseparable homologous chromosomes. Fbxw24-KO germ cells showed increased SYCP3 levels, delayed prophase progression, increased DSBs, and decreased crossover foci. Next, we found that FBXW24 directly binds and ubiquitinates SYCP3 to regulate its stability. In addition, several key residues important for SYCP3 ubiquitination and FBXW24 ubiquitinating activity were characterized. CONCLUSIONS We proposed that FBXW24 regulates the timely degradation of SYCP3 to ensure normal crossover and DSB repair during pachytene. FBXW24-KO delayed SYCP3 degradation and DSB repair from pachytene until metaphase II (MII), ultimately causing failure in oocyte maturation, oocyte death, and infertility.
Collapse
Affiliation(s)
- Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen‐Yi Gao
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Li‐Li Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruo‐Lei Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhi‐Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Fu‐Qiang Luo
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yu‐Hao He
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zi‐Bin Wang
- Analysis and Test CenterNanjing Medical UniversityNanjingChina
| | - Fu‐Qiang Wang
- Fertility Preservation Lab and Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Qing‐Yuan Sun
- Fertility Preservation Lab and Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouChina
| | - Jing Li
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Animal Core FacilityNanjing Medical UniversityNanjingP. R. China
| |
Collapse
|
35
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Commun Biol 2022; 5:504. [PMID: 35618762 PMCID: PMC9135715 DOI: 10.1038/s42003-022-03449-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.
Collapse
|
37
|
Shang Y, Huang J, Li W, Zhang Y, Zhou X, Shao Q, Tan T, Yin S, Zhang L, Wang S. MEIOK21 regulates oocyte quantity and quality via modulating meiotic recombination. FASEB J 2022; 36:e22357. [PMID: 35593531 DOI: 10.1096/fj.202101950r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
The reproductive life span of females is largely determined by the number and quality of oocytes. Previously, we identified MEIOK21 as a meiotic recombination regulator required for male fertility. Here, we characterize the important roles of MEIOK21 in regulating female meiosis and oocyte number and quality. MEIOK21 localizes at recombination sites as a component of recombination bridges in oogenesis like in spermatogenesis. Meiok21-/- female mice show subfertility. Consistently, the size of the primordial follicle pool in Meiok21-/- females is only ~40% of wild-type females because a great number of oocytes with defects in meiotic recombination and/or synapsis are eliminated. Furthermore, the numbers of primordial and growing follicles show a more marked decrease in an age-dependent manner compared with wild-type females. Further analysis shows Meiok21-/- oocytes also have reduced rates of germinal vesicle breakdown and the first polar body extrusion when cultured in vitro, indicating poor oocyte quality. Additionally, Meiok21-/- oocytes have more chromosomes bearing a single distally localized crossover (chiasmata), suggesting a possible defect in crossover maturation. Taken together, our findings indicate critical roles for MEIOK21 in ensuring the number and quality of oocytes in the follicles.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Weidong Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanan Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xu Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qiqi Shao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| |
Collapse
|
38
|
Gasic S, Mihola O, Trachtulec Z. Prdm9 deficiency of rat oocytes causes synapsis among non-homologous chromosomes and aneuploidy. Mamm Genome 2022; 33:590-605. [PMID: 35596034 DOI: 10.1007/s00335-022-09954-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age. Here, we explored this model to test how POF relates to oocyte euploidy. The mutant rat females displayed increased oocyte aneuploidy and embryonic death of their offspring compared to controls. Because rat PRDM9 positions meiotic DNA breaks, we investigated the repair of these breaks. Fertile control rodents carry pachytene oocytes with synapsed homologous chromosomes and repaired breaks, while sterile Prdm9-deficient mice carry pachytene-like oocytes with many persisting breaks and asynapsed chromosomes. However, most PRDM9-lacking rat oocytes displayed a few persisting breaks and non-homologous synapsis (NHS). HORMAD2 protein serves as a barrier to sister-chromatid repair and a signal for the synapsis and DNA repair checkpoints. NHS but not asynapsis was associated with HORMAD2 levels similar to the levels on rat pachytene chromosomes with homologous synapsis. NHS was accompanied by crossing-over decreased below the minimum that is essential for euploidy. We argue that the increased mutant rat aneuploidy is due to NHS, which allows some oocytes to pass meiotic checkpoints without one crossing-over per chromosomal pair, leading to segregation errors, and thereby NHS links POF to aneuploidy.
Collapse
Affiliation(s)
- Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
39
|
Ravindranathan R, Raveendran K, Papanikos F, San-Segundo P, Tóth A. Chromosomal synapsis defects can trigger oocyte apoptosis without elevating numbers of persistent DNA breaks above wild-type levels. Nucleic Acids Res 2022; 50:5617-5634. [PMID: 35580048 PMCID: PMC9177993 DOI: 10.1093/nar/gkac355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.
Collapse
Affiliation(s)
- Ramya Ravindranathan
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kavya Raveendran
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Frantzeskos Papanikos
- Institute of Physiological Chemistry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Attila Tóth
- To whom correspondence should be addressed. Tel: +49 351 458 6467; Fax: +49 351 458 6305;
| |
Collapse
|
40
|
Prince JP, Martinez-Perez E. Functions and Regulation of Meiotic HORMA-Domain Proteins. Genes (Basel) 2022; 13:777. [PMID: 35627161 PMCID: PMC9141381 DOI: 10.3390/genes13050777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.
Collapse
Affiliation(s)
- Josh P. Prince
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
| | - Enrique Martinez-Perez
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
41
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
42
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
43
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
44
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
45
|
Boateng R, Boechat N, Henrich PP, Bolcun-Filas E. Whole Ovary Immunofluorescence, Clearing, and Multiphoton Microscopy for Quantitative 3D Analysis of the Developing Ovarian Reserve in Mouse. J Vis Exp 2021:10.3791/62972. [PMID: 34542534 PMCID: PMC8911993 DOI: 10.3791/62972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Female fertility and reproductive lifespan depend on the quality and quantity of the ovarian oocyte reserve. An estimated 80% of female germ cells entering meiotic prophase I are eliminated during Fetal Oocyte Attrition (FOA) and the first week of postnatal life. Three major mechanisms regulate the number of oocytes that survive during development and establish the ovarian reserve in females entering puberty. In the first wave of oocyte loss, 30-50% of the oocytes are eliminated during early FOA, a phenomenon that is attributed to high Long interspersed nuclear element-1 (LINE-1) expression. The second wave of oocyte loss is the elimination of oocytes with meiotic defects by a meiotic quality checkpoint. The third wave of oocyte loss occurs perinatally during primordial follicle formation when some oocytes fail to form follicles. It remains unclear what regulates each of these three waves of oocyte loss and how they shape the ovarian reserve in either mice or humans. Immunofluorescence and 3D visualization have opened a new avenue to image and analyze oocyte development in the context of the whole ovary rather than in less informative 2D sections. This article provides a comprehensive protocol for whole ovary immunostaining and optical clearing, yielding preparations for imaging using multiphoton microscopy and 3D modeling using commercially available software. It shows how this method can be used to show the dynamics of oocyte attrition during ovarian development in C57BL/6J mice and quantify oocyte loss during the three waves of oocyte elimination. This protocol can be applied to prenatal and early postnatal ovaries for oocyte visualization and quantification, as well as other quantitative approaches. Importantly, the protocol was strategically developed to accommodate high-throughput, reliable, and repeatable processing that can meet the needs in toxicology, clinical diagnostics, and genomic assays of ovarian function.
Collapse
|
46
|
Hernández-López D, Geisinger A, Trovero MF, Santiñaque FF, Brauer M, Folle GA, Benavente R, Rodríguez-Casuriaga R. Familial primary ovarian insufficiency associated with an SYCE1 point mutation: defective meiosis elucidated in humanized mice. Mol Hum Reprod 2021; 26:485-497. [PMID: 32402064 DOI: 10.1093/molehr/gaaa032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
More than 50% of cases of primary ovarian insufficiency (POI) and nonobstructive azoospermia in humans are classified as idiopathic infertility. Meiotic defects may relate to at least some of these cases. Mutations in genes coding for synaptonemal complex (SC) components have been identified in humans, and hypothesized to be causative for the observed infertile phenotype. Mutation SYCE1 c.721C>T (former c.613C>T)-a familial mutation reported in two sisters with primary amenorrhea-was the first such mutation found in an SC central element component-coding gene. Most fundamental mammalian oogenesis events occur during the embryonic phase, and eventual defects are identified many years later, thus leaving few possibilities to study the condition's etiology and pathogenesis. Aiming to validate an approach to circumvent this difficulty, we have used the CRISPR/Cas9 technology to generate a mouse model with an SYCE1 c.721C>T equivalent genome alteration. We hereby present the characterization of the homozygous mutant mice phenotype, compared to their wild type and heterozygous littermates. Our results strongly support a causative role of this mutation for the POI phenotype in human patients, and the mechanisms involved would relate to defects in homologous chromosome synapsis. No SYCE1 protein was detected in homozygous mutants and Syce1 transcript level was highly diminished, suggesting transcript degradation as the basis of the infertility mechanism. This is the first report on the generation of a humanized mouse model line for the study of an infertility-related human mutation in an SC component-coding gene, thus representing a proof of principle.
Collapse
Affiliation(s)
- Diego Hernández-López
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.,Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| | | | | | - Mónica Brauer
- Laboratory of Cell Biology, Department of Experimental Neuropharmacology, IIBCE, 11600 Montevideo, Uruguay
| | - Gustavo A Folle
- Department of Genetics, IIBCE, 11600 Montevideo, Uruguay.,Flow Cytometry and Cell Sorting Core, IIBCE, 11600 Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.,Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
47
|
Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry-Adkins JL, Gonzalez JM, Fontanillas P, Claringbould A, Bakker OB, Sulem P, Walters RG, Terao C, Turon S, Horikoshi M, Lin K, Onland-Moret NC, Sankar A, Hertz EPT, Timshel PN, Shukla V, Borup R, Olsen KW, Aguilera P, Ferrer-Roda M, Huang Y, Stankovic S, Timmers PRHJ, Ahearn TU, Alizadeh BZ, Naderi E, Andrulis IL, Arnold AM, Aronson KJ, Augustinsson A, Bandinelli S, Barbieri CM, Beaumont RN, Becher H, Beckmann MW, Benonisdottir S, Bergmann S, Bochud M, Boerwinkle E, Bojesen SE, Bolla MK, Boomsma DI, Bowker N, Brody JA, Broer L, Buring JE, Campbell A, Campbell H, Castelao JE, Catamo E, Chanock SJ, Chenevix-Trench G, Ciullo M, Corre T, Couch FJ, Cox A, Crisponi L, Cross SS, Cucca F, Czene K, Smith GD, de Geus EJCN, de Mutsert R, De Vivo I, Demerath EW, Dennis J, Dunning AM, Dwek M, Eriksson M, Esko T, Fasching PA, Faul JD, Ferrucci L, Franceschini N, Frayling TM, Gago-Dominguez M, Mezzavilla M, García-Closas M, Gieger C, Giles GG, Grallert H, Gudbjartsson DF, Gudnason V, Guénel P, Haiman CA, Håkansson N, Hall P, Hayward C, He C, He W, Heiss G, et alRuth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry-Adkins JL, Gonzalez JM, Fontanillas P, Claringbould A, Bakker OB, Sulem P, Walters RG, Terao C, Turon S, Horikoshi M, Lin K, Onland-Moret NC, Sankar A, Hertz EPT, Timshel PN, Shukla V, Borup R, Olsen KW, Aguilera P, Ferrer-Roda M, Huang Y, Stankovic S, Timmers PRHJ, Ahearn TU, Alizadeh BZ, Naderi E, Andrulis IL, Arnold AM, Aronson KJ, Augustinsson A, Bandinelli S, Barbieri CM, Beaumont RN, Becher H, Beckmann MW, Benonisdottir S, Bergmann S, Bochud M, Boerwinkle E, Bojesen SE, Bolla MK, Boomsma DI, Bowker N, Brody JA, Broer L, Buring JE, Campbell A, Campbell H, Castelao JE, Catamo E, Chanock SJ, Chenevix-Trench G, Ciullo M, Corre T, Couch FJ, Cox A, Crisponi L, Cross SS, Cucca F, Czene K, Smith GD, de Geus EJCN, de Mutsert R, De Vivo I, Demerath EW, Dennis J, Dunning AM, Dwek M, Eriksson M, Esko T, Fasching PA, Faul JD, Ferrucci L, Franceschini N, Frayling TM, Gago-Dominguez M, Mezzavilla M, García-Closas M, Gieger C, Giles GG, Grallert H, Gudbjartsson DF, Gudnason V, Guénel P, Haiman CA, Håkansson N, Hall P, Hayward C, He C, He W, Heiss G, Høffding MK, Hopper JL, Hottenga JJ, Hu F, Hunter D, Ikram MA, Jackson RD, Joaquim MDR, John EM, Joshi PK, Karasik D, Kardia SLR, Kartsonaki C, Karlsson R, Kitahara CM, Kolcic I, Kooperberg C, Kraft P, Kurian AW, Kutalik Z, La Bianca M, LaChance G, Langenberg C, Launer LJ, Laven JSE, Lawlor DA, Le Marchand L, Li J, Lindblom A, Lindstrom S, Lindstrom T, Linet M, Liu Y, Liu S, Luan J, Mägi R, Magnusson PKE, Mangino M, Mannermaa A, Marco B, Marten J, Martin NG, Mbarek H, McKnight B, Medland SE, Meisinger C, Meitinger T, Menni C, Metspalu A, Milani L, Milne RL, Montgomery GW, Mook-Kanamori DO, Mulas A, Mulligan AM, Murray A, Nalls MA, Newman A, Noordam R, Nutile T, Nyholt DR, Olshan AF, Olsson H, Painter JN, Patel AV, Pedersen NL, Perjakova N, Peters A, Peters U, Pharoah PDP, Polasek O, Porcu E, Psaty BM, Rahman I, Rennert G, Rennert HS, Ridker PM, Ring SM, Robino A, Rose LM, Rosendaal FR, Rossouw J, Rudan I, Rueedi R, Ruggiero D, Sala CF, Saloustros E, Sandler DP, Sanna S, Sawyer EJ, Sarnowski C, Schlessinger D, Schmidt MK, Schoemaker MJ, Schraut KE, Scott C, Shekari S, Shrikhande A, Smith AV, Smith BH, Smith JA, Sorice R, Southey MC, Spector TD, Spinelli JJ, Stampfer M, Stöckl D, van Meurs JBJ, Strauch K, Styrkarsdottir U, Swerdlow AJ, Tanaka T, Teras LR, Teumer A, Þorsteinsdottir U, Timpson NJ, Toniolo D, Traglia M, Troester MA, Truong T, Tyrrell J, Uitterlinden AG, Ulivi S, Vachon CM, Vitart V, Völker U, Vollenweider P, Völzke H, Wang Q, Wareham NJ, Weinberg CR, Weir DR, Wilcox AN, van Dijk KW, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wolk A, Wood AR, Zhao W, Zygmunt M, Chen Z, Li L, Franke L, Burgess S, Deelen P, Pers TH, Grøndahl ML, Andersen CY, Pujol A, Lopez-Contreras AJ, Daniel JA, Stefansson K, Chang-Claude J, van der Schouw YT, Lunetta KL, Chasman DI, Easton DF, Visser JA, Ozanne SE, Namekawa SH, Solc P, Murabito JM, Ong KK, Hoffmann ER, Murray A, Roig I, Perry JRB. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 2021; 596:393-397. [PMID: 34349265 PMCID: PMC7611832 DOI: 10.1038/s41586-021-03779-7] [Show More Authors] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jazib Hussain
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ajuna Azad
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Hironori Abe
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Javier Martin Gonzalez
- Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Olivier B Bakker
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | | | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sandra Turon
- Transgenic Animal Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Aditya Sankar
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Peter Thrane Hertz
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pascal N Timshel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rehannah Borup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristina W Olsen
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Reproductive Medicine, Department of Obstetrics and Gynaecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Paula Aguilera
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla -Universidad Pablo de Olavide, Seville, Spain
| | - Mònica Ferrer-Roda
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elnaz Naderi
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Annelie Augustinsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Caterina M Barbieri
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robin N Beaumont
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Murielle Bochud
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie E Buring
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Archie Campbell
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marina Ciullo
- Institute of Genetics and Biophysics - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Italy
| | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eco J C N de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, University of Minnesotta, Minneapolis, MN, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tõnu Esko
- Population and Medical Genetics, Broad Institute, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy M Frayling
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Chunyan He
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
- The Cancer Prevention and Control Research Program, University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Miya K Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jouke J Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Frank Hu
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mohammad A Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca D Jackson
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Micaella D R Joaquim
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David Karasik
- Harvard Medical School, Boston, MA, USA
- Hebrew SeniorLife Institute for Aging Research, Boston, MA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christiana Kartsonaki
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Allison W Kurian
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Martina La Bianca
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Genevieve LaChance
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jingmei Li
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tricia Lindstrom
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - YongMei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Medicine, Brown University, Providence, RI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Brumat Marco
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Hamdi Mbarek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Central Hospital of Augsburg, MONICA/KORA Myocardial Infarction Registry, Augsburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Antonella Mulas
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Anna M Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Alison Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Anne Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics - CNR, Naples, Italy
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Jodie N Painter
- QIMR Berghofer Medical Research Insititute, Brisbane, Queensland, Australia
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Perjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
- Gen-Info Ltd, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | | | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Hedy S Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Paul M Ridker
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Rossouw
- Women's Health Initiative Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Cinzia F Sala
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Serena Sanna
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Schlessinger
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Saleh Shekari
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Amruta Shrikhande
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Blair H Smith
- Division of Population and Health Genomics, University of Dundee, Dundee, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Meir Stampfer
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Doris Stöckl
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Obstetrics and Gynaecology, Campus Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Unnur Þorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Toniolo
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Traglia
- Genetics of Common Disorders Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Jessica Tyrrell
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Celine M Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Amber N Wilcox
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew R Wood
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Liming Li
- School of Public Health, Peking University Health Science Center, Beijing, P.R. China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, P.R. China
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Patrick Deelen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Louise Grøndahl
- Reproductive Medicine, Department of Obstetrics and Gynaecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Pujol
- Transgenic Animal Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Andres J Lopez-Contreras
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla -Universidad Pablo de Olavide, Seville, Spain
| | - Jeremy A Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Daniel I Chasman
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Murray
- Genetics of Human Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
49
|
Xiao WW, Li M, Guo ZW, Zhang R, Xi SY, Zhang XG, Li Y, Wu DQ, Ren YF, Pang XL, Wan XB, Li K, Zhou CL, Zhai XM, Liang ZK, Wang QX, Zeng ZF, Zhang HZ, Yang XX, Wu YS, Li M, Gao YH. A Genotype Signature for Predicting Pathologic Complete Response in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2021; 110:482-491. [PMID: 33434612 DOI: 10.1016/j.ijrobp.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To construct and validate a predicting genotype signature for pathologic complete response (pCR) in locally advanced rectal cancer (PGS-LARC) after neoadjuvant chemoradiation. METHODS AND MATERIALS Whole exome sequencing was performed in 15 LARC tissues. Mutation sites were selected according to the whole exome sequencing data and literature. Target sequencing was performed in a training cohort (n = 202) to build the PGS-LARC model using regression analysis, and internal (n = 76) and external validation cohorts (n = 69) were used for validating the results. Predictive performance of the PGS-LARC model was compared with clinical factors and between subgroups. The PGS-LARC model comprised 15 genes. RESULTS The area under the curve (AUC) of the PGS model in the training, internal, and external validation cohorts was 0.776 (0.697-0.849), 0.760 (0.644-0.867), and 0.812 (0.690-0.915), respectively, and demonstrated higher AUC, accuracy, sensitivity, and specificity than cT stage, cN stage, carcinoembryonic antigen level, and CA19-9 level for pCR prediction. The predictive performance of the model was superior to clinical factors in all subgroups. For patients with clinical complete response (cCR), the positive prediction value was 94.7%. CONCLUSIONS The PGS-LARC is a reliable predictive tool for pCR in patients with LARC and might be helpful to enable nonoperative management strategy in those patients who refuse surgery. It has the potential to guide treatment decisions for patients with different probability of tumor regression after neoadjuvant therapy, especially when combining cCR criteria and PGS-LARC.
Collapse
Affiliation(s)
- Wei-Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Min Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Wei Guo
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Yan Xi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiang-Guo Zhang
- Department of Radiation Oncology, Affiliated Yuebei People Hospital of Shantou University Medical College, ShaoGuan, Guangdong, China
| | - Yong Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - De-Qing Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu-Feng Ren
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Lin Pang
- Department of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Bo Wan
- Department of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun-Lian Zhou
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Ming Zhai
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Kun Liang
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China
| | - Qiao-Xuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhi-Fan Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Zhong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xue-Xi Yang
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Song Wu
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Li
- Guangzhou Darui Biotechnology Co, Ltd High-Tech Development Zone, Guangzhou, Guangdong, China
| | - Yuan-Hong Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
DNA repair in primordial follicle oocytes following cisplatin treatment. J Assist Reprod Genet 2021; 38:1405-1417. [PMID: 33864208 DOI: 10.1007/s10815-021-02184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Genotoxic chemotherapy and radiotherapy can cause DNA double stranded breaks (DSBs) in primordial follicle (PMF) oocytes, which then undergo apoptosis. The development of effective new fertility preservation agents has been hampered, in part, by a limited understanding of DNA repair in PMF oocytes. This study investigated the induction of classical DSB repair pathways in the follicles of wild type (WT) and apoptosis-deficient Puma-/- mice in response to DSBs caused by the chemotherapy agent cisplatin. METHODS Adult C57BL/6 WT and Puma-/- mice were injected i.p. with saline or cisplatin (5 mg/kg); ovaries were harvested at 8 or 24 h. Follicles were counted, and H2A histone family member (γH2AX) immunofluorescence used to demonstrate DSBs. DNA repair protein RAD51 homolog 1 (RAD51) and DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) immunofluorescence were used to identify DNA repair pathways utilised. RESULTS Puma-/- mice retained 100% of follicles 24 h after cisplatin treatment. Eight hours post-treatment, γH2AX immunofluorescence showed DSBs across follicular stages in Puma-/- mice; staining returned to control levels in PMFs within 5 days, suggesting repair of PMF oocytes in this window. RAD51 immunofluorescence eight hours post-cisplatin was positive in damaged cell types in both WT and Puma-/- mice, demonstrating induction of the homologous recombination pathway. In contrast, DNA-PKcs staining were rarely observed in PMFs, indicating non-homologous end joining plays an insignificant role. CONCLUSION PMF oocytes are able to conduct high-fidelity repair of DNA damage accumulated during chemotherapy. Therefore, apoptosis inhibition presents a viable strategy for fertility preservation in women undergoing treatment.
Collapse
|